Applied sciences

Archives of Environmental Protection

Content

Archives of Environmental Protection | 2025 | 51 | 1

Download PDF Download RIS Download Bibtex

Abstract

Mullet fish (Mugil cephalus), glassfish (Ambassis nalua), and mudskipper (Periophthalmus sp.) dominate the mangrove ecosystem waters of Banda Aceh City, Indonesia. These fish are potentially contaminated with microplastics from domestic and industrial waste. This study aimed to analyze microplastic contamination in the digestive tracts and flesh of fish from the mangrove area of Banda Aceh City, Indonesia. Sampling was conducted at 3 stations: Alue Naga in Syiah Kuala District, Pande in Kuta Raja District, and Blang in Meuraxa District, from December 2023 to February 2024. A total of 478 mullets, 462 glassfish, and 435 mudskippers were sampled. Based on fish species and sampling location, glassfish and the Alue Naga station exhibited the highest abundance of microplastics, with values of 1.55 particles/fish and 1.77 particles/fish, respectively. Black was the most dominant color of microplastics found in all fish samples, with the predominant size groups being <20 μm and 21–40 μm. Film was the predominant shape of microplastics in all fish species. FTIR analysis confirmed the presence of nylon and polypropylene microplastic polymers in the fish flesh. Mullet fish, glassfish, and mudskippers from the mangrove forest waters of Banda Aceh City, Indonesia, have been contaminated by microplastics.
Go to article

Bibliography

  1. Alabi, O.A., Ologbonjaye, K.I., Awosolu, O. & Alalade, O.E. (2019). Public and environmental health effects of plastic wastes disposal: a review. Journal of Toxicology and Risk Assessment,5, 2, pp. 1-13. DOI:10.23937/2572-4061.1510021
  2. Arisanti, G., Yona, D. & Kasitowati, R.D. (2023). Analysis of microplastic in mackerel (Rastrelliger sp.) digestive tract at Belawan Ocean Fishing Port, North Sumatra, PoluSea: Water and Marine Pollution Journal, 1, 1, pp. 45-60. DOI:10.21776/ub.polusea.2023.001.01.4
  3. Azizah, P., Ridlo, A. & Suryono, C.A. (2020). Mikroplastik pada sedimen di Pantai Kartini Kabupaten Jepara Jawa Tengah. Journal of Marine Research, 9, 3, pp. 326-332. DOI:10.14710/jmr.v9i3.28197
  4. Bermúdez, J.R. & Swarzenski, P.W. (2021). A microplastic size classification scheme aligned with universal plankton survey methods. MethodsX, 8, 101516. DOI:10.1016/j.mex.2021.101516
  5. Boerger, C.M., Lattin, G.L., Moore, S.L. & Moore, C.J. (2010). Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre, Marine Pollution Bulletin, 60, 12, pp. 2275-2278. DOI:10.1016/j.marpolbul.2010.08.007
  6. BPS Kota Banda Aceh (2021). Badan Pusat Statistik Kota Banda Aceh. https://bandaacehkota.bps.go.id/statictable/2021/08/26/135/aliran-sampah-di-kota-banda-aceh-2020.html
  7. Brandon, J.A., Jones, W. & Ohman, M.D. (2019). Multidecadal increase in plastic particles in coastal ocean sediments. Science Advances, 5, 9, p. eaax0587. DOI:10.1126/sciadv.aax0587
  8. Constant, M., Reynaud, M., Weiss, L., Ludwig, W. & Kerhervé, P. (2022). Ingested microplastics in 18 local fish species from the North-western Mediterranean Sea. Microplastics, 1, 1, pp. 186-197. DOI:10.3390/microplastics1010012
  9. Cunsolo, S., Williams, J., Hale, M., Read, D.S. & Couceiro, F. (2021). Optimising sample preparation for FTIR-based microplastic analysis in wastewater and sludge samples: multiple digestions. Analytical and Bioanalytical Chemistry, 413, pp. 3789–3799. DOI:10.1007/s00216-021-03331-6
  10. de Vries, A.N., Govoni, D., Árnason, S.H. & Carlsson, P. (2020). Microplastic ingestion by fish: Body size, condition factor and gut fullness are not related to the amount of plastics consumed. Marine Pollution Bulletin, 151, p. 110827. DOI:10.1016/j.marpolbul.2019.110827
  11. Fackelmann, G. & Sommer, S. (2019). Microplastics and the gut microbiome: how chronically exposed species may suffer from gut dysbiosis. Marine Pollution Bulletin, 143, pp. 193-203. DOI:10.1016/j.marpolbul.2019.04.030
  12. Gallo, F., Fossi, C., Weber, R., Santillo, D., Sousa, J., Ingram, I., Nadal, A. & Romano, D. (2018). Marine litter plastics and microplastics and their toxic chemicals components: the need for urgent preventive measures. Environmental Sciences Europe, 30, 1, p. 14. DOI:10.1186/s12302-018-0139-z
  13. Gomon, M., Bray, D. & Kuiter, R. (2008). Fishes of Australia’s Southern Coast. Museum Victoria, Australia.
  14. Halstead, J.E., Smith, J.A., Carter, E.A., Lay, P.A. & Johnston, E.L. (2018). Assessment tools for microplastics and natural fibres ingested by fish in an urbanised estuary. Environmental Pollution, 234, pp. 552-561. DOI:10.1016/j.envpol.2017.11.085
  15. Hamdan, A.M., Kirana, K.H., Hakim, F., Iksan, M., Bijaksana, S., Mariyanto, M., Ashari, T.M., Ngkoimani, L.O., Kurniawan, H., Pratama, A. & Wahid, M.A. (2022). Magnetic susceptibilities of surface sediments from estuary rivers in volcanic regions. Environmental Monitoring and Assessment, 194, 4, p. 239. DOI:10.1007/s10661-022-09891-z
  16. Hernandez, E., Nowack, B. & Mitrano, D.M. (2017). Polyester textiles as a source of microplastics from households: a mechanistic study to understand microfiber release during washing. Environmental Science & Technology, 51, 12, pp. 7036-7046. DOI:10.1021/acs.est.7b01750
  17. Hou, L., McMahan, C.D., McNeish, R.E., Munno, K., Rochman, C.M. & Hoellein, T.J. (2021). A fish tale: a century of museum specimens reveal increasing microplastic concentrations in freshwater fish. Ecological Applications, 31, 5, p. e02320. DOI:10.1002/eap.2320
  18. Issac, M.N. & Kandasubramanian, B. (2021). Effect of microplastics in water and aquatic systems. Environmental Science and Pollution Research, 28, pp. 19544-19562. DOI:10.1007/s11356-021-13184-2
  19. Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R. & Law, K.L. (2015). Plastic waste inputs from land into the ocean. Science, 347, 6223, pp. 768-771. DOI:10.1126/science.1260352
  20. Jung, M.R., Horgen, F.D., Orski, S.V., Rodriguez, V., Beers, K.L., Balazs, G.H., Jones, T.T., Work, T.M., Brignac, K.C., Royer, S.J., Hyrenbach, K.D., Jensen, B.A. & Lynch, J.M. (2018). Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Marine Pollution Bulletin, 127, pp. 704-716. DOI:10.1016/j.marpolbul.2017.12.061
  21. Maulana, M.R., Saiful, S. & Muchlisin, Z.A. (2023). Microplastics contamination in two peripheral fish species harvested from a downstream river. Global Journal of Environmental Science and Management, 9, 2, pp. 299-308. DOI:10.22034/gjesm.2023.02.09
  22. Muchlisin Z. A. & Siti-Azizah, M.N. (2009). Diversity and distribution of freshwater fishes in Aceh waters, northern Sumatra Indonesia. International Journal of Zoological Research, 5, pp. 62-79.
  23. Mulfizar, M., Muchlisin, Z.A. & Dewiyanti, I. (2012). Relationship between length, weight and condition factors of three types of fish caught in the waters of Kuala Gigieng, Aceh Besar, Aceh Province, Depik, 1, 1, pp. 1-9. DOI:10.13170/depik.1.1.21 (in Indonesian)
  24. Phaksopa, J., Sukhsangchan, R., Keawsang, R., Tanapivattanakul, K., Thamrongnawasawat, T., Worachananant, S. & Sreesamran, P. (2021). Presence and characterization of microplastics in coastal fish around the eastern coast of Thailand. Sustainability, 13, 23, 13110. DOI:10.3390/su132313110
  25. Prata, J.C., da Costa, J.P, Duarte, A.C. & Rocha-Santos, T. (2019). Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC Trends in Analytical Chemistry, 110, pp. 150-159. DOI: 10.1016/j.trac.2018.10.029
  26. Sandra, S.W. & Radityaningrum, A.D. (2021). Study of microplastic abundance in aquatic biota, Jurnal Ilmu Lingkungan, 19(3), pp. 638-648. DOI:10.14710/jil.19.3.638-648 (in Indonesian)
  27. Sarasita, D., Yunanto, A. & Yona, D. (2020). Microplastic content in four types of economically important fish in the waters of the Bali Strait, Jurnal Iktiologi Indonesia, 20, 1, pp. 1-12. (in Indonesian)
  28. Sharma, R. & Kaushik, H. (2021). Micro-plastics: An invisible danger to human health. Cgc International Journal Of Contemporary Technology and Research, 3, 2, pp. 182-186. DOI:10.46860/cgcijctr.2021.06.31.182
  29. Supit, A., Tompodung, L. & Kumaat, S. (2022). Microplastic as an emerging contaminant and its toxic effects on health. Jurnal Kesehatan, 13, 1, pp. 199-208.
  30. Waring, R.H., Harris, R.M. & Mitchell, S.C. (2018). Plastic contamination of the food chain: A threat to human health? Maturitas, 115, pp. 64-68. DOI:10.1016/j.maturitas.2018.06.010
  31. Wright, S.L., Rowe, D., Thompson, R.C. & Galloway, T.S. (2013). Microplastic ingestion decreases energy reserves in marine worms. Current Biology, 23, 23, pp. R1031-R1033. DOI:10.1016/j.cub.2013.10.068
  32. Xiong, X., Tu, Y., Chen, X., Jiang, X., Shi, H., Wu, C. & Elser, J.J. (2019). Ingestion and egestion of polyethylene microplastics by goldfish (Carassius auratus): influence of color and morphological features. Heliyon, 5, 12, e03063. DOI:10.1016/j.heliyon.2019.e03063
  33. Yao, C., Liu, X., Wang, H., Sun, X., Qian, Q. & Zhou, J. (2021). Occurrence of microplastics in fish and shrimp feeds. Bulletin of Environmental Contamination and Toxicology, 107, pp. 684-692. DOI:10.1007/s00128-021-03328-y
  34. Zaman, B., Ramadan, B.S., Sarminingsih, A., Priyambada, I.B., & Budihardjo, M.A. (2023). Marine and microplastic litter monitoring and strategic recommendation for reducing pollution: case study from Semarang City. Archives of Environmental Protection, 49, 4, pp. 37–45. DOI:10.24425/aep.2023.148684
Go to article

Authors and Affiliations

Lisna Yanti Siregar
1 2 3
Zainal Abidin Muchlisin
3
Siriporn Pradit
1 2
ORCID: ORCID
Mathinee Yucharoen
1 2
ORCID: ORCID
Suci Bud Faradilla
3

  1. Coastal Oceanography and Climate Change Research Center, Faculty of Environmental Management, Prince of Songkla University,Songkhla 90110 Thailand
  2. Marine and Coastal Resources Institute, Faculty of Environmental Management, Prince of Songkla University, Hat Yai, 90110 Thailand
  3. Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh 23111 Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Maintaining water quality is essential for numerous fields, but pollution challenges have become more pronounced with population growth and industrial expansion. Although monitoring technologies have advanced, comprehensive watershed analyses remain limited, especially in developing countries. This study conducts a bibliometric review of watershed-scale water quality monitoring research, applying the PRISMA 2020 method alongside tools such as Scopus, VOSviewer, Orange Data Mining, and qualitative content analysis to identify trends, research gaps, and future directions across 107 studies. From 2005 to 2024, there has been a significant rise in research on real-time monitoring systems and spatial modeling in water quality, with notable peaks. The United States leads in publication volume, while 'Watershed Flow Modeling' remains underexplored and underrepresented. Studies show that implementing real-time monitoring systems and spatial modeling in developing countries faces challenges related to infrastructure and funding. However, recent advancements in IoT-based tools and satellite remote sensing are progressively enhancing water resource management.
Go to article

