Details

Title

Analysis of the Deflection of Aluminum Profiles for Special Applications Using FEM

Journal title

Archives of Foundry Engineering

Yearbook

2025

Volume

Accepted articles

Authors

Affiliation

Bajor, T. : Czestochowa University of Technology, Czestochowa, Poland ; Kułakowska, A. : Jan Dlugosz University in Częstochowa, Czestochowa, Poland ; Szkudelski, S. : Łukasiewicz Research Network - Poznań Institute of Technology, Poznan, Poland

Keywords

FEM ; Deflection ; Safety margin ; Anodizing ; Aluminum alloys

Divisions of PAS

Nauki Techniczne

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

  1. Miller, W.S., Zhuang, L., Bottema,  J., Wittebrood, A.J., De Smet, P., Haszler, A. & Vieregge, A. (2000). Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering: A. 280, 1, 37-49. https://doi.org/10.1016/S0921-5093(99)00653-X.
  2. Fridlyander, N., Sister, V.G., Grushko, O.E., Berstenev, V.V., Sheveleva, L.M. & Ivanova, L.A. (2002). Aluminum alloys: promising materials in the automotive industry. Metal Science and Heat Treatment. 44, 365-370. https://doi.org/10.1023/A:1021901715578.
  3. Nowak, M. (2020). Hard anodic oxide coatings on aluminum and its alloys. Stal, Metale & Nowe Technologie. 1-2, 136-141. (in Polish).
  4. Sheasby, P. G., Pinner, R., & Wernick, S. (2001). The surface treatment and finishing of aluminium and its alloys (Vol. 1, p. 231). Materials Park, OH: ASM International.
  5. Gwóźdź, M. (2007). Design problems of modern aluminum structures. Czasopismo Techniczne. 4-A, 281-286. (in Polish).
  6. Kossakowski, P. (2014). Aluminum facades. Przegląd Budowlany. 2, 39-43. (in Polish). 
  7. Pater, Z., Tomczak, J., Bulzak, T., Knapinski, M., Sawicki, S. & Laber, K. (2021). Determination of the critical damage for 100Cr6 steel under hot forming conditions. Engineering Failure Analysis. 128, 105588, 1-17. https://doi.org/10.1016/j.engfailanal.2021.105588.
  8. Kim, W.J., Kim, H.K., Kim, W.Y. & Han, S.W. (2008) Temperature and strain rate effect incorporated failure criteria for sheet forming of magnesium alloys. Materials Science and Engineering: A. 488(1-2), 468-474. https://doi.org/10.1016/j.msea.2007.11.077.
  9. Kim, S.W. & Lee, Y.S. (2014). Comparative study on failure prediction in warm forming processes of Mg alloy sheet by the FEM and ductile fracture criteria. Metallurgical and Materials Transactions B. 45B, 445-453. https://doi.org/10.1007/s11663-013-9886-9.
  10. Jia, W., Ma, L., Le, Q., Zhi, C. & Liu, P., (2019). Deformation and fracture behaviours of AZ31B Mg alloy at elevated temperature under uniaxial compression. Journal of Alloys and Compounds. 783, 863-876. https://doi.org/10.1016/j.jallcom.2018.12.260.
  11. Liu, J., Chen, X., Du, K., Zhou, X, Xiang, N. & Osaka, A. (2020). A modified Bonara damage model for temperature and strain rate-dependent materials in hot forging process. Engineering Fracture Mechanics. 235, 107107. https://doi.org/10.1016/j.engfracmech.2020.107107.
  12. Pater, Z., Tomczak, J. & Bulzak, T. (2020). Establishment of a new hybrid fracture criterion for cross wedge rolling. International Journal of Mechanical Sciences. 167, 105274. https://doi.org/10.1016/j.ijmecsci.2019.105274.
  13. Zhu, Y., Zeng, W., Zhang, F., Zhao, Y., Zhang, X. & Wang, K. (2012). A new methodology for prediction of fracture initiation in hot compression of Ti40 titanium alloy. Materials Science and Engineering: A. A553, 112-118. https://doi.org/10.1016/j.msea.2012.05.100.
  14. Kissel, J.R. & Ferry, R.L. (2002). Aluminium Structures: A Guide to Their Specifications and Design (2nd ed.). John Wiley & Sons, New York. 
  15. Mazzolani, F.M. & Mandara, A. (2002). Modern trends in the use of special metals for the improvement of historical and monumental structures. Engineering Structures. 24(7), 843-856. https://doi.org/10.1016/S0141-0296(02)00023-8.
  16. Kossakowski, P. (2013). Aluminum – an ecological material. Przegląd Budowlany. 10, 36-41. (in Polish).
  17. Lonkwic, P., Usydus, I. & Tofil, A. (2018). Application of the numerical method to determine the deflection of an irregularly shaped aluminum profile. Obróbka metalu, Materiały Eksplatacyjne, Metrologia, Jakość. 3, 38-42. (in Polish).
  18. Dębski, H., Koszałka, G. & Ferdynus, M. (2012). Application of fem in the analysis of the structure of a trailer supporting frame with variable operation parameters. Eksploatacja i Niezawodność – Maintenance and Reliability. 14 (2), 107-114.
  19. Kawałek, A., Bajor, T., Kwapisz, M., Sawicki, S. & Borowski, J. (2021). Numerical modeling of the extrusion process of aluminum alloy 6XXX series section. Journal of Chemical Technology and Metallurgy. 56(2), 375-381.
  20. Bajor, T., Kwapisz, M., Krakowiak, M. & Jurczak, H. (2021). The analysis of the extrusion process of al 6005 alloy section. Journal of Chemical Technology and Metallurgy. 56, 3, 637-642.
  21. Kawałek, A., Rapalska-Nowakowska, J., Dyja, H. & Koczurkiewicz, B. (2013). Physical and numerical modelling of heat treatment the precipitation-hardening complex-phase steel (CP). Metalurgija. 52(1), 23-26.

Date

03.02.2025

Type

Article

Identifier

DOI: 10.24425/afe.2025.153768
×