Details
Title
Changes in the Microstructure and Abrasion Resistance of Tool Cast Steel after the Formation of Titanium Carbides in the Alloy MatrixJournal title
Archives of Foundry EngineeringYearbook
2023Volume
vol. 23Issue
No 4Authors
Affiliation
Tęcza, Grzegorz : AGH University of Krakow, PolandKeywords
Cast tool steel ; Microstructure ; Titanium carbides ; Heat treatment ; Hardness ; Resistance to abrasive wearDivisions of PAS
Nauki TechniczneCoverage
173-180Publisher
The Katowice Branch of the Polish Academy of SciencesBibliography
[1] Głownia, J. (2002). Alloy steel castings-applications. Kraków: Fotobit. (in Polish).[2] Dobrzański, L.A. (2006). Engineering materials and material design. Warszawa: WNT. (in Polish).
[3] Metals Handbook, (1990). 10-th Ed., vol. 1. ASM International.
[4] Głownia, J., Tęcza, G., Sobula, S., Kalandyk, B., Dzieja, A. (2007). Determination of the content and effect of residual austenite on the properties of cast L70H2GNM steel. Research done for Metalodlew S.A., unpublished. (in Polish).
[5] Głownia, J. (2017). Metallurgy and technology of steel castings. Sharjah: Bentham Science Publishers, cop.
[6] Mirzaee, M., Momeni, A., Keshmiri, H. & Razavinejad, R. (2014). Effect of titanium and niobium on modifying the microstructure of cast K100 tool steel. Metallurgical and Materials Transactions B. 45, 2304-2314. https://doi.org/10.1007/s11663-014-0150-8.
[7] Grabnar, K., Burja, J., Balaško, T., Nagode, A. & Medved, J. (2022). The influence of Nb, Ta and Ti modification on hot-work tool-steel grain growth during austenitization. Materiali in tehnologije. 56(3), 331-338. https://doi.org/10.17222/mit.2022.486.
[8] Srivastava, A.K. & Das, K. (2009). Microstructural and Mechanical Characterization of in Situ TiC and (Ti,W)C-Reinforced High Manganese Austenitic Steel Matrix Composites. Materials Science & Engineering A. 516, 1–6.
[9] Das, K., Bandyopadhyay, T.K. & Das, S. (2002). A review on the various synthesis routes of TiC reinforced ferrous based composites. Jurnal of Materials Science. 516(1-2), 1-6. https://doi.org/10.1016/j.msea.2009.04.041.
[10] Olejnik, E., Janas, A., Kolbus, A. & Sikora, G. (2011). The composition of reaction substrates for TiC carbides synthesis and its influence on the thickness of iron casting composite layer. Archives of Foundry Engineering. 11(spec.2), 165-168. ISSN (1897-3310).
[11] Olejnik, E., Tokarski, T., Sikora, G., Sobula, S., Maziarz, W., Szymański, Ł. & Grabowska, B. (2019). The effect of Fe addition on fragmentation phenomena, macrostructure, microstructure, and hardness of TiC-Fe local reinforcements fabricated in situ in steel casting. Metallurgical and Materials Transactions A. 50, 975-986. https://doi.org/10.1007/s11661-018-4992-6.
[12] Sobula, S., Olejnik, E. & Tokarski, T. (2017). Wear resistance of TiC reinforced cast steel matrix composite. Archives of foundry engineering. 17(1), 143-146. DOI: 10.1515/afe-2017-0026.
[13] Montealegre, M., Castro, G., Arias, J., Fernández-Vicente, A., Vázquez, J. (2008). Tool steel laser surface modification with TiC. In 3rd Pacific International Conference on Application of Lasers and Optics 2008, (pp. 890-894). Torneiros, Spain.
[14] Balanou, M., Karmiris-Obratański, P.P., Emmanouil-Lazaros., G.N., Markopoulos, A. (2021). Surface modification of tool steel by using EDM green powder metallurgy electrodes. In IOP Conference Series Materials Science and Engineering, 14-15 December 2021 (pp. 012014). Athens, Greece.
[15] Szymański, Ł., Olejnik, E., Tokarski, T., Kurtyka, P., Drożyński, D. & Żymankowska-Kumon, S. (2018). Reactive casting coatings for obtaining in situ composite layers based on Fe alloys. Surface and Coatings Technology. 350, 346-358. https://doi.org/10.1016/j.surfcoat.2018.06.085.
[16] Szymański, Ł., Olejnik, E., Sobczak, J.J., Szala, M., Kurtyka, P., Tokarski, T. & Janas, A. (2022). Dry sliding, slurry abrasion and cavitation erosion of composite layers reinforced by TiC fabricated in situ in cast steel and gray cast iron. Journal of Materials Processing Technology. 308, 117688. https://doi.org/10.1016/j.jmatprotec.2022.117688.
[17] Valdes, V.H., Guerra, F.V., Bedolla Jacuinde, A. & Pacheco-Cedeño, J. (2023). Development and characterization of a cast steel reinforced with primary carbides for high strength and severe wear applications. MRS Advances. 8, 1139-1143. DOI: 10.1557/s43580-023-00699-8.
[18] Tęcza, G. & Zapała, R. (2018). Changes in impact strength and abrasive wear resistance of cast high manganese steel due to the formation of primary titanium carbides. Archives of Foundry Engineering. 18(1), 119-122. DOI: 10.24425/118823.
[19] Tęcza, G. & Garbacz-Klempka A. (2016). Microstructure of cast high-manganese steel containing titanium. Archives of Foundry Engineering. 16(4), 163-168. ISSN (1897-3310).
[20] Tęcza, G. (2021). Changes in abrasive wear resistance during Miller test of Cr-Ni cast steel with Ti carbides formed in the alloy matrix. Archives of Foundry Engineering. 21(4), 110-115. DOI: 10.24425/afe.2021.139758.,
[21] Kalandyk, B. & Zapała, R. (2013). Effect of high-manganese cast steel strain hardening on the abrasion wear resistance in a mixture of SiC and water. Archives of Foundry Engineering. 13(4), 63-66. ISSN (1897-3310).
[22] Kasinska, J. & Kalandyk, B.(2017). Effects of rare earth metal addition on wear resistance of chromium-molybdenum cast steel. Archives of Foundry Engineering. 17(3), 63-68. DOI: 10.1515/afe-2017-0092.
[23] Sobula, S. & Kraiński, S. (2021). Effect of SiZr modification on the microstructure and properties of high manganese cast steel. Archives of Foundry Engineering. 21(4), 82-86. Doi: 10.24425/afe.2021.138683.