Bibliography

  1. Acuña-Alonso, C., Fernandes, A.C P., Álvarez, X., Valero, E., Pacheco, F.A.L., Varandas, S.D.G.P., Terêncio, D.P.S. & Fernandes, L.F.S. (2021). Water security and watershed management assessed through the modelling of hydrology and ecological integrity: A study in the Galicia-Costa (NW Spain). Science of the Total Environment. 759, 143905. DOI:10.1016/j.scitotenv.2020.143905
  2. Adeyeye, K., Gibberd, J. & Chakwizira, J. (2020). Water marginality in rural and peri-urban communities. Journal of Cleaner Production, 273, 122594. DOI:10.1016/j.jclepro.2020.122594
  3. Ahmed, S.F., Kumar, P.S., Kabir, M., Zuhara, F.T., Mehjabin, A., Tasannum, N., Hoang, A.T., Kabir, Z. & Mofijur, M. (2022). Threats, challenges and sustainable conservation strategies for freshwater biodiversity. Environmental Research. 214, 113808. DOI:10.1016/j.envres.2022.113808
  4. Aloui, S., Mazzoni, A., Elomri, A., Aouissi, J., Boufekane, A. & Zghibi, A. (2023). A review of Soil and Water Assessment Tool (SWAT) studies of Mediterranean catchments: Applications, feasibility, and future directions. Journal of Environmental Management, 326, 116799. DOI:10.1016/j.jenvman.2022.116799
  5. Amalia, A., Fariz, T., Lutfiananda, F., Ihsan, H., Atunnisa, R. & Jabbar, A. (2024). Comparison of SWAT-based ecohydrological modeling in Rawa Pening Catchment Area, Indonesia. Journal Pendidikan IPA Indonesia, 13, 1. DOI:10.15294/jpii.v13i1.45277
  6. Anyango, G.W., Bhowmick, G.D. & Sahoo Bhattacharya, N. (2024). A critical review of irrigation water quality index and water quality management practices in microirrigation for efficient policy making. Desalination and Water Treatment, 318, 100304. DOI:10.1016/j.dwt.2024.100304
  7. Behmel, S., Damour, M., Ludwig, R. & Rodriguez, M. J. (2016). Water quality monitoring strategies — A review and future perspectives. Science of the Total Environment, 571, pp. 1312-1329. DOI:10.1016/j.scitotenv.2016.06.235
  8. Budihardjo, M.A., Humaira, N.G., Ramadan, B.S., Wahyuningrum, I.F.S. & Huboyo, H.S. (2023). Strategies to reduce greenhouse gas emissions from municipal solid waste management in Indonesia: The case of Semarang City. Alexandria Engineering Journal, 69, pp. 771-783. DOI:10.1016/j.aej.2023.02.029
  9. Budihardjo, M.A., Ramadan, B.S., Putri, S.A., Wahyuningrum, I.F.S. & Muhammad, F.I. (2021). Towards Sustainability in Higher-Education Institutions: Analysis of Contributing Factors and Appropriate Strategies. Sustainability, 13, 12, 6562. DOI:10.3390/su13126562
  10. Cham, H., Malek, S., Milow, P. & Ramli, M.R. (2020). Web-based system for visualisation of water quality index. All Life, 13, 1, pp. 426-432. DOI:10.1080/26895293.2020.1788998
  11. Chawla, I., Karthikeyan, L. & Mishra, A.K. (2020). A review of remote sensing applications for water security: Quantity, quality, and extremes. Journal of Hydrology, 585, 124826. DOI:10.1016/j.jhydrol.2020.124826
  12. Chen, X., Chen, J., Wu, D., Xie, Y. & Li, J. (2016). Mapping the Research Trends by Co-word Analysis Based on Keywords from Funded Project. Procedia Computer Science, 91, pp. 547-555. DOI:10.1016/j.procs.2016.07.140
  13. Chen, X., Liu, T., Duulatov, E., Gafurov, A., Omorova, E. & Gafurov, A. (2022). Hydrological Forecasting under Climate Variability Using Modeling and Earth Observations in the Naryn River Basin, Kyrgyzstan. Water, 14, 17, 2733. DOI:10.3390/w14172733
  14. Chow, R., Scheidegger, R., Doppler, T., Dietzel, A., Fenicia, F. & Stamm, C. (2020). A review of long-term pesticide monitoring studies to assess surface water quality trends. Water Research X, 9, 100064. DOI:10.1016/j.wroa.2020.100064
  15. Czatzkowska, M., Wolak, I., Harnisz, M. & Korzeniewska, E. (2022). Impact of Anthropogenic Activities on the Dissemination of ARGs in the Environment—A Review. International Journal of Environmental Research and Public Health, 19, 19. DOI:10.3390/ijerph191912853
  16. Daenekindt, S. & Huisman, J. (2020). Mapping the scattered field of research on higher education. A correlated topic model of 17,000 articles, 1991–2018. Higher Education, 80, 3, pp. 571-587. DOI:10.1007/s10734-020-00500-x
  17. Damanik, A., Janssen, D.J., Tournier, N., Stelbrink, B., von Rintelen, T., Haffner, G.D., Cohen, A., Yudawati Cahyarini, S. & Vogel, H. (2024). Perspectives from modern hydrology and hydrochemistry on a lacustrine biodiversity hotspot: Ancient Lake Poso, Central Sulawesi, Indonesia. Journal of Great Lakes Research, 50, 3, 102254. DOI:10.1016/j.jglr.2023.102254
  18. Dawood, T., Elwakil, E., Novoa, H. M. & Gárate Delgado, J. F. (2021). Toward urban sustainability and clean potable water: Prediction of water quality via artificial neural networks. Journal of Cleaner Production, 291, 125266. DOI:10.1016/j.jclepro.2020.125266
  19. de Vries, B.B.L.P., van Smeden, M., Rosendaal, F.R. & Groenwold, R.H.H. (2020). Title, abstract, and keyword searching resulted in poor recovery of articles in systematic reviews of epidemiologic practice. Journal of Clinical Epidemiology, 121, pp. 55-61. DOI:10.1016/j.jclinepi.2020.01.009
  20. Duttagupta, S., Mukherjee, A., Bhanja, S. N., Chattopadhyay, S., Sarkar, S., Das, K., Chakraborty, S. & Mondal, D. (2020). Achieving sustainable development goal for clean water in India: influence of natural and anthropogenic factors on groundwater microbial pollution. Environmental Management, 66, pp. 742-755. DOI:10.1007/s00267-020-01358-6
  21. Ejaz, H., Zeeshan, H.M., Ahmad, F., Bukhari, S.N., Anwar, N., Alanazi, A., Sadiq, A., Junaid, K., Atif, M., Abosalif, K.O., Iqbal, A., Hamza, M.A. & Younas, S. (2022). Bibliometric Analysis of Publications on the Omicron Variant from 2020 to 2022 in the Scopus Database Using R and VOSviewer. International Journal of Environmental Research and Public Health, 19, 19. DOI:10.3390/ijerph191912407
  22. Fioramonte, B., Campos, M.A.S., De Freitas, S.R. & Basso, R.E. (2022). Rainfall data used for rainwater harvesting systems: a bibliometric and systematic literature review. AQUA—Water Infrastructure, Ecosystems and Society, 71, 7, pp. 816-834. DOI:10.2166/aqua.2022.034
  23. Gao, S., Meng, F., Gu, Z., Liu, Z. & Farrukh, M. (2021). Mapping and Clustering Analysis on Environmental, Social and Governance Field a Bibliometric Analysis Using Scopus. Sustainability, 13, 13. DOI:10.3390/su13137304
  24. Giri, S. (2021). Water quality prospective in Twenty First Century: Status of water quality in major river basins, contemporary strategies and impediments: A review. Environmental Pollution, 271, 116332. DOI:10.1016/j.envpol.2020.116332
  25. Han, X. (2020). Evolution of research topics in LIS between 1996 and 2019: An analysis based on latent Dirichlet allocation topic model. Scientometrics, 125, 3, pp. 2561-2595. DOI:10.1007/s11192-020-03721-0
  26. Heege, T., Kiselev, V., Wettle, M. & Hung, N. N. (2014). Operational multi-sensor monitoring of turbidity for the entire Mekong Delta. International Journal of Remote Sensing, 35, 8, pp. 2910-2926. DOI:10.1080/01431161.2014.890300
  27. Hojjati-Najafabadi, A., Mansoorianfar, M., Liang, T., Shahin, K. & Karimi-Maleh, H. (2022). A review on magnetic sensors for monitoring of hazardous pollutants in water resources. Science of the Total Environment, 824, 153844. DOI:10.1016/j.scitotenv.2022.153844
  28. Huang, J., Zhang, Y., Bing, H., Peng, J., Dong, F., Gao, J. & Arhonditsis, G. B. (2021). Characterizing the river water quality in China: Recent progress and on-going challenges. Water research, 201, 117309. DOI:10.1016/j.watres.2021.117309
  29. Ighalo, J.O., Adeniyi, A.G. & Marques, G. (2021). Artificial intelligence for surface water quality monitoring and assessment: a systematic literature analysis. Modeling Earth Systems and Environment, 7, 2, pp. 669-681. DOI:10.1007/s40808-020-01041-z
  30. Ikhlas, N. & Ramadan, B.S. (2024). Community-based watershed management (CBWM) for climate change adaptation and mitigation: Research trends, gaps, and factors assessment. Journal of Cleaner Production, 434, 140031. DOI:10.1016/j.jclepro.2023.140031
  31. Jiang, J., Tang, S., Han, D., Fu, G., Solomatine, D. & Zheng, Y. (2020). A comprehensive review on the design and optimization of surface water quality monitoring networks. Environmental Modelling & Software, 132, 104792. DOI:10.1016/j.envsoft.2020.104792
  32. Kamyab, H., Khademi, T., Chelliapan, S., SaberiKamarposhti, M., Rezania, S., Yusuf, M., Farajnezhad, M., Abbas, M., Hun Jeon, B. & Ahn, Y. (2023). The latest innovative avenues for the utilization of artificial Intelligence and big data analytics in water resource management. Results in Engineering, 20, 101566. DOI:10.1016/j.rineng.2023.101566
  33. Kasavan, S., Yusoff, S., Rahmat Fakri, M.F. & Siron, R. (2021). Plastic pollution in water ecosystems: A bibliometric analysis from 2000 to 2020. Journal of Cleaner Production, 313, 127946. DOI:10.1016/j.jclepro.2021.127946
  34. Khan, R.M., Salehi, B., Mahdianpari, M., Mohammadimanesh, F., Mountrakis, G. & Quackenbush, L.J. (2021). A Meta-Analysis on Harmful Algal Bloom (HAB) Detection and Monitoring: A Remote Sensing Perspective. Remote Sensing, 13(21). Retrieved from DOI:10.3390/rs13214347
  35. Lamaro, A.A., Mariñelarena, A., Torrusio, S.E. & Sala, S.E. (2013). Water surface temperature estimation from Landsat 7 ETM+ thermal infrared data using the generalized single-channel method: Case study of Embalse del Río Tercero (Córdoba, Argentina). Advances in Space Research, 51, 3, pp. 492-500. DOI:10.1016/j.asr.2012.09.032
  36. Łaszczyca, P., Nakonieczny, M. & Kostecki, M. (2023). Ecotoxicological biotests as tools for continuous monitoring of water quality in dam reservoirs. Archives of Environmental Protection, 49,1, pp. 25-38. DOI:10.24425/aep.2023.144734
  37. Latwal, A., Rehana, S. & Rajan, K. (2023). Detection and mapping of water and chlorophyll-a spread using Sentinel-2 satellite imagery for water quality assessment of inland water bodies. Environmental Monitoring and Assessment, 195, 11, 1304. DOI:10.1007/s10661-023-11874-7
  38. Lee, S., Ryu, Y., Park, H.-J., Lee, I.-S. & Chae, Y. (2022). Characteristics of five-phase acupoints from data mining of randomized controlled clinical trials followed by multidimensional scaling. Integrative Medicine Research, 11, 2, 100829. DOI:10.1016/j.imr.2021.100829
  39. Leong, C. (2021). Narratives and water: A bibliometric review. Global Environmental Change, 68, 102267. DOI:10.1016/j.gloenvcha.2021.102267
  40. Li, J., Tian, L., Wang, Y., Jin, S., Li, T. & Hou, X. (2021). Optimal sampling strategy of water quality monitoring at high dynamic lakes: A remote sensing and spatial simulated annealing integrated approach. Science of the Total Environment, 777, 146113. DOI:10.1016/j.scitotenv.2021.146113
  41. Lindgren, B.-M., Lundman, B. & Graneheim, U.H. (2020). Abstraction and interpretation during the qualitative content analysis process. International Journal of Nursing Studies, 108, 103632. DOI:10.1016/j.ijnurstu.2020.103632
  42. Locke, K.A. (2024). Modelling relationships between land use and water quality using statistical methods: A critical and applied review. Journal of Environmental Management, 362, 121290. DOI:10.1016/j.jenvman.2024.121290
  43. Madzík, P. & Falát, L. (2022). State-of-the-art on analytic hierarchy process in the last 40 years: Literature review based on Latent Dirichlet Allocation topic modelling. PLoS One, 17, 5, e0268777. DOI:10.1371/journal.pone.0268777
  44. Mashala, M.J., Dube, T., Mudereri, B.T., Ayisi, K.K. & Ramudzuli, M.R. (2023). A systematic review on advancements in remote sensing for assessing and monitoring land use and land cover changes impacts on surface water resources in semi-arid tropical environments. Remote Sensing, 15, 16, 3926. DOI:10.3390/rs15163926
  45. Matos, T., Martins, M.S., Henriques, R. & Goncalves, L.M. (2024). A review of methods and instruments to monitor turbidity and suspended sediment concentration. Journal of Water Process Engineering, 64, 105624. DOI:10.1016/j.jwpe.2024.105624
  46. Muhirwa, F., Shen, L., Elshkaki, A., Zhong, S., Hu, S., Hirwa, H., Chiaka, J. C., Umarishavu, F. & Mulinga, N. (2022). Ecological balance emerges in implementing the water-energy-food security nexus in well-developed countries in Africa. Science of the Total Environment, 833, 154999. DOI:10.1016/j.scitotenv.2022.154999
  47. Nobanee, H., Al Hamadi, F.Y., Abdulaziz, F.A., Abukarsh, L.S., Alqahtani, A.F., AlSubaey, S.K., Alqahtani, S.M. & Almansoori, H.A. (2021). A Bibliometric Analysis of Sustainability and Risk Management. Sustainability, 13, 6, 3277. DOI:10.3390/su13063277
  48. Obaid, A.A., Ali, K.A., Abiye, T.A. & Adam, E. M. (2021). Assessing the utility of using current generation high-resolution satellites (Sentinel 2 and Landsat 8) to monitor large water supply dam in South Africa. Remote Sensing Applications: Society and Environment, 22, 100521. DOI:10.1016/j.rsase.2021.100521
  49. Okafor, C.C., Aigbavboa, C. & Thwala, W.D. (2023). A bibliometric evaluation and critical review of the smart city concept–making a case for social equity. Journal of Science and Technology Policy Management, 14, 3, pp. 487-510. DOI:10.1108/JSTPM-06-2020-0098
  50. Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A. & Brennan, S.E. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372. DOI:10.1186/s13643-021-01626-4
  51. Paraskevi, M., Pau, G.-G., Ada, P., Annette, B.-P. & Tenna, R. (2022). Weed cutting in a large river reduces ecosystem metabolic rates in the case of River Gudenå (Denmark). Journal of Environmental Management, 314, 115014. DOI:10.1016/j.jenvman.2022.115014
  52. Paraskevopoulos, A.L. & Singels, A. (2014). Integrating soil water monitoring technology and weather-based crop modelling to provide improved decision support for sugarcane irrigation management. Computers and Electronics in Agriculture, 105, pp. 44-53. DOI:10.1016/j.compag.2014.04.007
  53. Pham-Duc, B., Nguyen, H., Phan, H. & Tran-Anh, Q. (2023). Trends and applications of google earth engine in remote sensing and earth science research: a bibliometric analysis using scopus database. Earth Science Informatics, 16, 3, pp. 2355-2371. DOI:10.1007/s12145-023-01035-2
  54. Pranckutė, R. (2021). Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications, 9, 1, 12. DOI:10.3390/publications9010012
  55. Rajaee, T., Khani, S. & Ravansalar, M. (2020). Artificial intelligence-based single and hybrid models for prediction of water quality in rivers: A review. Chemometrics and Intelligent Laboratory Systems, 200, 103978. DOI:10.1016/j.chemolab.2020.103978
  56. Ramadan, E.M., Moussa, A., Magdy, A. & Negm, A. (2024). Integration of hydrodynamic and water quality modeling to mitigate the effects of spill pollution into the Nile River, Egypt. Environmental Science and Pollution Research, 1-19. DOI:10.1007/s11356-024-34216-7
  57. Razguliaev, N., Flanagan, K., Muthanna, T. & Viklander, M. (2024). Urban stormwater quality: A review of methods for continuous field monitoring. Water research, 249, 120929. DOI:10.1016/j.watres.2023.120929
  58. Sagan, V., Peterson, K.T., Maimaitijiang, M., Sidike, P., Sloan, J., Greeling, B.A., Maalouf, S. & Adams, C. (2020). Monitoring inland water quality using remote sensing: potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth-Science Reviews, 205, 103187. DOI:10.1016/j.earscirev.2020.103187
  59. Sarminingsih, A., Juliani, H., Budihardjo, M.A., Puspita, A.S. & Mirhan, S.A.A. (2024). Water quality monitoring system for temperature, pH, Turbidity, DO, BOD, and COD parameters based on internet of things in the Garang watershed. Ecological Engineering & Environmental Technology, 25. DOI:10.12912/27197050/174412
  60. Shakak, N.B.I. (2022). Simulation of Environmental Pollution Using Advance Technology and Modeling. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, pp. 23-29. DOI:10.5194/isprs-archives-XLIII-B4-2022-23-2022
  61. Singh, S., Bhardwaj, A. & Verma, V.K. (2020). Remote sensing and GIS based analysis of temporal land use/land cover and water quality changes in Harike wetland ecosystem, Punjab, India. Journal of Environmental Management, 262, 110355. DOI:10.1016/j.jenvman.2020.110355
  62. Sun, Q., Yan, Z., Wang, J., Chen, J.-A., Li, X., Shi, W., Liu, J. & Li, S.-L. (2024). Evaluating impacts of climate and management on reservoir water quality using environmental fluid dynamics code. Science of the Total Environment, 947, 174608. DOI:10.1016/j.scitotenv.2024.174608
  63. Syeed, M.M.M., Hossain, M.S., Karim, M.R., Uddin, M.F., Hasan, M. & Khan, R.H. (2023). Surface water quality profiling using the water quality index, pollution index and statistical methods: A critical review. Environmental and Sustainability Indicators, 18, 100247. DOI:10.1016/j.indic.2023.100247
  64. Tanjung, R.H.R., Indrayani, E., Agamawan, L.P.I. & Hamuna, B. (2024). Water quality assessment to determine the trophic state and suitability of Lake Sentani (Indonesia) for various utilisation purposes. Water Cycle, 5, pp. 99-108. DOI:10.1016/j.watcyc.2024.02.006
  65. Taufik & Nuqoba, B. (2019). The geographic information system dashboard prototype of Brantas River, East Java. IOP Conference Series: Earth and Environmental Science, 245, 012052. DOI:10.1088/1755-1315/245/1/012052
  66. Tavakoli, A., Kerachian, R., Nikoo, M.R., Soltani, M. & Estalaki, S.M. (2014). Water and waste load allocation in rivers with emphasis on agricultural return flows: application of fractional factorial analysis. Environmental Monitoring and Assessment, 186, pp. 5935-5949. DOI:10.1007/s10661-014-3830-6
  67. Tomojiri, D., Takaya, K. & Ise, T. (2022). Temporal trends and spatial distribution of research topics in anthropogenic marine debris study: Topic modelling using latent Dirichlet allocation. Marine Pollution Bulletin, 182, 113917. DOI:10.1016/j.marpolbul.2022.113917
  68. Topp, S.N., Pavelsky, T.M., Jensen, D., Simard, M. & Ross, M.R. (2020). Research trends in the use of remote sensing for inland water quality science: Moving towards multidisciplinary applications. Water, 12, 1, 169. DOI:10.3390/w12010169
  69. Uddin, M.G., Nash, S. & Olbert, A.I. (2021). A review of water quality index models and their use for assessing surface water quality. Ecological Indicators, 122, 107218. DOI:10.1016/j.ecolind.2020.107218
  70. Uddin, M.G., Nash, S., Rahman, A. & Olbert, A.I. (2022). A comprehensive method for improvement of water quality index (WQI) models for coastal water quality assessment. Water research, 219, 118532. DOI:10.1016/j.watres.2022.118532
  71. Vane, C.H., Kim, A.W., Lopes dos Santos, R.A., Gill, J.C., Moss-Hayes, V., Mulu, J.K., Mackie, J.R., Ferreira, A.M.P.J., Chenery, S.R. & Olaka, L.A. (2022). Impact of organic pollutants from urban slum informal settlements on sustainable development goals and river sediment quality, Nairobi, Kenya, Africa. Applied Geochemistry, 146, 105468. DOI:10.1016/j.apgeochem.2022.105468
  72. Vélez-Nicolás, M., García-López, S., Barbero, L., Ruiz-Ortiz, V. & Sánchez-Bellón, Á. (2021). Applications of Unmanned Aerial Systems (UASs) in Hydrology: A Review. Remote Sensing, 13, 7. DOI:10.3390/rs13071359
  73. Wahyuningrum, I.F.S., Humaira, N.G., Budihardjo, M.A., Arumdani, I.S., Puspita, A.S., Annisa, A.N., Sari, A.M. & Djajadikerta, H.G. (2023). Environmental sustainability disclosure in Asian countries: Bibliometric and content analysis. Journal of Cleaner Production, 411, 137195. DOI:10.1016/j.jclepro.2023.137195
  74. Webber, J.L., Fletcher, T., Farmani, R., Butler, D. & Melville-Shreeve, P. (2022). Moving to the future of smart stormwater management: A review and framework for terminology, research, and future perspectives. Water research, 218, 118409. DOI:10.1016/j.watres.2022.118409
  75. Wibowo, Y.G., Ramadan, B.S., Taher, T. & Khairurrijal, K. (2024). Advancements of nanotechnology and nanomaterials in environmental and human protection for combatting the covid-19 during and post-pandemic era: a comprehensive scientific review. Biomedical Materials & Devices, 2, 1, pp. 34-57. DOI:10.1007/s44174-023-00086-9
  76. Yao, J., Guo, X., Wang, L., & Jiang, H. (2022). Understanding Green Consumption: A Literature Review Based on Factor Analysis and Bibliometric Method. Sustainability, 14, 14, 8324. DOI:10.3390/su14148324
  77. Ye, X., Zhang, B., Lee, K., Storesund, R., Song, X., Kang, Q., Li, P. & Chen, B. (2024). A multi-criteria simulation-optimization coupling approach for effective emergency response in marine oil spill accidents. Journal of Hazardous Materials, 469, 133832. DOI:10.1016/j.jhazmat.2024.133832
  78. Yuan, L., Sinshaw, T. & Forshay, K.J. (2020). Review of Watershed-Scale Water Quality and Nonpoint Source Pollution Models. Geosciences, 10, 1, 25. DOI:10.3390/geosciences10010025
  79. Zabłocki, S., Murat-Błażejewska, S., Trzeciak, J.A. & Błażejewski, R. (2022). High-resolution mapping to assess risk of groundwater pollution by nitrates from agricultural activities in Wielkopolska Province, Poland. Archives of Environmental Protection, 48, 1, pp. 41-57. DOI:10.24425/aep.2022.140544
  80. Zhang, F., Chen, Y., Wang, W., Jim, C.Y., Zhang, Z., Tan, M.L., Liu, C., Chan, N.W., Wang, D., Wang, Z. & Rahman, H.A. (2022). Impact of land-use/land-cover and landscape pattern on seasonal in-stream water quality in small watersheds. Journal of Cleaner Production, 357, 131907. DOI:10.1016/j.jclepro.2022.131907
  81. Zheng, C., Yuan, J., Zhu, L., Zhang, Y. & Shao, Q. (2020). From digital to sustainable: A scientometric review of smart city literature between 1990 and 2019. Journal of Cleaner Production, 258, 120689. DOI:10.1016/j.jclepro.2020.120689
  82. Zulkifli, C.Z., Sulaiman, S., Ibrahim, A.B., Soon, C.F., Harun, N.H., Hairom, N.H.H., Setiawan, M.I. & Chiang, H.H. (2022). Smart Platform for Water Quality Monitoring System using Embedded Sensor with GSM Technology. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 95, 1, pp. 54-63. DOI:10.37934/arfmts.95.1.5463
Go to article

