Details

Title

An iterative method for time optimal control of dynamic systems

Journal title

Archives of Control Sciences

Yearbook

2011

Issue

No 1

Authors

Divisions of PAS

Nauki Techniczne

Publisher

Committee of Automatic Control and Robotics PAS

Date

2011

Identifier

DOI: 10.2478/v10170-010-0029-0 ; ISSN 1230-2384

Source

Archives of Control Sciences; 2011; No 1

References

Diehl M. (2007), Fast motions in biomechanics and robotics optimization and feedback control, 65. ; J. Cochran Jr. (2009), Wavelet collocation method for optimal control problems, J. Optimization Theory and Applications, 143, 265, doi.org/10.1007/s10957-009-9565-9 ; Driessen B. (2001), Minimum-time control of systems with Coulomb friction: near global optima via mixed integer linear programming, Optimal Control Applications and Methods, 22, 51, doi.org/10.1002/oca.682 ; Singh T. (2007), Sequential linear programming for design of timeoptimal controllers, null, 4755. ; Jazar G. (2005), Floating time algorithm for time optimal control of multi-body dynamic systems, Proc. of the IMechE, Part K: J. of Multi-Body Dynamics, 219, 225. ; Ito K. (2010), Semismooth Newton methods for time optimal control for a class of ODES, SIAM J. on Control and Optimization, 48, 6, 3997, doi.org/10.1137/090753905 ; Ben-Asher J. (1992), Time optimal slewing of flexible spacecraft, J. of Guidance, Control, and Dynamics, 15, 2, 360, doi.org/10.2514/3.20844 ; Singh G. (1989), Planar, time optimal, rest-to-rest slewing maneuvers of flexible spacecraft, J. of Guidance, Control, and Dynamics, 12, 1, 71, doi.org/10.2514/3.20370 ; Pao L. (1996), Minimum time control characteristics of flexible structures, J. of Guidance, Control, and Dynamics, 19, 1, 123, doi.org/10.2514/3.21588 ; Albassam A. (2002), Optimal near minimum time control design for flexible structures, J. Guidance, Control, and Dynamics, 25, 4, 618, doi.org/10.2514/2.4945 ; Geering H. (1986), Time optimal motions of robots in assembly tasks, IEEE Trans. on Automatic Control, AC-31, 6, 512, doi.org/10.1109/TAC.1986.1104333 ; Willigenburg L. (1991), Computation of time optimal controls applied to rigid manipulators with friction, Int. J. of Control, 54, 5, 1097, doi.org/10.1080/00207179108934200 ; Fotouhi R. (1998), An algorithm for time optimal control problems, J. of Dynamic Systems, Measurement, and Control, 120, 414, doi.org/10.1115/1.2805419 ; Fotouhi R. (2000), Improving time optimal maneuvers of two link robotic manipulators, J. of Guidance, Control, and Dynamics, 23, 5, 888, doi.org/10.2514/2.4619 ; Bobrow J. (1985), Time optimal control of robotic manipulators along specified paths, The Int. J. of Robotics Research, 4, 3, 3, doi.org/10.1177/027836498500400301 ; Ghasemi M. (2008), A direct algorithm to compute the switching curve for time optimal motion of cooperative multi manipulators moving on a specified path, Advanced Robotics, 22, 493. ; Mattmüller J. (2009), Calculating a near time optimal jerk constrained trajectory along a specified smooth path, Int. J. of Advanced Manufacturing Technology, 45, 1007, doi.org/10.1007/s00170-009-2032-9 ; Meier E. (1990), Efficient algorithm for time optimal control of a two link manipulator, J. of Guidance, Control, and Dynamics, 13, 5, 859, doi.org/10.2514/3.25412 ; Kaya C. (2003), Computational method for time optimal switching control, J. of Optimization Theory and Applications, 117, 1, 69, doi.org/10.1023/A:1023600422807 ; Kaya C. (1996), Computations and time optimal controls, Optimal Control Applications and Methods, 17, 171, doi.org/10.1002/(SICI)1099-1514(199607/09)17:3<171::AID-OCA571>3.0.CO;2-9 ; Lee H. (1997), Control parameterization enhancing technique for time optimal control problems, Dynamic Systems and Applications, 6, 243. ; Huang C. (2006), A two phase computational scheme for solving bang-bang control problems, Optimization and Engineering, 7, 445, doi.org/10.1007/s11081-006-0349-x ; Xie L. (2005), Numerical methods for time optimal control problems, null. ; Korayem M. (2009), Maximum payload path planning for redundant manipulator using indirect solution of optimal control problem, Int. J. of Advanced Manufacturing Technology, 44, 725, doi.org/10.1007/s00170-008-1862-1 ; Pontryagin L. (1986), The mathematical theory of optimal processes. ; Kirk D. (1998), Optimal control theory: an introduction. ; Naidu D. (2002), Optimal control systems. ; Hale N. (2008), New quadrature methods from conformal maps, SIAM J. on Numerical Analysis, 46, 930, doi.org/10.1137/07068607X ; Garrard W. (1977), Design of nonlinear automatic control systems, Automatica, 13, 497, doi.org/10.1016/0005-1098(77)90070-X ; Desrochers A. (1983), A case for nonlinear model simplification in the design of flight control systems, null, 788.
×