Details

Title

Research of Casting and Solidification of Steel Ingots by Application of Low-Melting Materials

Journal title

Archives of Foundry Engineering

Yearbook

2024

Volume

vol. 24

Issue

No 2

Affiliation

Kantoríková, E. : University of Žilina, Slovak Republic ; Moravec, J. : University of Žilina, Slovak Republic

Authors

Keywords

Casting process ; Mold ; Shrinkage ; Temperature course

Divisions of PAS

Nauki Techniczne

Coverage

143-150

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography


[1] Moravec, J., Langa, J. & Solfronk, P. (2017). Verification of shrinkage formation in steel ingots in laboratory conditions. Communications. 19(2A), 15-22. ISSN 1335 – 4205

[2] Šmrha, L. (1983). Solidification and crystallization of steel ingots. Praha: STNL.

[3] Moravec,J., Kopas, P., Jakubovičová, L., Leitner, B.. (2018). Experimental casting of forging ingots from model material. MATEC Web of Conferences. 36-46.

[4] Szekely, J. (1988). The mathematical modelling revolution in extractive metallurgy. Metallurgical Transactions B. 19B, 525-540.

[5] Giamej, A.F., Abbaschian, G.J. (1988). Modeling of Casting and Welding Processes IV. TMS, Warrendale, PA

[6] Piwonka, T.S. (1980). Process modeling in the foundry. Process Modeling Fundamentals and Applications to Metals. ASM, Metals Park, Ohio, 57-75.

[7] James, D. & Middleton, J. (1985). The use of stearin wax for simulating shrinkage defects in steel casting. British Foundryman. 15 , 36.

[8] Piwonka,T.S. (1988). Research directions for process control. presented at evaporative foam casting technology. III Conference, American Foundrymen's Society, Des Plaines, IL.

[9] Kaili, C., Wenchao, Y., Jiachen, Z., Chen, L., Pengfei, Q., Haijun, S., Jun, Z. & Lin, L. (2021). Solidification characteristics and as-cast microstructures of a Ru-containing nickelbased single crystal superalloy. Journal of Materials Research and Technology. 11, 474-486. https://doi.org/10.1016/j.jmrt.2021.01.043

[10] Konar, R. & Mician, M. (2017). Ultrasonic inspection techniques possibilities for centrifugal cast copper alloy. Archives of Foundry Engineering. 17(2), 35-38. DOI: 10.1515/afe-2017-0047.

[11] Tillova, E., Chalupova, M., Borko, K. & Kucharikova, L. (2016). Changes of fracture surface in recycled A356 cast alloy. Materials Today: Proceedings. 3(4), 1183-1188. https://doi.org/10.1016/j.matpr.2016.03.009.

[12] Chandley, G.D. (1988). Counter-Gravity Low-Pressure Casting. Metals Handbook, 9th Edition, Vol. 15. Ohio: ASM International, Metals Park.

[13] Moravec, J., Jančušová, M., Kuba, J., Stroka, R. (2010). Technology of forming technical materials. Edis. ISBN 978-80-554-0220-9.

[14] Pfann, W.G. (1963). Zone melting. New York: John Wiley and sons.

[15] Tsai, H.L., Chang, K.C. & Chen, T.S. (1988). Modeling of vapor transportation in green sand mold and its effect on casting solidification. Modeling of Casting and Welding Processes IV (to be published by TMS, Warrendale, PA).

[16] Pluhar, J., Koritta, J. (1966). Engineering materials. SNTL Publishing house of technical literature. Praha.

[17] Albaharna, O.T., Argyropoulos, S.A. (1988). Artificial intelligence for materials processing and process control. Journal of Metals. 40(10), 6-10. https://doi.org/10.1007/BF03257973.

[18] Pribil, J. (1954). Solidification and casting of castings. SNTL Publishing house of technical literature. Praha.

[19] Pribil, J. (1973). Stress in castings. SNTL Publishing house of technical literature. Praha.

[20] Matejka, M., Bolibruchová, D., Podprocká, R. (2021). The influence of returnable material on internal homogeneity of the high-pressure die cast AlSi9Cu3(Fe) alloy. Metals. 11(7), 1084, 1-14. https://doi.org/10.3390/met11071084.

[21] Tsai, H.L., Chen, T.S. (1988). Modeling of evaporative pattern process part 1—metal flow and heat transfer during the filling stage. Paper no. 88-86, presented at the 1988 American Foundrymen's Society Congress, Hartford, CT (April) (to be published in AFS Transactions, Vol. 96).

[22] Hamar, R. (1988). Gating optimization of nodular cast iron parts. Modeling of Casting and Welding Processes. IV, 59-68.

[23] Moravec, J. (2020). Experimental investigation of solidification and cavity formation in forge ingots. Edis. Žilina. ISBN 978-80-554-1649-6. [24] Hamar, R., Lamanthe, G. Modeling of Lost Wax Foundry Process. Ibid., p. 449.

[25] Wendt, J., Uloth, T., Foertsch, F., Sahm, P.R., Weck, M. (1986). 3D-modeling of solidification and stiffness of a support bracket for an automobile's generator. The Metalliurgical Society/AIME. 423-432.

[26] Brůna, M.; Remišová,A; Sládek,A. (2019). Effect of filter thickness on reoxidation and mechanical properties of aluminium alloy AlSi7Mg0.3. Archives of Metallurgy and Materials. 64(3), 1100-1106. DOI 10.24425/amm.2019.129500.

[27] Moravec, J. (2017). Casting of ingots from model material in laboratory conditions. Steelcon. Pp 48-54. ISBN 978-80-87294-65-9.