Authors and Affiliations

Syafriadi Syafriadi
1
Anik Sarminingsih
1
Henny Juliani
2
Mochamad Arief Budihardjo
1
Muhammad Thariq Sani
1
Hessy Rahma Wati
3

  1. Department of Environmental Engineering, Faculty of Engineering, Universitas Diponegoro Jl. Prof. H. Sudarto, SH Tembalang, Semarang, Indonesia
  2. Faculty of Law, Diponegoro University, Semarang, Indonesia
  3. Environmental Sustainability Research Group, Departement of Environmental Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to prepare and assess the effectiveness of a geopolymer doped with multi-walled carbon nanotubes functionalized with carboxyl groups (GEO+MWCNT) for removing lead (Pb(II)) and anthracene (ANT) from rainwater. Characterization of the GEO+MWCNT demonstrated an increased specific surface area and microporosity compared to the pristine geopolymer (GEO). Adsorption experiments revealed that GEO+MWCNT achieved higher removal efficiencies for Pb(II) and ANT compared to GEO alone. The maximum removal rates of lead and anthracene by GEO+MWCNT were 100% and 87.5%, respectively, compared to 71.5% and 76.2% for GEO. For GEO+MWCNT, lead removal was 78.2% in anthracene-containing solutions and 86.7% in anthracene-free rainwater. The optimal removal of Pb(II) occurred at pH 8. The adsorption kinetics followed a pseudo-second-order model, indicating a complex mechanism involving physical adsorption, chemisorption, and electrostatic attraction. These findings suggest that geopolymers, particularly when combined with MWCNT-COOH, have significant application potential for rainwater purification processes.
Go to article

