Details
Title
Corrosion of Pure Magnesium and Binary Magnesium Alloy in Ringer's SolutionJournal title
Archives of Foundry EngineeringYearbook
2024Volume
vol. 24Issue
No 2Authors
Affiliation
Fijołek, A. : AGH University of Krakow, Faculty of Foundry Engineering Reymonta 23 Str., 30-059 Krakow, PolandKeywords
Biodegradability ; Corrosion ; Ringer solution ; Mg-Zn alloy ; Equivalent circuitDivisions of PAS
Nauki TechniczneCoverage
151-158Publisher
The Katowice Branch of the Polish Academy of SciencesBibliography
[1] Persaud-Sharma, D. & McGoron, A. (2012). Biodegradable Magnesium alloys: a review of material development and applications. Journal of Biomimetics Biomaterials and Tissue Engineering. 12, 25-39. https://doi.org/10.4028/www.scientific.net/JBBTE.12.25.
[2] Jarzębska, A., Bieda, M., Kawałko, J, Koprowski, P., Sztwiertnia, K., Pachla, W. & Kulczyk, M. (2018). A new approach to plastic deformation of biodegradable zinc alloy with magnesium and its effect on microstructure and mechanical properties. Materials Letters. 211, 58-61. https://doi.org/10.1016/j.matlet.2017.09.090.
[3] Zheng, Y. (2015). Magnesium alloys as degradable biomaterials. CRC Press.
[4] Fijołek, A., Lelito, J., Krawiec, H., Ryba, J. & Rogal, Ł. (2020). Corrosion resistance of Mg72Zn24Ca4 and Zn87Mg9Ca4 alloys for application in medicine. Materials. 13(16), 3515, 1-15. https://doi.org/10.3390/ma13163515.
[5] Staiger, M.P., Pietak, A.M., Huadmai, J. & Dias, G. (2006). Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials. 27(9), 1728-1734. https://doi.org/10.1016/j.biomaterials.2005.10.003.
[6] Song, G.L. (2011). Corrosion of Magnesium Alloys. Elsevier.
[7] Makar, G.L. & Kruger, J. (1993). Corrosion of magnesium. International Materials Reviews. 38(3), 138-153. https://doi.org/10.1179/imr.1993.38.3.138.
[8] Zreiqat, H., Howlett, C.R. Zannettino A, Evans, P., Schulze-Tanzil, G., Knabe, C. & Shakibaei, M. (2002). Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. Journal Biomedical Materials Research. 62(2), 175-184. https://doi.org/10.1002/jbm.10270.
[9] Gali, E. (2011). Activity and passivity of magnesium (Mg) and its alloys. Corrosion of Magnesium Alloys. 66-114. https://doi.org/10.1533/9780857091413.1.66.
[10] Kubásek, J. & Vojtěch, D. (2013). Structural characteristics and corrosion behavior of biodegradable Mg–Zn, Mg–Zn–Gd alloys. Journal of Materials Science: Materials in Medicine. 24, 1615-1626. https://doi.org/10.1007/s10856-013-4916-3.
[11] Zberg, B., Uggowitzer, P.J. & Löffler, J.F. (2009). MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nature Materials. 8(11), 887-891. https://doi.org/10.1038/nmat2542.
[12] Scully, J.R., Gebert, A. & Payer, J.H. (2007). Corrosion and related mechanical properties of bulk metallic glasses. Journal of Materials Research. 22(2), 302-313. https://doi.org/10.1557/jmr.2007.0051.
[13] Song, G., Atrens, A. & St John, D. (2001). An hydrogen evolution method for the estimation of the corrosion rate of magnesium alloys. In J. N. Hryn (Eds.), Magnesium Technology. https://doi.org/10.1002/9781118805497.ch44.
[14] Song, G.L. & Atrens, A. (1999). Corrosion mechanisms of magnesium alloys. Advanced Engineering Materials. 1(1), 11-33. https://doi.org/10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N.
[15] Song, G. & Atrens, A. (2003). Understanding magnesium corrosion—a framework for improved alloy performance. Advanced Enginering Materials. 5(12), 837-858. https://doi.org/10.1002/adem.200310405.
[16] Inoue Akihisa. (1998). Bulk amorphous alloys : preparation and fundamental characteristics. Uetikon-Zuerich, Switzerland; Enfield, N.H.: Trans Tech Publications.
[17] Johnson, W.L. (1999). Bulk Glass-Forming Metallic Alloys: Science and Technology. MRS Bulletin. 24(10), 42-56. https://doi.org/10.1557/S0883769400053252.
[18] Löffler, J.F. (2003). Bulk metallic glasses. Intermetallics. 11(6), 529-540. https://doi.org/10.1016/S0966-9795(03)00046-3.
[19] Greer, A.L., Ma, E. (2007). Bulk metallic glasses: at the cutting edge of metals research. MRS Bulletin. 32(8), 611-619. https://doi.org/10.1557/mrs2007.121.
[20] Cao, J.D., Kirkland, N.T., Laws, K.J. et al. (2012). Ca–Mg–Zn bulk metallic glasses as bioresorbable metals. Acta Biomaterialia. 8(6), 2375-2383. https://doi.org/10.1016/j.actbio.2012.03.009.
[21] Gu, X., Shiflet, G.J., Guo, F.Q. & Poon, S.J. (2005). Mg–Ca–Zn bulk metallic glasses with high strength and significant ductility. Journal of Materials Research. 20, 1935-1938. https://doi.org/10.1557/JMR.2005.0245.
[22] Jang, J.S.C., Tseng, C.C., Chang, L.J., Chang, C.F. Lee, W.J. Huang, J.C. & Liu C.T. (2007). Glass forming ability and thermal properties of the Mg-based amorphous alloys with dual rare earth elements addition. Materials Transactions. 48(7), 1684-1688. https://doi.org/10.2320/ matertrans.MJ200738.
[23] Qin, W., Li, J., Kou, H., Gu, X., Xue, X. & Zhou, L. (2009). Effects of alloy addition on the improvement of glass forming ability and plasticity of Mg–Cu–Tb bulk metallic glass. Intermetallics. 17(4), 253-255. https://doi.org/10.1016/j.intermet.2008.08.011.
[24] Park, E.S., Kyeong, J.S. & Kim, D.H. (2007). Enhanced glass forming ability and plasticity in Mg-based bulk metallic glasses. Materials Science and Engineering A. 449-451, 225-229. https://doi.org/10.1016/j.msea.2006.03.142.
[25] Lasia, A. (2002). Electrochemical impedance spectroscopy and its applications. In B.E. Conway, J. O'M. Bockris & R.E. White (Eds.), Modern aspects of electrochemistry (pp. 143-248). Boston, MA: Springer US.
[26] Liu, Y., Cao, H., Chen, S. & Wang, D. (2015). Ag nanoparticle-loaded hierarchical superamphiphobic surface on an al substrate with enhanced anticorrosion and antibacterial properties. The Journal of Physical Chemistry C. 119(45), 25449-25456. https://doi.org/10.1021 /acs.jpcc.5b08679.