Details Details PDF BIBTEX RIS Title Micromechanical Model of Polycrystalline Materials with Lamellar Substructure Journal title Archives of Metallurgy and Materials Yearbook 2011 Issue No 2 June Authors Kowalczyk-Gajewska, K. Divisions of PAS Nauki Techniczne Publisher Institute of Metallurgy and Materials Science of Polish Academy of Sciences ; Committee of Materials Engineering and Metallurgy of Polish Academy of Sciences Date 2011 Identifier DOI: 10.2478/v10172-011-0055-3 ; e-ISSN 2300-1909 Source Archives of Metallurgy and Materials; 2011; No 2 June References Appel F. (1998), Microstructure and deformation of two-phase γ-titanium aluminides, Mater. Sci. Eng R, 22, 187, doi.org/10.1016/S0927-796X(97)00018-1 ; Berryman J. (2005), Bounds and estimates for elastic constants of random polycrystals of laminates, Int. J. Solids Structures, 42, 3730, doi.org/10.1016/j.ijsolstr.2004.12.015 ; Brenner R. (2009), Elastic anisotropy and yield surface estimates of polycrystals, Int. J. Solids Structures, 46, 3018, doi.org/10.1016/j.ijsolstr.2009.04.001 ; W.T. Burzynski, Studium nad hipotezami wytezenia. Lwów, 1928. (także Dzieła Wybrane, t. I, PWN, Warszawa 1982). ; A. El Omri (2000), Elastic-plastic homogenization for layered composites, Eur. J. Mech. A/Solids, 19, 585, doi.org/10.1016/S0997-7538(00)00182-0 ; Eshelby J. (1957), The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Roy. Soc. A, 241, 376, doi.org/10.1098/rspa.1957.0133 ; Hill R. (1965), Continuum micro-mechanics of elastoplastic polycrystals, J. Mech. Phys. Solids, 13, 89, doi.org/10.1016/0022-5096(65)90023-2 ; Hutchinson J. (1970), Elastic-plastic behavior of polycrystalline metals and composites, Proc. Roy. Soc. London, A319, 247. ; Kishida K. (1999), Deformation of PST crystals of a TiAl/Ti<sub>3</sub>Al two-phase alloy at 1000°C, Intermetallics, 7, 1131, doi.org/10.1016/S0966-9795(99)00033-3 ; Kocks U. (1982), Slip geometry in partially constrained deformation, Acta Metall, 30, 695, doi.org/10.1016/0001-6160(82)90119-5 ; Koizumi Y. (1999), Plastic deformation and fracture behaviour of Ti<sub>3</sub>Al single crystals deformed at high temperature under cyclic loading, Acta Mater, 47, 2019, doi.org/10.1016/S1359-6454(99)00098-1 ; Kowalczyk K. (2002), Energy-based limit conditions for transversally isotropic solids, Arch. Mech, 54, 5-6, 497. ; Kowalczyk-Gajewska K. (2009), Bounds and self-consistent estimates of overall properties for random polycrystals described by linear constitutive laws, Arch. Mech, 61, 6, 475. ; K. Kowalczyk-Gajewska, Micromechanical modelling of metals and alloys of high specific strength, IFTR Reports 1/2011 (2011). ; Kowalczyk-Gajewska K. (2004), The influence of internal restrictions on the elastic properties of anisotropic materials, Arch. Mech, 56, 205. ; Kowalczyk-Gajewska K. (2009), Review on spectral decomposition of Hooke's tensor for all symmetry groups of linear elastic material, Enging. Trans, 57, 145. ; Lebensohn R. (1998), Plastic flow of γ-TiAl-based polysynthetically twinned crystals: micromechanical modelling and experimental validation, Acta Mater, 46, 229. ; Moakher M. (2006), The closest elastic tensor of arbitrary symmetry to an elasticity tensor of lower symmetry, J. Elasticity, 85, 215, doi.org/10.1007/s10659-006-9082-0 ; Nakano T. (1998), Plastic deformation behaviour and dislocation structure in Ti<sub>3</sub>Al single crystals cyclically deforming by prism slip, Acta Mater, 46, 4311, doi.org/10.1016/S1359-6454(98)00088-3 ; Nemat-Nasser S. (1999), Micromechanics: overall properties of