Bibliography

  1. Abbas, A., Al-Amer, A.M., Laoui, T., Al-Marri, M.J., Nasser, M. S., Khraisheh, M. & Atieh, M.A. (2016). Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Separation and Purification Technology, 157, pp. 141-161. DOI: 10.1016/j.seppur.2015.11.039
  2. Adewoye, T.L, Ogunleye, O.O, Abdulkareem, A.S, Salawudeen, T.O. & Tijani, J.O (2021) Optimization of the adsorption of total organic carbon from produced water using functionalized multi-walled carbon nanotubes. Heliyon, 7(1), e05866. DOI:10.1016/j.heliyon.2020.e05866.
  3. Albidah, A., Alghannam, M., Abbas, H., Almusallam, T. & Al-Salloum Y (2021) Characteristics of metakaolin-based geopolymer concrete for different mix design parameters. Journal of Materials Research and Technology, 10, pp. 84-98. DOI:10.1016/j.jmrt.2020.11.104.
  4. Al-Zboon, K., Al-Harahsheh, M.S. & Hani, F.B. (2011) Fly ash-based geopolymer for Pb removal from aqueous solution. Journal of Hazardous Materials, 188(1-3), pp. 414-421. DOI:10.1016/j.jhazmat.2011.01.133.
  5. Al-Zboon, K.K., Al-Smadi, B.M. & Al-Khawaldh, S. (2017) Erratum to: Natural Volcanic Tuff-Based Geopolymer for Zn Removal: Adsorption Isotherm, Kinetic, and Thermodynamic Study. Water Air Soil Pollut 228, 164. DOI:10.1007/s11270-017-3335-3.
  6. Cheng, H., Liu, Y. & Li, X. (2021) Adsorption performance and mechanism of iron-loaded biochar to methyl orange in the presence of Cr6+ from dye wastewater. Journal of Hazardous Materials, 415, 125749. DOI: 10.1016/j.jhazmat.2021.125749.
  7. Cheng, M.C. & You, C.F. (2010) Sources of major ions and heavy metals in rainwater associated with typhoon events in southwestern Taiwan. Journal of Geochemical Exploration, 105(3), pp. 106-116. DOI:10.1016/j.gexplo.2010.04.010.
  8. Cheng, T.W., Lee, M.L., Ko, M.S., Ueng, T.H. & Yang, S.F. (2012) The heavy metal adsorption characteristics on metakaolin-based geopolymer. Applied Clay Science, 56, pp. 90-96. DOI:10.1016/j.clay.2011.11.027.
  9. Cheng, Z., Liu, Z., Hao, H., Lu, Y. & Li, S. (2022) Multi-scale effects of tensile properties of lightweight engineered geopolymer composites reinforced with MWCNTs and steel-PVA hybrid fibers. Construction and Building Materials, 342, 128090. DOI:10.1016/j.conbuildmat.2022.128090.
  10. Chłopek, Z., Suchocka, K., Dudek, M. & Jakubowski, A. (2016) Hazards posed by polycyclic aromatic hydrocarbons contained in the dusts emitted from motor vehicle braking systems. Archives of Environmental Protection, 42 (3), pp. 3-10. DOI:10.1515/aep-2016-0033.
  11. Costa, L.M., Almeida, N.G.S., Houmard, M., Cetlin, P.R., Silva, G.J.B. & Aguilar, M.T.P. (2021) Influence of the addition of amorphous and crystalline silica on the structural properties of metakaolin-based geopolymers. Applied Clay Science, 215, 106312. DOI:10.1016/j.clay.2021.106312.
  12. Degefu, D.M., Liao, Z., Berardi, U. & Labbé, G. (2022) The effect of activator ratio on the thermal and hygric properties of aerated geopolymers. Journal of Building Engineering, 45, 103414. DOI:10.1016/j.jobe.2021.103414.
  13. Duan, P., Yan, C., Zhou, W. & Ren, D. (2016) Development of fly ash and iron ore tailing based porous geopolymer for removal of Cu (II) from wastewater. Ceramics International, 42 (12), pp. 13507-13518. DOI:10.1016/j.ceramint.2016.05.143.
  14. Eldos, H.I., Zouari, N., Saeed, S. & Al-Ghouti, M.A. (2022) Recent advances in the treatment of PAHs in the environment: Application of nanomaterial-based technologies. Arabian Journal of Chemistry, 15 (7), 103918. DOI:10.1016/j.arabjc.2022.103918.
  15. Foo, K.Y. & Hameed, B.H. (2010) Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156 (1), pp. 2-10. DOI:10.1016/j.cej.2009.09.013.
  16. Gao, L., Zheng, Y., Tang, Y., Yu, J., Yu, X. & Liu, B. (2020) Effect of phosphoric acid content on the microstructure and compressive strength of phosphoric acid-based metakaolin geopolymers, Heliyon 6, e03853. DOI:10.1016/j.heliyon.2020.e03853.
  17. Huston, R., Chan, Y.C., Chapman, H., Gardner, T. & Shaw, G. (2012) Source apportionment of heavy metals and ionic contaminants in rainwater tanks in a subtropical urban area in Australia. Water Research, 46 (4), pp. 1121-1132. DOI:10.1016/j.watres.2011.12.008.
  18. Jin, H., Zhang, Y., Wang, Q., Chang, Q. & Li, C. (2021) Rapid removal of methylene blue and nickel ions and adsorption/desorption mechanism based on geopolymer adsorbent. Colloid and Interface Science Communications, 45, 100551. DOI:10.1016/j.colcom.2021.100551.
  19. Kamińska, G. & Bohdziewicz, J. (2016) Potential of various materials for adsorption of micropollutants from wastewater Environment Protection. Engineering, 42, pp. 161-178. DOI:10.5277/epe160413.27.
  20. Kara, I., Tunc, D., Sayin, F. & Akar, S.T. (2018) Study on the performance of metakaolin based geopolymer for Mn (II) and Co (II) removal. Applied Clay Science, 161, pp. 184-193. DOI:10.1016/j.clay.2018.04.027.
  21. Kara, İ., Yilmazer, D. & Akar, S.T. (2017) Metakaolin based geopolymer as an effective adsorbent for adsorption of zinc (II) and nickel (II) ions from aqueous solutions. Applied Clay Science, 139, pp. 54-63. DOI:10.1016/j.clay.2017.01.008.
  22. Khanal, G., Thapa, A., Devkota, N. & Paudel, U.R. (2020) A review on harvesting and harnessing rainwater: an alternative strategy to cope with drinking water scarcity. Water Supply, 20 (8), pp. 2951-2963. DOI:10.2166/ws.2020.264.
  23. Li, Y., Du, Q., Liu, T., Peng, X., Wang, J., Sun, J., Wang, Y., Wu, S., Wang, Z., Xia, Y. & Xia, L. (2013). Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chemical Engineering Research and Design, 91(2), pp. 361-368. DOI:10.1016/j.cherd.2012.07.007
  24. Li, F., Yang, Z., Chen, D., Lu, Y., & Li, S. (2021). Research on mechanical properties and micro-mechanism of Engineering Geopolymers Composites (EGCs) incorporated with modified MWCNTs. Construction and Building Materials, 303, 124516. DOI:10.1016/j.conbuildmat.2021.124516.
  25. Li, Y., Cheng, X., Liu, K., Yu, Y. & Zhou, Y. (2022). A new method for identifying potential hazardous areas of heavy metal pollution in sediments. Water Research, 224, 119065. DOI:10.1016/j.watres.2022.119065.
  26. Li, P. (2020). Mechanical properties and micro characteristics of fly ash-based geopolymer paste incorporated with waste Granulated Blast Furnace Slag (GBFS) and functionalized Multi-Walled Carbon Nanotubes (MWCNTs). Journal of Hazardous Materials, 401, 123339. DOI: 10.1016/j.jhazmat.2020.123339.
  27. Makar, J., Margeson, J. & Luh, J. (2005). Carbon nanotube/cement composites-early results and potential applications. In Proceedings of the 3rd international conference on construction materials: performance, innovations and structural implications. pp. 1–10). Vancouver, Canada.
  28. Maleki, A., Hajizadeh, Z., Sharifi, V. & Emdadi, Z. (2019). A green, porous and eco-friendly magnetic geopolymer adsorbent for heavy metals removal from aqueous solutions. Journal of Cleaner Production, 215, pp. 1233–1245. DOI:10.1016/j.jclepro.2019.01.084.
  29. Manyangadze, M., Chikuruwo, N.M., Narsaiah, T.B., Chakra, C.S., Charis, G., Danha, G. & Mamvura, T.A. (2020). Adsorption of lead ions from wastewater using nano silica spheres synthesized on calcium carbonate templates. Heliyon, 6(11), e05309. DOI:10.1016/j.heliyon.2020.e05309.
  30. Marszałek, A., Kamińska, G. & Salam, N.F.A. (2022). Simultaneous adsorption of organic and inorganic micropollutants from rainwater by bentonite and bentonite carbon nanotubes composites. Journal of Water Process Engineering, 46, 102550. DOI:10.1016/j.jwpe.2021.102550.
  31. Mobasherpour, I., Salahi, E. & Ebrahimi, M. (2014). Thermodynamics and kinetics of adsorption of Cu(II) from aqueous solutions onto multi-walled carbon nanotubes. Journal of Saudi Chemical Society, 18(6), pp. 792–801. DOI:10.1016/j.jscs.2011.09.006.
  32. Mojiri, A., Zhou, J.L., Ohashi, A., Ozaki, N. & Kindaichi, T. (2019). Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. Science of the Total Environment, 696, 133971. DOI:10.1016/j.scitotenv.2019.133971.
  33. Moungam, L.M.B., Tchieda, K.V., Mohamed, H., Pecheu, N.C., Kaze, R.C., Kamseu, E. & Tonle, I.K. (2022). Efficiency of volcanic ash-based porous geopolymers for the removal of Pb²⁺, Cd²⁺, and Hg²⁺ from aqueous solution. Cleaner Materials, 5, 100106. DOI:10.1016/j.clema.2022.100106.
  34. Murat-Błażejewska, S. & Błażejewski, R. (2020). Converting sewage holding tanks to rainwater harvesting tanks in Poland. Archives of Environmental Protection, 46(4), pp. 121–131. DOI:10.24425/aep.2020.135770
  35. Niu, X., Elakneswaran, Y., Islam, C.R., Provis, J.L. & Sato, T. (2022). Adsorption behaviour of simulant radionuclide cations and anions in metakaolin-based geopolymer. Journal of Hazardous Materials, 429, 128373. DOI:10.1016/j.jhazmat.2022.128373.
  36. Oualit, M. & Irekti, A. (2022). Mechanical performance of metakaolin-based geopolymer mortar blended with multi-walled carbon nanotubes. Ceramics International, 48(11), pp. 16188–16195. DOI:10.1016/j.ceramint.2022.02.166.
  37. Qu, G., Zhou, J., Liang, S., Li, Y., Ning, P., Pan, K. & Tang, H. (2022). Thiol-functionalized multi-walled carbon nanotubes for effective removal of Pb²⁺ from aqueous solutions. Materials Chemistry and Physics, 278, 125688. DOI:10.1016/j.matchemphys.2021.125688.
  38. Rao, G.P., Lu, C. & Su, F. (2007). Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Separation and Purification Technology, 58 (1), pp. 224–231. DOI:10.1016/j.seppur.2006.12.006.
  39. Refaie, F.A.Z., Abbas, R. & Fouad, F.H. (2020). Sustainable construction system with Egyptian metakaolin-based geopolymer concrete sandwich panels. Case Studies in Construction Materials, 13, e00436. DOI:10.1016/j.cscm.2020.e00436.
  40. Sandroni, V. & Migon, C. (2002). Atmospheric deposition of metallic pollutants over the Ligurian Sea: Labile and residual inputs. Chemosphere, 47(7), pp. 753–764. DOI:10.1016/S0045-6535(01)00337-X.
  41. Sekkal, W. & Zaoui, A. (2022). High strength metakaolin-based geopolymer reinforced by pristine and covalent functionalized carbon nanotubes. Construction and Building Materials, 327, 126910. DOI:10.1016/j.conbuildmat.2022.126910.
  42. Sijal, A.A., Shamsuddin, M.R., Rabat, N.E., Zulfiqar, M., Man, Z. & Low, A. (2019). Fly ash-based geopolymer for the adsorption of anionic surfactant from aqueous solution. Journal of Cleaner Production, 229, pp. 232–243. DOI:10.1016/j.jclepro.2019.04.384.
  43. Sitarz-Palczak, E. (2023). Study of Zn(II) ion removal from galvanic sludge by geopolymers. Archives of Environmental Protection, 49(4), pp. 11–20. DOI:10.24425/aep.2023.148681.
  44. Tan, W., Li, Y., Ding, L., Wang, Y., Li, J., Deng, Q., Guo, F. & Xiao, X. (2019). Characteristics and metal leachability of natural contaminated soil under acid rain scenarios. Archives of Environmental Protection, 45(2), pp. 91–98. DOI: 10.24425/aep.2019.126698.
  45. Wan, J., Zhang, F., Han, Z., Song, L., Zhang, C. & Zhang, J. (2021). Adsorption of Cd²⁺ and Pb²⁺ by biofuel ash-based geopolymer synthesized by one-step hydrothermal method. Arabian Journal of Chemistry, 14(8), 103234. DOI:10.1016/j.arabjc.2021.103234.
  46. Yan, S., Ren, X., Zhang, F., Huang, K., Feng, X. & Xing, P. (2022). Comparative study of Pb²⁺, Ni²⁺, and methylene blue adsorption on spherical waste solid-based geopolymer adsorbents enhanced with carbon nanotubes. Separation and Purification Technology, 284, 120234. DOI:10.1016/j.seppur.2021.120234.
  47. Yang, J., Xu, L., Wu, H., Jin, J. & Liu, L. (2022). Microstructure and mechanical properties of metakaolin-based geopolymer composites contain high volume of spodumene tailings. Applied Clay Science, 218, 106412. DOI:10.1016/j.clay.2022.106412.
  48. Yu, Z., Song, W., Li, J. & Li, Q. (2020). Improved simultaneous adsorption of Cu(II) and Cr(VI) of organic modified metakaolin-based geopolymer. Arabian Journal of Chemistry, 13(3), pp. 4811–4823. DOI:10.1016/j.arabjc.2020.01.001.
  49. Zhang, X., Yuan, N., Xu, S., Li, Y. & Wang, Q. (2022). Efficient adsorptive elimination of organic pollutants from aqueous solutions on ZIF-8/MWCNTs-COOH nanoadsorbents: Adsorption kinetics, isotherms, and thermodynamic study. Journal of Industrial and Engineering Chemistry, 111, pp.155-167. DOI:10.1016/j.jiec.2022.03.048.-
  50. Zhang, Y., Cao, B., Zhao, L., Sun, L., Gao, Y., Li, J. & Yang, F. (2018). Biochar-supported reduced graphene oxide composite for adsorption and coadsorption of atrazine and lead ions. Applied Surface Science, 427, pp. 147–155. DOI:10.1016/j.apsusc.2017.07.237.
Go to article

Authors and Affiliations

Anna Marszałek
1
ORCID: ORCID
Noura Fathy Abdel Salam
2
Gabriela Kamińska
1
ORCID: ORCID

  1. Silesian University of Technology, Gliwice, Poland
  2. Cairo University, Egypt
Download PDF Download RIS Download Bibtex

