Details
Title
The Effect of Microalloying (Nb, V) and Interstitial (C, N) Elements on Mechanical Properties of Microalloyed SteelsJournal title
Archives of Foundry EngineeringYearbook
2023Volume
vol. 23Issue
No 4Affiliation
Marynowski, Przemysław : AGH University of Krakow, Poland ; Hojny, Marcin : AGH University of Krakow, Poland ; Dębiński, Tomasz : AGH University of Krakow, PolandAuthors
Keywords
Microalloyed steels ; Mechanical properties ; precipitations ; carbonitridesDivisions of PAS
Nauki TechniczneCoverage
127-136Publisher
The Katowice Branch of the Polish Academy of SciencesBibliography
[1] Adrian H. (2011). Numerical modeling of heat treatment processes. AGH Kraków. (in Polish).[2] European Committee for Standardization (2019). Hot Rolled Products of Structural Steels: Technical Delivery Conditions for Flat Products of High Yield Strength Structural Steels in the Quenched and Tempered Condition
[3] Jan, F., Jaka, B. & Grega, K. (2021). Grain size evolution and mechanical properties of Nb, V–Nb, and Ti–Nb boron type S1100QL steels. Metals. 11(3), 492. https://doi.org/10.3390/met11030492.
[4] Gladman, T. (1997). The physical metallurgy of microalloyed steels institute of materials. vol. 363. London, UK. Search in. [5] Blicharski, M. (2004). Materials engineering: steel. WNT: Warszawa. (in Polish).
[6] Marynowski, P., Adrian, H. & Głowacki, M. (2019) Modeling of the kinetics of carbonitride precipitation process in high-strength low-alloy steels using cellular automata method. Journal of Materials Engineering and Performance. 28(7), 4018-4025. https://doi.org/10.1007/s11665-019-04170-4.
[7] Marynowski, P., Adrian, H. & Głowacki, M. (2018). Cellular Automata model of carbonitrides precipitation process in steels. Computer Methods in Materials Science. 18(4), 120-128. ISSN 1641-8581.
[8] Marynowski, P., Adrian, H. & Głowacki, M. (2013). Cellular automata model of precipitation in microalloyed niobium steels. Computer Methods in Materials Science. 13(4), 452-459. ISSN 1641-8581.
[9] Adrian, H. (1992). Thermodynamic model for precipitation of carbonitrides in high strength low alloy steels containing up to three microalloying elements with or without additions of aluminum. Materials Science and Technology. 8, 406-420. https://doi.org/10.1179/mst.1992.8.5.406.
[10] Adrian, H. (1995). Thermodynamic model of carbonitride precipitation in low-alloy steels with increased strength with application to hardenability tests. Kraków: AGH. (in Polish).
[11] Adrian, H. (1995). Thermodynamic calculations of carbonitride precipitation as a guide for alloy design of microalloyed steels. In Proceedings of the International Conference Microalloying'95, 11-14 June 1995(285-307). Pittsburgh.
[12] Adrian, H. (1999). A mechanism for the effect of vanadium on the hardenability of medium carbon manganese steel. Materials Science and Technology. 15, 366-378. https://doi.org/10.1179/026708399101505987.
[13] Cuddy, L.J. & Raley, J.C. (1987). Austenite grain coarsening in microalloyed steels. Metallurgical Transactions A. 14, 1989-1995. https://doi.org/10.1007/BF02662366.
[14] Cuddy, L.J. (1984). The effect of micro alloy concentration on the recrystallization of austenite during hot deformation. Processing of Microalloyed Austenite (Pittsburgh) TMS-AIME Warrendale PA.
[15] Goldschmidt, H.J. (1967). Interstitial Alloys. Butterworth-Heinermann.
[16] Lifschitz, I.M. & Slyozov, V.V. (1961). The kinetics of precipitation from supersaturated solid solution. Journal of Physics and Chemistry of Solids. 19(1/2), 35-50. https://doi.org/10.1016/0022-3697(61)90054-3.
[17] Zając, S., Siwecki, T. & Hutchinson, W.B. (1998). Lagneborg R. The role of carbon in enhancing precipitation strengthening of V-microalloyed steels. Material Science Forum. 284, 295-302. https://doi.org/10.4028/www.scientific.net/MSF.284-286.295.
[18] Langberg, R., Hutchinson, W.B., Siwecki, T. & Zając, T. (2014). The role of vanadium in microalloyed steels. Sweden: Swerea KIMAB