[28] Ekenes, J., W. Peterson (1990). Visual observations inside an AirslipTM mold during casting. Minerals, Metals & Materials Society. 957–961.

[29] Kou, S., Mehrabian, R. (1986). Modeling and Control of Casting and Welding Processes, TMS, Warrendale, PA.

[30] Berry, J.T., Pehlke, R.D. (1988). Computer Applications in Metal Casting. in Metals Handbook, 9th Edition, Vol. 15, Casting, ASM International, Metals Park, Ohio. p. 855.

[31] Belperche, B. (1984). Simulation de la Solidification a l'Aide de Melange a Base de Naphthalene. Hommes et Fonderie, 147 (Aug–-Sept), 19.

[32] Jackson, K.A. & Hunt, J.D. (1965). Transparent Compounds that Freeze Like Metal. Acta Metallurgica. 13(11), 1212-1215. https://doi.org/10.1016/0001-6160(65)90061-1

[33] Granfield, J.F. (2011). Ingot casting and casthouse metallurgy of aluminium and its alloys. Fundamentals of Aluminium Metallurgy. 83-140. https://doi.org/10.1533/9780857090256.1.83.

[34] Austen, P.R., Swain, E.J. (1997). Automation and upgrading of VDC4 at Comalco (Bell Bay) Limited post implementa-tion operating performance. Proceedings of the Australasian Asian Pacific Conference on Aluminium Cast House Tech-nology. Gold Coast, Aust, Minerals, Metals & Materials Soc (TMS), (pp. 339-350).

[35] Bachowski, R. & Spear, R.E. (1975). Ingot shell formation. Light Metals. 111-118.

[36] Şensoy, A.T. (2022). Numerical simulation and mathematical modeling of the casting process for pearlitic spheroidal graphite cast iron. published by De Gruyter. Open Chemistry. 20(1), 1202-1211.

[37] Huang, S.C., Glicksman, M.E. (1981). Acta Metallurgica. 29, 701. [38] Brůna, M., Galčík, M. (2021). Casting quality improvement by gating system optimization. Archives of Foundry Engineering. 21(1), 32-136. DOI 10.24425/afe.2021.136089.

[39] Shivkumar, S. & Gallois, B. (1987). Physico-chemical aspects of the full-mold casting of aluminum alloys, part ii: metal flow in simple patterns. AFS Transactions. 95, 801-812.

[40] Jordan, C., Hill, J.L. & Piwonka, T.S. (1988). Computer designed gating systems: promises and problems. Transactions of the American Foundrymen`s Society. 96, 603-610.

[41] Hill, J.L., Berry, J.T. & Jordan, C. (1987). Use of expert systems in cast metals technology. Artificial Intelligence in Minerals and Materials Technology. U.S. Bureau of Mines.

[42] Creese, R.C. & Waibogha, S. (1987). Casting Reject Elimination Using Expert Systems. Transactins of the American Foundrymen`s Society. 95, 617-620.

[43] Behr, R.D., Couling, S.L. et al. (1973). Direct chill casting method. USA, Dow chemical corporation.

[44] Boehmer, J.R., Jordan, M., Fett, F. N., Rode, D., & Steinkamp, W. (1995). Verification of a mathematical model for continuous billet casting with a temperature and load history approach. In 7. Conference on modeling of casting, welding and advanced solidification processes, 10-15 September 1995 (pp. 809-816). Warrendale, PA (United States).

[45] Grube, K. & Eastwood, L.W. (1950). A Study of the Principles of Gating. AFS Transactions. 58, 76-107.

[46] Desai, P.V., Berry, J.T. & Kim, C.W. (1984). Computer simulation of forced and natural convection during filling of a casting. AFS Transactions. 92, 519.

[47] McFadden, G.B., Coriell, S.R., Boisvert, R.F., Glicksman, M.E. & Fang, Q.T. (1984). Morphological stability in the presence of fluid flow in the melt. Metallurgical Transactions A. 15A, 2117-2124. https://doi.org/10.1007/BF02647094.

[48] Kanetkar, C.S., Stefanescu, D.M., El-Kaddah, N., Chen, I.G. (1987). Macro-micro modeling of equiaxed solidification of eutectic and off-eutectic alloys. London: Solidification Processing, H. Jones, ed., Institute of Metals.

[49] Clausen, P., & Whan, G. (2013, September). An Assessment of the Design of a Gautschi Mould Using Finite Element Analysis. In Aluminium Cast House Technology: Seventh Australian Asian Pacific Conference (p. 247-252). John Wiley & Sons.

[50] Paschkis, V. (1947). The heat and mass flow analyzer laboratory. Metal Progress. 52, 813.

[51] Paschkis, V. (1951). Thermal considerations in foundry work. AFS Transactions. 59, 7.

[52] Stoehr, R. & Wang, W.S. (1988). Coupled heat transfer and fluid flow in the filling of castings. AFS Transactions. 96, 733-740.

[53] Drezet, J.M., Rappaz, R. (1996). Modeling of ingot distortions during direct chill casting of aluminum alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 27(10), 3214-3225. https://doi.org/10.1007/BF02663872.

[54] Kalincová, D., Ťavodová, .M., Čierna, H.., Beňo, P.. (2017). Analysis of the causes of distortion castings after heat treatment. Zvolen,Slovakia: Acta Metallurgica Slovaca, e-ISSN 1338-1156 No. 2, p. 182-192.

Date

1.07.2024

Type

Article

Identifier

DOI: 10.24425/afe.2024.149282
×