Abstract

A disadvantage of many commonly used impregnants and resins is their high toxicity, related to the presence of harmful aromatic hydrocarbons and volatile organic compounds (VOCs) in their composition. VOCs account for a relatively large approx. 30% portion in the synthetic resins industry. One idea for reducing or eliminating VOCs from the production of resins, paints is the use of high-quality intermediates and biodegradable raw materials. A perspective on novel approaches to protecting concrete surfaces was presented, involving a concept of using two types of higher fatty acids for this purpose: stearic acid (STA) and methyl esters (ME). Recent technological advancements have centered on vegetable oil feedstocks for industrial applications. This is due to their suitability for industrial production of agents, as they substitute non-renewable hydrocarbons. The cited tests confirm the hydrophobic nature of coatings formed using STA and ME on various materials. From the analysis of the literature, it appears that the study of anticorrosion coatings with biodegradable admixtures, i.e. higher fatty acids, should be developed because of their promising results in efficiency, reduction of toxic substances (VOCs) and their impact on the environment.
Go to article

Bibliography

  1. Aguiar, J.B. & Júnior, C. (2013). Carbonation of surface protected concrete, Construction and Building Materials, 49, pp. 478–483. DOI:10.1016/j.conbuildmat.2013.08.058
  2. Albayrak A.T., Yasar, M., Gurkaynak, M.A. & Gurgey, I. (2005). Investigation of the effects of fatty acids on the compressive strength of concrete and the grindability of the cement, Cement and Concrete Research, 35, 2, pp. 400-404. DOI:10.1016/j.cemconres.2004.07.031
  3. Almusallam, A.A., Khan, F.M., Dulaijan, S.U. & Al-Amoudi, O. (2003). Effectiveness of surface coatings in improving concrete durability, Cement and Concrete Composites, 25, 4, pp. 473–481.
  4. Barnat-Hunek, D., Andrzejuk, W., Szafraniec, M., Kachel, M. & Hunek, R. (2023). Modification of Concrete Surface with Higher Fatty Acids, Advances in Science and Technology Research Journal, 17, 2, pp. 307–321. DOI:10.12913/22998624/159722
  5. Barnat-Hunek, D., Grzegorczyk-Frańczak, M. & Suchorab, Z. (2020). Surface hydrophobisation of mortars with waste aggregate by nanopolymer trietoxi-isobutyl-silane and methyl silicon resin, Construction and Building Materials, 264, 120175. DOI:10.1016/j.conbuildmat.2020.120175
  6. Basheer, L. & Cleland, D.J. (2006). Freeze–thaw resistance of concretes treated with pore liners, Construction and Building Materials, 20, 10, pp. 990–998.
  7. Brochocka, A., Nowak, A., Panek, R., Kozikowski, P. & Franus, W. (2021). Effective removal of odors from air with polymer nonwoven structures doped by porous materials to use in respiratory protective devices, Archives of Environmental Protection 47, 2 pp. 3–19. DOI:10.24425/aep.2021.137274
  8. Cellat, K., Beyhan, B., Güngör, C., Konuklu, Y., Karahan, O., Dündar, C. & Paksoy, H. (2015). Thermal enhancement of concrete by adding bio-based fatty acids as phase change materials, Energy and Buildings, 106, pp. 156-163. DOI:10.1016/j.enbuild.2015.05.035 037
  9. Cunha, S., P. Leite, P. & Aguiar, J. (2020). Characterization of innovative mortars with direct incorporation of phase change materials, Journal of Energy Storage, 30, 101439. DOI:10.1016/j.est.2020.101439
  10. Cunha, S., Tavares, A., Aguiar, J.B. & Castro, F. (2022). Cement mortars with ceramic molds shells and paraffin waxes wastes: physical and mechanical behavior, Construction and Building Materials, 342, 127949. DOI:10.1016/j. conbuildmat.2022.127949
  11. Directive 1999/13/EC of 11 March 1999 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain activities and installations.
  12. Dobrzyniewski, D., Szulczyński, B., Rybarczyk, P. & Gębicki, J. (2023). Process control of air stream deodorization from vapors of VOCs using a gas sensor matrix conducted in the biotrickling filter (BTF), Archives of Environmental Protection, 49, 2, pp. 85–94. DOI:10.24425/aep.2023.145900
  13. Facio, D.S. & Mosquera, M.J. (2013). Simple strategy for producing superhydrophobic nanocomposite coatings in situ on a building substrate, ACS Applied Materials & Interfaces, 5, pp. 7517–7526. DOI:10.1021/am401826g
  14. Fact. MR, (2024). (https://www.factmr.com/report/resin-solvents-market/ (23.11.2024)).
  15. Feng, Z., Wang, F., Xie, T., Ou, J., Xue, M. & Li, W. (2019). Integral hydrophobic concrete without using silane, Construction and Building Materials, 227, 116678. DOI:10.1016/j.conbuildmat.2019.116678
  16. Fiszer, S. & Szałajko, U. (2000). Vegetable oils as substitutes for petroleum-based lubricants, Nafta-Gaz, 3, pp. 181–188 (in Polish).
  17. Fortune Business Insights, (2024). (http:/www.fortunebusinessinsights.com/water-soluble-polymers-market-106175/(23.11.2024)).
  18. Fortune Business Insights, (2024). (https://www.fortunebusinessinsights.com/industry-reports/resin-market-101746/ (23.11.2024)).
  19. Gao, M., Liu, W., Wang, H., Shao, X., Shi, A., An, X., Li, G. & Nie, L. (2021). Emission factors and characteristics of volatile organic compounds (VOCs) from adhesive application in indoor decoration in China, Science of The Total Environment, 779, 145169. DOI:10.1016/j.scitotenv.2021.145169
  20. Hassa, R., Mrzigod, J. & Nowakowski, J. (2004). Handy Chemical Dictionary, Videograf II, Katowice 2004. (in Polish).
  21. Hodul, J., Beníková, T. & Drochytka, R. (2024). Substantiation of the Effectiveness of Water-Soluble Hydrophobic Agents on the Properties of Cement Composites, Buildings, 14, 3364. DOI:10.3390/buildings14113364
  22. Hu, Y., Jia, P., Lamm, M.-E., Sha, Y., Kurnaz, L.-B., Ma, & Zhou, Y. (2023). Plant oil-derived vitrimers-graphene composites with self-healing ability triggered by multiple stimuli, Composites Part B-Engineering, 259, 110704. DOI:10.1016/j.compositesb.2023.110704
  23. Johansson, K. & Johansson, M. (2007). The effect of fatty acid methyl esters on the curing performance and final properties of thermally cured solvent-borne coil coatings, Progress in Organic Coatings, 59, 2, pp. 146-151. DOI:10.1016/j.porgcoat.2007.02.004
  24. Lei, L., Wang, Q., Xu, S., Wang, N. & Zheng, X. (2020). Fabrication of superhydrophobic concrete used in marine environment with anti-corrosion and stable mechanical properties, Construction and Building Materials, 251, 118946. DOI:10.1016/j.conbuildmat.2020.118946
  25. Levi, M., Ferro, C., Regazzoli, D., Dotelli, G. & Lo Presti, A. (2002). Comparative evaluation method of polymer surface treatments applied on high performance concrete, Journal of Materials Science, 37, pp. 4881–4888.
  26. Li, C., Mu, Y., Liang, X., Xia, T., Li, X. & Wu, M. (2024). A multifunctional coating with switchable wettability for efficient oil-water and emulsions separation, Journal of Water Process Engineering, 66, 105955. DOI:10.1016/j.jwpe.2024.105955
  27. Liu, H., Zhang, T.C., He, H., Ouyang, L. & Yuan, S. (2020). A stearic Acid/CeO2 bilayer coating on AZ31B magnesium alloy with superhydrophobic and self-cleaning properties for corrosion inhibition, Journal of Alloys and Compounds, 834, 155210. DOI:10.1016/j.jallcom.2020.155210.
  28. Liu, X., Zhang, T.C., He, H., Ouyang, L. & Yuan, S. (2020). A stearic Acid/CeO2 bilayer coating on AZ31B magnesium alloy with superhydrophobic and self-cleaning properties for corrosion inhibition, Journal of Alloys and Compounds, 834, 155210. DOI:10.1016/j.jallcom.2020.155210
  29. Loperena, A.P., Saidman, S.B. & Lehr, I.L. (2024). Improvement in corrosion resistance of AZ91D Mg alloy in simulated body fluid by cerium-based/stearic acid composite coatings, Corrosion Communications, 14, pp. 11-22. DOI:10.1016/j.corcom.2023.08.004
  30. Ma, Y., Fu, S., Gao, S., Zhang, S., Che, X., Wang, Q. & Jiao, Z. (2021). Update on volatile organic compound (VOC) source profiles and ozone formation potential in synthetic resins industry in China, Environmental Pollution, 291, 118253. DOI:10.1016/j.envpol.2021.118253
  31. Medeiros, M.H. & Helene, P. (2009). Surface treatment of reinforced concrete in marine environment: Influence on chloride diffusion coefficient and capillary water absorption, Construction and Building Materials, 23, 3, pp. 1476–1484.
  32. Mihaljevic, S.N. & Chidiac, S.E. (2022). Effective free water diffusion coefficient of cement paste internally cured with superabsorbent polymers. Journal of Building Engineering, 45. DOI:10.1016/j.jobe.2021.103600
  33. Parker, D., Ham, J., Woodbury, B., Cai, L., Spiehs, M., Rhoades, M., Trabue, S., Casey, K., Todd, R. & Cole, A. (2013). Standardization of flux chamber and wind tunnel flux measurements for quantifying volatile organic compound and ammonia emissions from area sources at animal feeding operations, Atmospheric Environmen, 66, pp. 72-83. DOI:10.1016/j.atmosenv.2012.03.068
  34. Qian, Z., Long, F., Duan, X., Bib, F., Tian, X., Qi, Z. & Ge, C. (2024). Environmental and economic impact analysis of levying VOCs environmental protection tax in China, Heliyon, 10, 17, e36738. DOI:10.1016/j.heliyon.2024.e36738
  35. Ramezanpour, J., Ramezanzadeh, B. & Samani, N. A. (2024). Progress in bio-based anti-corrosion coatings; A concise overview of the advancements, constraints, and advantages, Progress in Organic Coatings, 194, 108556. DOI:10.1016/j.porgcoat.2024.108556
  36. Rudawska, A. Selected Issues in Constituting Homogeneous and Hybrid Adhesive Connections, Politechnika Lubelska, Lublin 2013. (in Polish).
  37. Salar-Behzadi, S., Karrer, J., Demiri, V., Barrios, B., Corzo, C., Meindl, C., Lochmann, D. & Reyer, S. (2020). Polyglycerol esters of fatty acids as safe and stable matrix forming tableting excipients: a structure-function analysis, Journal of Drug Delivery Science and Technology, 60, 102019. DOI:10.1016/j.jddst.2020.102019.
  38. She, W., Yang, J., Hong, J., Sun, D., Mu, S. & Miao, C. (2020). Superhydrophobic concrete with enhanced mechanical robustness: nanohybrid composites, strengthen mechanism and durability evaluation, Construction and Building Materials, 247, 118563. DOI:10.1016/j.conbuildmat.2020.118563
  39. Su, Y., Lin, H., Zhang, S., Yang, Z. & Yuan, T. (2020). One-step synthesis of novel renewable vegetable oil-based acrylate prepolymers and their application in UV-curable coatings, Polymers 12, 1165. DOI:10.3390/polym12051165
  40. Suleiman, A.R., Soliman, A.M. & Nehdi, M.L. (2014). Effect of surface treatment on durability of concrete exposed to physical sulfate attack, Construction and Building Materials, 73, pp. 674-681. DOI:10.1016/j.conbuildmat.2014.10.006
  41. Thissen, P., Bogner, A. & Dehn, F. (2024). Surface treatments on concrete: an overview on organic, inorganic and nano-based coatings and an outlook about surface modification by rare-earth oxides, RSC Sustainability, 2, 8, pp. 2092-2124. DOI:10.1039/d3su00482a
  42. Tian, J., You, Y., Zhou, H., Li, H., Hu, L., Tian, Y., Xie, H., Xie, Y. & Hu, X. (2024). Biobased thermoset substrate for flexible and sustainable organic photovoltaics, Advanced Functional Materials, 34, 29, 2400547, DOI:10.1002/adfm.202400547
  43. Valuates Reports, (2024). (https://reports.valuates.com/market-reports/(23.11.2024))
  44. Vantage Market Research, (2023). (http:/www.vantagemarketresearch.com/industry-report/water-based-resins-market-2590?srsltid=AfmBOoosb6mH0F2ZvzqOdXmnC9-JMS1ZVNdIap7wa9--9fBMZ2Y3DMUa/ (21.11.2024)).
  45. Vogt, E. & Topolska, K. (2023). Hydrophobization of diatomaceous earth used to remove oil pollutants, Gospodarka Surowcami Mineralnymi – Mineral Resources Management 39, 2, pp. 209–222. DOI:10.24425/gsm.2023.145888
  46. Wang, B., Zhang, J., Yan, C., Li, J., Wang, X. & Wang, N. (2024). Paraffin-polyglycerol fatty ester composite as a coating material for delaying the hydration of carbide slag. Materials Chemistry and Physics, 317, 128986. DOI:10.1016/j.matchemphys.2024.128986
  47. Wang, D., Nie, L., Shao, X. & Yu, H. (2017). Exposure profile of volatile organic compounds receptor associated with paints consumption, Science of The Total Environment, 603–604, pp. 57-65. DOI:10.1016/j.scitotenv.2017.05.247
  48. Wang, H., Zhang, C., Zeng, W. & Zhou, Q. (2019). Making alkyd greener: Modified cardanol as bio-based reactive diluents for alkyd coating, Progress in Organic Coatings, 135, 1, pp. 281-290. DOI:10.1016/j.porgcoat.2019.06.018
  49. Wang, H., Zhang, R., Kong, H., Wang, K., Sun, L., Yu, X., Zhao, J., Xiong, J., Tran, P.T.M. & Balasubramanian, R. (2024). Long-term emission characteristics of VOCs from building materials, Journal of Hazardous Materials, 136337. DOI:org/10.1016/j.jhazmat.2024.136337
  50. Wang, Y., Zhang, D. & Lu, Z. (2015). Hydrophobic Mg-Al layered double hydroxide film on aluminum: fabrication and microbiologically influenced corrosion resistance properties, Colloids and Surfaces, A, 474, pp. 44-51. DOI:10.1016/j.colsurfa.2015.03.005
  51. World Bank, (2024). (https://wits.worldbank.org/trade/comtrade/en/country/all/year/2023/(23.11.2024))
  52. Wu, Y., Dong, L., Shu, X., Yang, Y., She, W. & Ran, Q. (2022). A review on recent advances in the fabrication and evaluation of superhydrophobic concreto, Composites Part B 237, 109867. DOI:10.1016/j.compositesb.2022.109867
  53. Xiao, H., Zhang, J., Hou, Y., Wang, Y., Qiu, Y., Chen, P. & Ye, D. (2024). Process-specified emission factors and characteristics of VOCs from the auto-repair painting industry, Journal of Hazardous Materials, 467, 133666. DOI:10.1016/j.jhazmat.2024.133666
  54. Xiao, Z., Yang, X., Gu, H., Hu, J., Zhang, T., Chen, J., Pan, X., Xiu, G., Zhang, W. & Lin, M. (2024). Characterization and sources of volatile organic compounds (VOCs) during 2022 summer ozone pollution control in Shanghai, China, Atmospheric Environment, 327, 120464. DOI:10.1016/j.atmosenv.2024.120464
  55. Xu, Q.B., Wang, X.Y., Wang, P., Cheng, L.Z., Wan, Y.P. & Wang, Z.Q. (2022). Sustainable and superhydrophobic coating from epoxidized soybean oil and stearic acid on cotton fabric etched by deep eutectic solvent. Materials Today Chemistry, 26, 101211. DOI:10.1016/j.mtchem.2022.101211
  56. Yang, L., Pang, Y., Tang, Q., Chen, H., Gao, D., Li, H. & Wang, H. (2024). Effects of the stearic acid modified mica powder on hydrophobic properties and salt freezing resistance of mortar: Experimental study and microscopic mechanism analysis, Construction and Building Materials, 416, 135188. DOI:10.1016/j.conbuildmat.2024.135188.
  57. Yao, S., Wang, Q., Zhang, J., Zhang, R., Gao, Y., Zhang H., Li, J. & Zhou, Z. (2021). Ambient volatile organic compounds in a heavy industrial city: Concentration, ozone formation potential, source,s, and health risk assessment, Atmospheric Pollution Research, 12, 5, 101053. DOI:10.1016/j.apr.2021.101053
  58. Yaras, A., Sutcu, M., Gencel, O. & Erdogmus, E. (2019). Use of carbonation sludge in clay based building materials processing for eco-friendly, lightweight and thermal insulation, Construction and Building Materials, 224, pp. 57-65. DOI:10.1016/j.conbuildmat.2019.07.080.
  59. Yuan, Y., Zhang, N., Tao, W., Cao, X. & He, Y. (2014). Fatty acids as phase change materials: a review, Renewable and Sustainable Energy Reviews, 29, pp. 482-498. DOI:10.1016/j.rser.2013.08.107.
  60. Zajezierska, A. (2016). Biodegradable Lubricating Greases, Instytut Nafty i Gazu – Państwowy Instytut Badawczy, 2016, Kraków. DOI:10.18668/PN2016.197
  61. Zhang, H.-L., Zuo, X.-B., Sun, Q.-Q., Liu, J.-Y., Zou, Y.-X., Zhang, T.-T. & Tian, J.-L. (2024). Preparation of h-BN@ZnO composite epoxy coating for improve durability and antibacterial properties of concrete, Construction and Building Materials, 438, 137082. DOI:10.1016/j.conbuildmat.2024.137082
  62. Zhang, L., Zhang, M., Gao, J., Gao, M., Wang, X., Li, B. & Liu, J. (2023). Study on the preparation and stearic acid modification of hydrophobic Ni625 laser cladding coating, Materials Letters, 346, 134526. DOI:10.1016/j.matlet.2023.134526
  63. Zweep, N. (2014). Natural coatings for natural substrates, European Coating Journal, 1, pp. 36–39
Go to article