heterogeneous materials. ; Nikolov S. (2006), Self-consistent modeling of large plastic deformation, texture and morphology evolution in semi-crystalline polymers, J. Mech. Phys. Solids, 54, 1350, doi.org/10.1016/j.jmps.2006.01.008 ; Ostrowska-Maciejewska J. (2001), Generalized proper states for anisotropic elastic materials, Arch. Mech, 53, 4-5, 501. ; Paidar V. (2007), Constrained deformation of a lamellar structure, Mater. Sci. Engng A, 462, 460, doi.org/10.1016/j.msea.2006.01.180 ; Petryk H. (2000), General conditions for uniqueness in materials with multiple mechanisms of inelastic deformation, J. Phys. Mech. Solids, 48, 367, doi.org/10.1016/S0022-5096(99)00036-8 ; Roos A. (2004), Multiscale modelling of titanium aluminides, Int. J. Plasticity, 20, 811, doi.org/10.1016/j.ijplas.2003.08.005 ; Rychlewski J. (1985), Zur Abschätzung der Anisotropie, ZAMM, 65, 256, doi.org/10.1002/zamm.19850650617 ; Rychlewski J. (1989), Anisotropy degree of elastic materials, Arch. Mech, 41, 697. ; Rychlewski J. (1995), Unconventional approach to linear elasticity, Arch. Mech, 47, 2, 149. ; Rychlewski J. (2000), A qualitative approach to Hooke's tensors, Part I. Arch. Mech, 52, 737. ; Rychlewski J. (2001), A qualitative approach to Hooke's tensors, Part II. Arch. Mech, 53, 45. ; Stupkiewicz S. (2002), Modelling of laminated microstractures in stress-induced martensitic transformations, J. Phys. Mech. Solids, 50, 2303, doi.org/10.1016/S0022-5096(02)00029-7 ; Stupkiewicz S. (2010), A bi-crystal aggregate model of pseudoelastic behaviour of shape-memory alloy polycrystals, Int. J. Mech. Sci, 52, 219, doi.org/10.1016/j.ijmecsci.2009.09.012 ; Szczerba M. (2004), Is there a critical resolved shear stress for twinning in face-centered cubic crystals?, Phil. Mag, 84, 481, doi.org/10.1080/14786430310001612175 ; Tanaka K. (1996), Single-crystal elastic constants of γ-TiAl, Phil. Mag. Lett, 73, 71, doi.org/10.1080/095008396181019 ; Tanaka K. (1996), Elastic constants and their temperature dependence for the intermetallic compound Ti<sub>3</sub>Al, Phil. Mag. A, 73, 1475, doi.org/10.1080/01418619608245145 ; P. Van Houtte (1982), On the equivalence of the relaxed Taylor theory and the Bishop-Hill theory for partially constrained plastic deformation of crystal, Mater. Sci. Eng, 55, 69, doi.org/10.1016/0025-5416(82)90085-4 ; P. Van Houtte (1999), Quantitative prediction of cold rolling textures in low carbon steel by means of the LAMEL model, Textures and Microtextures, 31, 109, doi.org/10.1155/TSM.31.109 ; P. Van Houtte (2005), Deformation texture prediction: from the Taylor model to the advanced Lamel model, Int. J. Plasticity, 21, 589, doi.org/10.1016/j.ijplas.2004.04.011 ; Walpole L. (1981), Advances in Applied Mechanics, volume 21, chapter Elastic Behavior of Composite Metarials, Theoretical Foundations, 169. ; Werwer M. (2000), Numerical simulation of plastic deformation and fracture in polysynthetically twinned (PST) crystals of TiAl, Comput. Mater. Sci, 19, 97, doi.org/10.1016/S0927-0256(00)00144-0 ; Werwer M. (2006), The role of superdislocations for modeling plastic deformation of lamellar TiAl, Int. J. Plasticity, 22, 1683, doi.org/10.1016/j.ijplas.2006.02.005 ; Werwer M. (2007), Fracture in lamellar TiAl simulated with the cohesive model, Engng. Fracture Mech, 74, 2615, doi.org/10.1016/j.engfracmech.2006.09.022 ; J.R. Willis, Advances in Applied Mechanics, volume 21, chapter Variational and Related Methods for the Overall Properties of Composites, pages 2-79 (1981). ; Zener C. (1955), Elasticite et Anelasticite des Metaux.