Details

Title

Influence of Steam Reforming Catalyst Geometry on the Performance of Tubular Reformer – Simulation Calculations

Journal title

Chemical and Process Engineering

Yearbook

2015

Issue

No 2 June

Authors

Keywords

tubular steam reforming ; nickel catalyst geometry ; process simulation ; catalyst coking ; process intensification

Divisions of PAS

Nauki Techniczne

Coverage

239-250

Publisher

Polish Academy of Sciences Committee of Chemical and Process Engineering

Date

2015[2015.01.01 AD - 2015.12.31 AD]

Type

Artykuły / Articles

Identifier

DOI: 10.1515/cpe-2015-0016 ; ISSN 2300-1925 (Chemical and Process Engineering)

Source

Chemical and Process Engineering; 2015; No 2 June; 239-250

References

Shumake (2007), Optimize your hydrogen plant operations Hydrocarb, Process, 9. ; Peña (1996), New catalytic routes for syngas and hydrogen production, Appl Catal, 144, doi.org/10.1016/0926-860X(96)00108-1 ; Michel (2007), Steam reforming - the next generation of catalysts Materials of the Nitrogen Syngas International Conference Exhibition, Bahrain, 25. ; Ferreira (2005), New trends in reforming technologies : from hydrogen industrial plants to multifuel microreformers, Catal Rev, 47, doi.org/10.1080/01614940500364958 ; Franczyk (2009), Deactivation of steam reforming catalysts under industrial conditions, Przem Chem, 88. ; Rostrup (1984), Catalytic steam reforming In Catalysis - science and technology Springer - Verlag, Vol, doi.org/10.1007/978-3-642-93247-2_1 ; Gołębiowski (2009), Industrial catalyst technologies developed by INS Puławy Fifty years of experience, Przem Chem, 88. ; Yu (2006), Simulation of natural gas steam reforming furnace, Fuel Process Technol, 87, doi.org/10.1016/j.fuproc.2005.11.008 ; Borowiecki (2005), Modern synthesis gas and hydrogen plants, Przem Chem, 84. ; Holladay (2009), An overview of hydrogen production technologies, Catal Today, 139, doi.org/10.1016/j.cattod.2008.08.039 ; Ziółkowski (1980), A mathematical model of a unit reactor pipe for catalytic conversion of methane by water steam Formulation of the model Inż, Chem Proc, 1. ; Christiansen (1970), Numerical solution of ordinary simultaneous differential equations of the st order using a method for automatic step change, Numer Math, 14. ; Rostrup (2011), Concepts in Syngas Manufacture In Catalytic Science Series Imperial College Press, Vol, 10, doi.org/10.1142/9781848165687 ; Ziółkowski (1982), b Experimental verification in pilot scale of a mathematical model of a unit pipe reactor for catalytic conversion of methane by water vapour Inż, Chem Proc, 3. ; Gołębiowski (1977), Differentialreaktor für kinetische Untersuchungen katalytischer Reaktionen, Chem Techn, 29. ; Ziółkowski (1982), a Over - all heat transfer coefficient at the gas stream heating by the wall of a tubular apparatus packed with a static granular bed Inż, Chem Proc, 3. ; Leva (1947), Heat transfer to gases through packed tubes, Ind Eng Chem, 39, doi.org/10.1021/ie50451a014 ; Wu (2007), Mechanical strength of solid catalysts : recent developments and future prospects, AIChE Journal, 53, doi.org/10.1002/aic.11291

Editorial Board

Editorial Board

Ali Mesbah, UC Berkeley, USA ORCID logo0000-0002-1700-0600

Anna Gancarczyk, Institute of Chemical Engineering, Polish Academy of Sciences, Poland ORCID logo0000-0002-2847-8992

Anna Trusek, Wrocław University of Science and Technology, Poland ORCID logo0000-0002-3886-7166

Bettina Muster-Slawitsch, AAE Intec, Austria ORCID logo0000-0002-5944-0831

Daria Camilla Boffito, Polytechnique Montreal, Canada ORCID logo0000-0002-5252-5752

Donata Konopacka-Łyskawa, Gdańsk University of Technology, Poland ORCID logo0000-0002-2924-7360

Dorota Antos, Rzeszów University of Technology, Poland ORCID logo0000-0001-8246-5052

Evgeny Rebrov, University of Warwick, UK ORCID logo0000-0001-6056-9520

Georgios Stefanidis, National Technical University of Athens, Greece ORCID logo0000-0002-4347-1350

Ireneusz Grubecki, Bydgoszcz Univeristy of Science and Technology, Poland ORCID logo0000-0001-5378-3115

Johan Tinge, Fibrant B.V., The Netherlands ORCID logo0000-0003-1776-9580

Katarzyna Bizon, Cracow University of Technology, Poland ORCID logo0000-0001-7600-4452

Katarzyna Szymańska, Silesian University of Technology, Poland ORCID logo0000-0002-1653-9540

Marcin Bizukojć, Łódź University of Technology, Poland ORCID logo0000-0003-1641-9917

Marek Ochowiak, Poznań University of Technology, Poland ORCID logo0000-0003-1543-9967

Mirko Skiborowski, Hamburg University of Technology, Germany ORCID logo0000-0001-9694-963X

Nikola Nikacevic, University of Belgrade, Serbia ORCID logo0000-0003-1135-5336

Rafał Rakoczy, West Pomeranian University of Technology, Poland ORCID logo0000-0002-5770-926X

Richard Lakerveld, Hong Kong University of Science and Technology, Hong Kong ORCID logo0000-0001-7444-2678

Tom van Gerven, KU Leuven, Belgium ORCID logo0000-0003-2051-5696

Tomasz Sosnowski, Warsaw University of Technology, Poland ORCID logo0000-0002-6775-3766



×