Authors and Affiliations

Robert Hunek
1
ORCID: ORCID
Wojciech Franus
2
ORCID: ORCID

  1. Doctoral School in Lublin University of Technology, Lublin, Poland
  2. Lublin University of Technology, Faculty of Civil Engineering and Architecture, Department of Geotechnical Engineering,Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

Efficient synthesis of cyclic carbonates is crucial due to their significant value in the chemical industry. A two-step procedure typically produces cyclic carbonates: first epoxidizing cycloheptene and then carboxylating it to form the cyclic carbonate. Combining these processes into a direct oxidative carboxylation reaction would be advantageous from an economic perspective, as it would eliminate the need for additional work-up procedures. Moreover, the effective capture and storage of CO2, a significant contributor to global warming, would also be very advantageous. This study examines the process of oxidative carboxylation of cycloheptene. Supported ruthenium catalysts facilitate the epoxidation step, while a mixture of tetrabutylammonium bromide and zinc bromide enables the cycloaddition of carbon dioxide in the second step. The study evaluates the performance of the catalysts work in both phases and finds that the cyclic carbonate is produced with good selectivity using a one-pot, two-step method.
Go to article

Bibliography

  1. Alsaiari, A. R. (2024) Oxidation of 1-hexene using supported ruthenium catalysts under solvent-free conditions, S.Afr.j.chem. (Online) 78. DOI:10.17159/0379-4350/2024/v78a09
  2. Alsaiari, A. R. (2022). Supported ruthenium catalyst as an effective catalyst for selective oxidation of toluene, Journal of the Indian Chemical Society, 99, pp. 100593. DOI:10.1016/j.jics.2022.100593
  3. Alsaiari, R. A. (2022). Oxidation of cycloalkane using supported ruthenium catalysts under solvent-free conditions, Chemical Industry & Chemical Engineering Quarterly, 28(1), pp. 85–93. DOI:10.2298/CICEQ210304020A
  4. Aresta, M. & Dibenedetto, A. (2002). Carbon dioxide as building block for the synthesis of organic carbonates: behavior of homogeneous and heterogeneous catalysts in the oxidative carboxylation of olefins, J. Mol. Catal. A, 399, pp.182–183. DOI:10.1016/S1381-1169(01)00514-3
  5. Bai, D. & Jing, H. (2010) Aerobic oxidative carboxylation of olefins with metalloporphyrin catalysts. Green Chem 12:39. DOI:10.1039/b916042f
  6. Bodzek, M. (2022) Nanoparticles for water disinfection by photocatalysis: A review. Archives of Environmental Protection, 48, 1 pp. 3–17. DOI: 10.24425/aep.2022.140541
  7. Beier, M.J., Kleist, W., Wharmby, M.T., Kissner, R., Kimmerle, B., Wright, P.A., Grunwaldt, J-D. & Baiker, A. (2012) Aerobic epoxidation of olefins catalyzed by the cobalt-based metal-organic framework STA-12(Co). Chem Eur J, 18, 887. DOI:10.1002/chem.201101223
  8. Chen, F., Dong, T., Xu, T., Li, X. & Hu, C. (2011) Direct synthesis of cyclic carbonates from olefins and CO2 catalyzed by a MoO2 (acac)2-quaternary ammonium salt system. Green Chem, 13, 2518. DOI:10.1039/C1GC15549K
  9. Evangelisti, C., Guidotti, M., Tiozzo, C., Psaro, R., Maksimchuk, N., Ivanchikova I., Shmakov A.N. & Kholdeeva, O. (2017). Titanium-silica catalyst derived from defined metallic titanium cluster precursor: synthesis and catalytic properties in selective oxidations. Inorganic Chim Acta, 30, pp. 393-401. DOI:/10.1016/j.ica.2017.06.059 .
  10. Han, Q., Qi, B, Ren, W., He, C., Niu, J. & Duan, C. (2015). Polyoxometalate-based homochiral metal-organic frameworks for tandem asymmetric transformation of cyclic carbonates from olefins. Nature Communication, 6, pp. 10007. DOI:10.1038/ncomms10007
  11. Hou, S.L., Dong, J., Zhao, X.Y., Li, X.S., Ren, F.Y., Zhao, J. & Zhao, B. (2023). Thermocatalytic Conversion of CO2 to Valuable Products Activated by NobleMetal-Free Metal-Organic Frameworks, Angew. Chem. Int. Edi., 62, e202305213. DOI:10.1002/anie.202305213
  12. Kumar, S., Singhal, N., Singh, R.K., Gupta, P., Singh, R. & Jain S.L. (2015). Dual catalysis with magnetic chitosan: direct synthesis of cyclic carbonates from olefins with carbon dioxide using isobutyraldehyde as the sacrificial reductant. Dalton Trans, 44, 11860. DOI:10.1039/C5DT01012H
  13. Li, J.W., Zeng, H.L., Dong, X., Ding, Y.M., Hu, S.P., Zhang, R.H., Dai, Y.Z., Cui, P.X., Xiao, Z., Zhao, D.H., Zhou, L.J., Zheng, T.T., Xiao, J.P., Zeng, J. & Xia, C. (2023). Selective CO2 Electrolysis to CO Using Isolated Antimony Alloyed Copper. Nature Communication, 14, pp. 340-350. DOI:10.1038/s41467-023-35960-z .
  14. Maksimchuk, N.V., Ivanchikova, I.D., Ayupov, A.B. & Kholdeeva, O.A. (2016). One-step solvent-free synthesis of cyclic carbonates by oxidative carboxylation of styrenes over a recyclable Ti-containing catalyst, Appl Catal B, 181, 363. DOI:10.1016/j.apcatb.2015.08.010
  15. Napadensky, E. & Sasson, Y. (1991) Selective decomposition of tetralin hydroperoxide catalysed by quaternary ammonium salts. J Chem Soc Chem Commun 2, 65. DOI:10.1039/C39910000065
  16. Pal, T.K., De, D. & Bharadwaj, B.K. (2020). Metal-Organic Frameworks for the Chemical Fixation of CO2 into Cyclic Carbonates, Coordin. Chem. Rev., 408, 213173. DOI:10.1016/j.ccr.2019.213173
  17. Ramidi, P., Felton, C.M., Subedi, B.P., Zhou, H., Tian, Z.R., Gartia, Y., Pierce, B.S. & Ghosh, A. (2015). Synthesis and characterization of manganese(III) and high-valent manganese-oxo complexes and their roles in conversion of alkenes to cyclic carbonates. Journal of CO2 Utilization, 9, pp. 48-57. DOI:10.1016/j.jcou.2014.12.004
  18. Shao, Y., Kosari, M., Xi, S.B. & Zeng, H.C. (2022). Single Solid Precursor-Derived ThreeDimensional Nanowire Networks of CuZn-Silicate for CO2 Hydrogenation to Methanol. ACS Catalysis, 12, pp. 5750-5765. DOI:10.1021/acscatal.2c00726
  19. Sun, J., Fujita, S-i., Bhanage, B.M. & Arai, M. (2004). Direct oxidative carboxylation of styrene to styrene carbonate in the presence of ionic liquids. Catalysis Communications, 5, pp. 83-87. DOI:10.1016/j.catcom.2003.11.016
  20. Velty, A. & Corma, A. (2023). Advanced Zeolite and Ordered Mesoporous Silica-Based Catalysts for the Conversion of CO2 to Chemicals and Fuels, Chem. Soc. Rev., 52, pp. 1773-1946. DOI:10.1039/D2CS00456A
  21. Verdol, J.A. (1962) U.S. Patent, 3025305.
Go to article

Authors and Affiliations

Raiedhah Alsaiari
1

  1. Chemistry department, college of science and art in sharurah, Najran University, Saudi Arabia
Download PDF Download RIS Download Bibtex

Abstract

The article discusses the influence of temperature on the quality of ash produced from the combustion of biomass from the agri-food industry, as well as its content of potentially toxic elements (PTE) such e as Pb, Cd, As, Cr, Cu, Ni, Se, and Zn. Geochemical indicators, including E (Emission factor of metals into the atmosphere), Cf (Contamination factor for individual toxicity metals), PLI (Pollution load index), and DC (Degree contamination), were calculated in relation to the potentially adverse environmental impact of biomass fuels.
Go to article

Bibliography

  1. Böhler, L., Görtler G., Krail J. & Kozek, M. (2019). Carbon monoxide emission model for small-scale biomass combustion wooden pellets. Applied Energy 124, 113668. DOI:10.1016/j.apenergy.2019.113668.
  2. Cappelletti, M., Funari, V., Gasparotto, G. & Dinelli, E. (2021). Selenium in the environment. [In:] Environmental Technologies to Treat Selenium Pollution (1-60). DOI:10.2166/9781789061055_0003.
  3. Chiyanzu, I. (2014). Liquefaction of sunflower husks for biochar production. Mini-dissertation submitted in partial fulfilment of the requirements for the degree of Masters of Science in Engineering Science in Chemical Engineering in the School of Chemical and Minerals Engineering of the North-West University (Potchefstroom Campus)
  4. Cruz N. , Rodrigues M.S.,Carvalho L., Duarte A., Pereira., Römkens, P.F.A.M. & Tarelho . A. (2017). Ashes from fluidized bed combustion of residual forest biomass: recycling to soil as a viable management option. Environmental Science and Pollution Research 24, pp. 14770–14781. DOI: 10.1007/s11356-017-9013-6
  5. Dołżyńska, M., Obidziński, S., Kowczyk-Sadowy, M. & Krasowska, M. (2019). Densification and combustion of cherry stones. Energies12, 3042. DOI:10.3390/en12163042
  6. European Environment Agency (2019). EMEP/EEA air pollutant emission inventory guidebook 2019. Luxembourg. Publications Office of the European Union, 2019.
  7. Gani, E.A., Mahidin, M.R., Sudhakar, K., Rosdi, S.M. & Husni, H. (2022). Biomass and wind energy as sources of renewable energy for a more sustainable environment in Indonesia: A review. Archives of Environmental Protection, 48, 3, pp. 57-39. DOI:10.24425/aep.2022.142690.
  8. Gazalli, H., Malik, A.H., Jalal, H., Afshan, S. & Mir, A. (2013). Proximate Composition of Carrot Powder and Apple Pomace Powder. Agricultural and Food Sciences, 3, 1, pp. 25-28. ISSN: 2165-896X
  9. Gope, M., Masto, R.E., Georg, J., Hoque, R.R. & Balachandran, S. (2017). Bioavailability and health risk of some potentially toxic elements (Cd, Cu, Pb and Zn) in street dust of Asansol, India. Ecotoxicol. Environ. Saf. 138, pp. 231–241. DOI:10.1016/j.ecoenv.2017.01.008.
  10. GUS – Główny Urząd Statystyczny (2023). Report: Final estimate of the main agricultural and horticultural crops in 2023. Warszawa (in Polish).
  11. GUS – Główny Urząd Statystyczny (2019). Energy consumption in households in 2018. Energy consumption in households in 2018. Warszawa. (in Polish)
  12. Gworek, B., Jeske, K. & Kwapisz, J. (2003). Evaluation of the effectiveness of phytoremediation of soils contaminated with heavy metals using the sequential extraction method. Archives of Environmental Protection, 29, 4, pp. 71-79.
  13. Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 14, pp. 975–1001. DOI:10.1016/0043-1354(80)90143-8.
  14. Hayford, I.S., Ofori, E.K., Gyamfi, B.A. & Gyimach, J. (2023). Clean cooking technologies, information, and communication technology and the environment. Environmental Science and Pollution Research 30, pp. 105646–105662. DOI:10.1007/s11356-023-29577-4.
  15. Isemin, R.L., Tabet, F., Nebyvaev, A., Kokh-Tatarenko, V., Kuzmin, S., Milovanov, O., Klimov, D., Mikhalev, A., Dobkin, S. & Zhulaev, Y. (2022). Prediction of the behaviour of sunflower husk ash after its processing by various torrefaction methods. Energies 15, 7483. DOI:10.3390/en15207483.
  16. Islamova, S., Karaeva, J., Timofeeva, S. & Kadyirov, A. (2021). An experimental study of sunflower husk pellets combustion. BIO Web of Conferences 37,5. Article number 00070. DOI:10.1051/bioconf/20213700070.
  17. Jelonek, Z., Drobniak, A., Mastalerz, M. & Jelonek, I. (2021). Emissions during grilling with wood pellets and chips. Atmospheric Environment: X 12. DOI:10.1016/j.aeaoa.2021.100140.
  18. Kałużyński, M., Jabłoński, S., Kaczmarczyk, J., Świątek, Ł., Pstrowska, K. & Łukaszewicz, M. (2018). Technological aspects of sunflower biomass and brown coal co-firing. Journal of the Energy Institute, 91, 5, pp. 668 – 675. DOI:10.1016/j.joei.2017.06.003.
  19. Kazimierski, P., Januszewicz, K., Godlewski, W., Fijuk, A., Suchocki, T., Chaja, P., Barczak, B. & Kardaś, D. (2022). The course and the effects of agricultural biomass pyrolysis in the production of high-calorific biochar. Minerals 15, 1038. DOI:10.3390/ma15031038.
  20. Kebonye, N.M., Eze, P.N. & Akinyemi, F.O. (2017). Long term treated wastewater impact sand source identification of heavy metals in semi-arid soils of Central Botswana. Geoderm. Reg. 10, pp. 200–214. DOI:10.1016/j.geodrs.2017.08.001.
  21. Klyta, J., Janoszka, K., Czaplicka, M., Rachwał, T. & Jaworek, K. (2023). Co-combustion of wood pellet and waste in residential heating boilers – comparison of carbonaceous compound emission. Archives of Environmental Protection, 49, 3, pp. 100-106. DOI:10.24425/aep.2023.147332.
  22. National Energy and Climate Plan 2021-2030. https://www.gov.pl/web/aktywa-panstwowe/krajowy-plan-na-rzecz-energii-iklimatu-na-lata-2021-2030 (online access 23.05.2024 r.)
  23. KOBIZE - The National Centre for Emissions Management) 2023. Emission factors of pollutants from fuel combustion for sources with a nominal thermal power of up to 5 MW, used for automatic calculation of emissions in reports to the National Database for 2022 and 2023, National Fund for Environmental Protection and Water Management, Warsaw (in Polish)
  24. Krumal, K., Mikuska, P., Horak, J., Hopan, F. & Krpec, K. (2019). Comparison of emissions of gaseous and particulate polutants from the combustion of biomass and coal in modern and old-type boilers used for residental heating in the Czech Republic, Central Europe. Chemosphere 229, pp. 51-59. DOI:10.1016/j.chemosphere.2019.04.137.
  25. Lanzerstorfer, Ch. (2015). Chemical composition and physical properties of filter fly ashes from eight grate-fired biomass combustion plants. Journal of Environmental Sciences 30, pp. 191–197. DOI: 10.1016/j.jes.2014.08.021
  26. Leong, Y.K., Chang, J. (2022). Valorization of fruit wastes for circular bioeconomy: Current advances, challenges, and opportunities. Bioresource Technology 359, 127459. DOI:10.1016/j.biortech.2022.127459
  27. Masiarz, E., Kowalska, H. & Bednarska, M. (2019). The use of plant pomace as a source of dietary fibre and other bio-ingredients in creating health-promoting, sensory and technological properties of bread.Postępy Techniki Przetwórstwa Spożywczego 1: pp. 103-107 (in Polish)
  28. Maxwell, D., Gudka, B.A., Jones, J.M. & Williams, A. (2020). Emissions from the combustion of torrefied and raw biomass fuels in a domestic heating stove. Fuel Processing Technology, 199, 106266. DOI:10.1016/j.fuproc.2019.106266.
  29. Mehmood, K., Saifullah Y.B., Bibi, S., Dahlawi, S., Yassen, M., Abrar, M.M., Srivatstava, P., Fahad, S. & Faraj, T.K.H. (2022). Contributions of open biomass burning and crop straw burning to air quality: Current research paradigm and future outlooks. Frontiers and Environmental Science 10, pp. 1-15. DOI:10.3389/fenvs.2022.852492.
  30. Miladinović, M.R., Zdujić, M.V., Veljović, D.N, Kristić, J.B., Banković-Ilić, I.B., Veljković,V.B. & Stamenković, O.S. (2020). Valorization of walnut shell ash as a catalyst for biodiesel production. Renewable Energy, 147, 1, pp. 1033-1043. DOI:/10.1016/j.renene.2019.09.056.
  31. Ministry of Energy, (2019). Executive Sumarry of Poland’s National Energy and Climate Plan for the years 2021-2030 (NECP PL), Poland (online access 23.05.2023).
  32. Molo, B. (2016). European Union policy and the development of renewable energy sources in Germany.Rocznik Integracji Europejskiej Nr 10, pp. 121-142. (in Polish)
  33. Obernberger, I., Biederma, F., Widmann, W. & Riedl, R. (1997). Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions. Biomass Bioenergy 12, pp. 211-224. DOI:10.1016/S0961-9534(96)00051-7.
  34. Odzijewicz, J.I., Wołejko, E., Wydro, U., Wasil, U. & Jabłońska-Trypuć, A. (2022). Utilization of ashes from biomass combustion. Energies 15, 9653. DOI:10.3390/en15249653.
  35. Pastircakova, K. (2004). Determination of trace metal concentrations in ashes from various biomass materials. Energy Education Science and Technology 13(2), pp. 97-104.
  36. Persson, K., Broström, M., Carlsson, J., Nordin, A. & Backman, R. (2007). High temperature corrosion in a 65 MW waste to energy plant. Fuel Processing Technology, 88, pp. 1178-1182.
  37. Piechota, G., Unpaprom, Y., Dong, Ch. & Kumar, G. (2023). Recent advances in biowaste management towards sustainable environment. Bioresource Technology 68, 128326. DOI:10.1016/j.biortech.2022.128326.
  38. PN-EN ISO 16948:2015-07 (2015). Solid biofuels - Determination of total content of carbon, hydrogen and nitrogen. ICS 75.160.40.
  39. PN-EN ISO 16994:2016-10 (201)6. Biopaliwa stałe - Oznaczanie całkowitej zawartości siarki i chloru. Solid biofuels – Determination of total content of sulfur and chlorine. ICS 75.160.40. (in Polish)
  40. PN-EN ISO 18134-2:2017-03 (2017). Solid biofuels - Determination of moisture content - Drying method - Part 2: Total moisture - Simplified method. ICS 75.160.40. (in Polish)
  41. PN-EN ISO 18125:2017-07 (2017). Solid biofuels - Determination of calorific value. ICS 75.160.40. (in Polish)
  42. PN-EN ISO 18122:2023-05 (2023). Solid biofuels – Determination of ash content. ICS 27.190, 75.160.40. (in Polish)
  43. Postrzednik, S. (2014). Calorific value as a parameter of biomass energy usefulness. Energetyka 10, pp. 573-579. (in Polish)
  44. Queirós, C.S.G.P., Cardoso, S., Lourenço, A., Ferreira, J., Miranda, I., Lourenço, M.J.V. & Pereira, H. (2020). Characterization of walnut, almond, and pine nut shells regarding chemical composition and extract composition. Biomass Conversion and Biorefinery, 10, pp. 175-188. DOI:10.1007/s13399-019-00424-2
  45. Raczkowska, E., Wojdyło, A. & Nowicka, P. (2024). Effect of the Addition of Apple Pomace and Erythritol on the Antioxidant Capacity and Antidiabetic Properties of Shortbread Cookies. Polish Journal of Food and Nutrition Sciences, 74, 2, pp. 147–161. DOI:10.31883/pjfns/187941
  46. Romero, E., Quirantes, M. & Nogales, R. (2017). Characterization of biomass ashes produced at different temperatures from olive-oil industry and greenhouse vegetable wastes. Fuel, 208, pp. 1–9. DOI:10.1016/j.fuel.2017.06.133.
  47. Rzeźnik, W., Mielcarek, P. & Rzeźnik, I. (2016). Assessment of energetic potential of cherry stones in Poland. Journal of Research and Applications in Agricultural Engineering, 61, 1, pp. 84-87
  48. Techera, R.J., Méndez, M., Iturmendi, F. & Piqueras, C.M. (2024). A Clever Application of a Recycled Waste Solution for Levulinic Acid and Adsorbent Production from Apple Pomace Using a Hydrothermal Process. Waste and Biomass Valorization, 15, 7, pp.1-15. DOI: 10.1007/s12649-024-02459-7
  49. Tomlinson, D.L., Wilson, J.G., Harris, C.R. & Jeffrey, D.W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresunters, 33, pp. 566-575. DOI:10.1007/BF02414780.
  50. Turekian, K.K. & Wedepohl, K.H. (1961). Distribution of the Elements in Some Major Units of the Earth’s Crust. Geological Society of America Bulletin 72, pp. 175-192. DOI:10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2.
  51. Uliasz-Bocheńczyk, A., Pawluk, A. & Pyzalski, M. (2016). Characteristics of ash from biomass combustion in fluidized bed boilers. Gospodarka Surowcami Mineralnymi – Mineral Resources Management t. 32, z. 3, 149–162. doi 10.1515/gospo-2016-0029 (in Polish)
  52. Uliasz-Bocheńczyk, U., Deja, J. & Mokrzycki, E. (2021). The use of alternative fuels in the cement industry as part of circular economy. Archives of Environmental Protection, 47, 4, pp. 109-117. DOI 10.24425/aep.2021.139507.
  53. Vamvuka, D., Loukeris, D., Stamou, E., Vlasiadis, A., Sfakiotakis, S. & Bandelis, G. (2020). Development and performance of a multi-fuel residential boiler burning agricultural residues. Front. Energy Res. 8, 136. DOI:10.3389/fenrg.2020.00136.
  54. Vassilev, S.V., Baxter, D., Andersen, L.K. & Vassileva, C.G. (2013). An overview of the composition and application of biomass ash. Part 1. Phase – Mineral and chemical composition and classification. Fuel, 105, pp. 40–76. DOI:10.1016/j.fuel.2012.09.041.
  55. Zając, G., Szyszlak-Bargłowicz, J., Gołębiowski, W. & Szczepanik, M. (2018). Chemical characteristics of biomass ashes. Energies, 11, 2885. DOI:10.3390/en11112885.
  56. Zając, G., Szyszlak-Bargłowicz, J. & Szczepanik, M. (2019). Influence of biomass incineration temperature on the content of selected heavy metals in the ash used for fertilizing purposes. Appl. Sci., 9, 1790. DOI:10.3390/app9091790.
  57. Zajemska, M. & Musiał, D. (2013). Energy use of biomass from agricultural production in the co-combustion process. Probl. Inżynierii Rol.- Problems of Agricultural Engineering, 4, 82, pp. 107–118. (in Polish)
  58. Zajemska, M., Urbańczyk, P., Poskart, A., Urbaniak, D., Radomiak, H., Musiał, D., Golański, G. & Wyleciał, T. (2017). The impact of co-firing sunflower husk pellets with coal in a boiler on the chemical composition of flue gas. E3S Web of Conferences 14: 02021. DOI:10.1051/ 71402021.
Go to article

Authors and Affiliations

Joanna Adamczyk
1
ORCID: ORCID
Danuta Smołka-Danielowska
1
ORCID: ORCID

  1. University of Silesia, Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

As lithium-iron batteries play a crucial role in the growth of electric vehicles, their disposal is projected to increase, posing significant environmental and health risks. Recovering the metals that compose these batteries can help mitigate the negative environmental impacts of mining and address raw material shortages. This research employs hydrometallurgy to recover lithium, aluminum, iron, and copper from the electrode mixture of spent lithiumiron batteries. The average metal content found for lithium, aluminum, iron, and copper was approximately 5%, 2%, 18%, and 16%, respectively. Under optimal leaching conditions, the recovery rates for lithium and aluminum reached 100% and 95%, respectively. These metals can be further separated by pH adjustment to produce lithium and aluminum products. The remaining iron and copper in the leaching residue can also be recovered through additional leaching, replacement, and pH adjustment processes to obtain products containing iron and copper.
Go to article

Bibliography

  1. Baum, Z. J., Bird, R. E., Yu, X. & Ma, J. (2022). Lithium-ion battery recycling─ overview of techniques and trends. DOI:10.1021/acsenergylett.1c02602
  2. Beaudet, A., Larouche, F., Amouzegar, K., Bouchard, P., & Zaghib, K. (2020). Key challenges and opportunities for recycling electric vehicle battery materials. Sustainability, 12(14), 5837. DOI:10.3390/su12145837
  3. Bodzek, M., & Pohl, A. (2022). Removal of microplastics in unit processes used in water and wastewater treatment: a review. Archives of Environmental Protection, 48(4), pp. 102-128. DOI:10.24425/aep.2022.143713
  4. Boonphan, S., Prachakiew, S., Klinbumrung, K., Thongrote, C. & Klinbumrung, A. (2024). Enhancing photocatalytic performance of kaolin clay: an overview of treatment strategies and applications. Archives of Environmental Protection, 50(3), pp. 54-64. DOI:10.24425/aep.2024.151686
  5. Chen, M., Ma, X., Chen, B., Arsenault, R., Karlson, P., Simon, N. & Wang, Y. (2019). Recycling end-of-life electric vehicle lithium-ion batteries. Joule, 3(11), pp. 2622-2646. DOI:10.1016/j.joule.2019.09.014
  6. Du, K., Ang, E. H., Wu, X., & Liu, Y. (2022). Progresses in sustainable recycling technology of spent lithium‐ion batteries. Energy & Environmental Materials, 5(4), pp. 1012-1036. DOI:10.1002/eem2.12271.
  7. Du, M., Du, K. D., Guo, J. Z., Liu, Y., Aravindan, V., Yang, J-L., Zhang, K-Y.,Gu, Z-Y., Wang, X-T. & Wu, X. L. (2023). Direct reuse of oxide scrap from retired lithium-ion batteries: advanced cathode materials for sodium-ion batteries. Rare Metals, 42(5), pp. 1603-1613. DOI:10.1007/s12598-022-02230-8
  8. Du, M., Lü, H., Du, K., Zheng, S., Wang, X., Deng, X., Zeng, R. & Wu, X. (2024). Upcycling the spent graphite/LiCoO₂ batteries for high-voltage graphite/LiCoPO₄-co-workable dual-ion batteries. International Journal of Minerals, Metallurgy and Materials, 31(7), pp. 1745-1751. DOI:10.1007/s12613-023-2807-2
  9. Gawroński, S., Łutczyk, G., Szulc, W. & Rutkowska, B. (2022). Urban mining: Phytoextraction of noble and rare earth elements from urban soils. Archives of Environmental Protection, 48(2), pp. 24-33. DOI:10.24425/aep.2022.140763
  10. International Energy Agency, & Birol, F. (2013). World energy outlook 2013. Paris: International Energy Agency.
  11. Kim, B., Kim, D-W. & Choi, H. L. (2023). A study on recovery of cerium by leaching solvents from NiMH waste battery. Archives of Metallurgy Materials, 68(1), pp. 103-106. DOI:10.24425/amm.2023.141480
  12. Li, M., Lu, J., Chen, Z. & Amine, K. (2018). 30 years of lithium‐ion batteries. Advanced Materials, 30(33), 1800561. DOI:10.1002/adma.201800561
  13. Ministry of the Environment. (2003). Method for determining ash and combustible matter in waste (NIEA R205.01C). Retrieved August 23, 2024, from https://www.moenv.gov.tw/nera/9DA55CE386B2F925/fb70c258-7fd3-4fff-9518-a4b2a6f7faa4
  14. Ministry of the Environment. (2009). Method for determining moisture content of industrial waste – Indirect method (NIEA R203.02C). Retrieved August 23, 2024, from https://www.moenv.gov.tw/nera/9DA55CE386B2F925/47cdc418-c283-4e18-b622-4d6874219de5
  15. Ministry of the Environment. (2018). Method for detecting heavy metals in soil – Aqua regia digestion method (NIEA S321.65B). Retrieved August 23, 2024, from https://www.moenv.gov.tw/nera/D650FF755904A079/e4422625-6dcc-4b0c-b5e2-2ba0623acfad
  16. Or, T., Gourley, S. W., Kaliyappan, K., Yu, A. & Chen, Z. (2020). Recycling of mixed cathode lithium‐ion batteries for electric vehicles: Current status and future outlook. Carbon energy, 2(1), pp. 6-43. DOI:10.1002/cey2.29
  17. Raccichini, R., Amores, M. & Hinds, G. (2019). Critical review of the use of reference electrodes in Li-ion batteries: a diagnostic perspective. Batteries, 5(1), 12. DOI:10.3390/batteries5010012
  18. Wang, H. & Friedrich, B. (2015). Development of a highly efficient hydrometallurgical recycling process for automotive Li–Ion batteries. Journal of Sustainable Metallurgy, 1, pp. 168-178. DOI:10.1007/s40831-015-0016-6
  19. Wang, J-P. (2021). A novel process for recovery of key elements from commercial cathode material of end-of-life lithium-ion battery. Archives of Metallurgy Materials, 66(3), pp. 745-750. DOI:10.24425/amm.2021.136373
  20. Wu, X., Ma, J., Wang, J., Zhang, X., Zhou, G. & Liang, Z. (2022). Progress, Key Issues, and Future Prospects for Li‐Ion Battery Recycling. Global Challenges, 6(12), 2200067. DOI:10.1002/gch2.202200067
  21. Zhang, C. & Deng, Y. (2024). Reductive Leaching Process and Mechanisms of Cadmium from Cadmium-Bearing Zinc Ferrite using Sulfur Dioxide. Archives of Metallurgy Materials, 69(3), pp. 965-971. DOI:10.24425/amm.2024.150916
  22. Zheng, S. H., Wang, X. T., Gu, Z. Y., Lü, H. Y., Zhang, X. Y., Cao, J. M., Jin-Zhi Guo, J.Z., Deng, X.T., Wu, Z.T., Zeng, R.H., & Wu, X. L. (2023). Direct and rapid regeneration of spent LiFePO₄ cathodes via a high-temperature shock strategy. Journal of Power Sources, 587, 233697. DOI:10.1016/j.jpowsour.2023.233697
  23. Zhang, Y., Lu, X., Deng, S., Zhu, T. & Yu, B. (2024). Bibliometric and visual analysis of heavy metal health risk assessment: development, hotspots and trends. Archives of Environmental Protection, 50(1), pp. 56-71. DOI:10.24425/aep.2024.149432
Go to article

Authors and Affiliations

Yu-Rui Huang
1
ORCID: ORCID
Ching-Hwa Lee
1
ORCID: ORCID
Srinivasa R Popuri
2
ORCID: ORCID
Lien-Chieh Lee
3

  1. Department of Environmental Engineering, Da-Yeh University, Changhua 51591, Taiwan
  2. Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, Barbados-11000
  3. International College, Krirk University, Bangkok 10220, Thailand
Download PDF Download RIS Download Bibtex

Abstract

Military activities affect soil conditions through contamination with metal-containing debris, such asprojectile and rocket fragments, as well as bullet remnants, leading to the release of heavy metals and subsequent environmental contamination. The goal of our study was to examine the concentration of heavy metals in areas affected by shelling and to assess their impact on the population of soil microorganisms, including those exhibiting heavy-metal resistance. Metal concentrations were analyzed via an XRF analyzer. The study involved examining both soil samples and missile fragments. Microorganisms were isolated using Koch’s and Hungate’s roll tube methods. The concentration of iron in soil was the highest, reaching 8,1991.3±132.8 ppm. The concentration of other metals (Ni, Cu, Cr) varied between 407.5±8.0 ppm and 4.6±2.1 ppm. Cobalt compounds were not detected at the projectiles impact sites. The number of aerobic chemoorganotrophic bacteria in all soil samples was in the range of (1.8±0.2) × 105 – (3.7±0.2) × 105 CFU/g, while chromium-resistant bacteria were, on average, an order of magnitude fewer. The number of anaerobic microorganisms ranged from (1.4±0.2) × 105 to (2.6±0.2) × 105 CFU/g. A follow-up study conducted after three months indicated a tendency for an increase in both aerobic and anaerobic bacteria, including metal-resistant strains. Overall, the total number of microorganisms in all soil samples showed an upward trend. These results show that soil microbial communities may play a role in the detoxification of heavy metals in contaminated soils.
Go to article

Bibliography

  1. Agboola, O., Babatunde, D. E., Isaac Fayomi, O. S., Sadiku, E. R., Popoola, P., Moropeng, L., Yahaya, A. & Mamudu, O. A. (2020). A review on the impact of mining operation: Monitoring, assessment and management. Results in Engineering, 8, 100181. DOI:10.1016/j.rineng.2020.100181
  2. Ahmad, W., Alharthy, R. D., Zubair, M., Ahmed, M., Hameed, A. & Rafique, S. (2021). Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Scientific Reports, 11(1), 17006. DOI:10.1038/s41598-021-94616-4
  3. Albrektienė-Plačakė, R. & Paliulis, D. (2024). Investigation on applying sapropel for removal of heavy metals (cadmium, chromium, copper, and zinc) from aqueous solutions. Archives of Environmental Protection, 50, 2, pp. 55-64. DOI:10.24425/aep.2024.150552
  4. Al-Qadri, F. A. & Alsaiar, R. (2023). Silica ash from waste palm fronds used as an eco-friendly, sustainable adsorbent for the removal of cupper (II). Archives of Environmental Protection, 49(2), pp. 30-39. DOI:10.24425/aep.2023.145894
  5. Bonchkovskyi, O. S., Ostapenko, P. O., Shvaiko, V. M. & Bonchkovskyi, A. S. (2023). Remote sensing as a key tool for assessing war-induced damage to soil cover in Ukraine (the case study of Kyinska territorial hromada). Journal of Geology, Geography and Geoecology, 32(3), 474–487. DOI:10.15421/11234
  6. Broomandi, P., Guney, M., Kim, J. R. & Karaca, F. (2020). Soil Contamination in Areas Impacted by Military Activities: A Critical Review. Sustainability, 12(21), 9002. DOI:10.3390/su12219002
  7. Bukhari, D. A. & Rehman, A. (2023). Metal-resistant bacteria as a green bioresource for arsenic remediation in wastewaters. Current Opinion in Green and Sustainable Chemistry, 40, 100785. DOI:10.1016/j.cogsc.2023.100785
  8. Butu, A., Grozea, I., Sarac, I. & Butnariu, M. (2020). Global Scenario of Remediation Techniques to Combat Pesticide Pollution. [In] R. A. Bhat, K. R. Hakeem, & M. A. Dervash (Eds.), Bioremediation and Biotechnology, Vol 2 (pp. 47–72). Springer International Publishing. DOI:10.1007/978-3-030-40333-1_4
  9. Guo, H., Nasir, M., Lv, J., Dai, Y. & Gao, J. (2017). Understanding the variation of microbial community in heavy metals contaminated soil using high throughput sequencing. Ecotoxicology and Environmental Safety, 144, pp. 300–306. DOI:10.1016/j.ecoenv.2017.06.048
  10. Havryliuk, O., Bida, I., Hovorukha, V., Bielaieva, Y., Liubinska, A., Gladka, G., Kalinichenko, A., Zaimenko, N., Tashyrev, O. & Dziuba, O. (2024). Application of Granular Microbial Preparation and Silicon Dioxide Analcime for Bioremediation of Ecocide Areas. Sustainability, 16(3), 1097. DOI:10.3390/su16031097
  11. Havryliuk, О. А., Bida, І. О., Hovorukha, V. М., Danko, Y. P., Gladka, G. V., Sachko, А. V., Yastremska, L. S., Tashyrev, О. B. & Muchnyk, P. V. (2020). Metal-resistant microorganisms of tap water: theoretical justification and biotechnological application. Problems of Environmental Biotechnology. 1-2. DOI:10.18372/2306-6407.1-2.16059
  12. Hemmat-Jou, M. H., Safari-Sinegani, A. A., Mirzaie-Asl, A. & Tahmourespour, A. (2018). Analysis of microbial communities in heavy metals-contaminated soils using the metagenomic approach. Ecotoxicology, 27(9), pp. 1281–1291. DOI:10.1007/s10646-018-1981-x
  13. Huminilovych, R., Stadnik, V., Sozanskyi, M., Pidlisnyuk, V. & Ivaniuk, A. (2023). Monitoring of Soils Contaminated by Military Activities During Phytoremediation Using Miscanthus X Giganteus. International Conference of Young Professionals «GeoTerrace-2023», 1–5. DOI:10.3997/2214-4609.2023510113
  14. Hungate, R. E. (1969). Chapter IV A Roll Tube Method for Cultivation of Strict Anaerobes. [In] Methods in Microbiology, 3, pp. 117–132. Elsevier. DOI:10.1016/S0580-9517(08)70503-8
  15. Khan, S., Naushad, Mu., Lima, E. C., Zhang, S., Shaheen, S. M. & Rinklebe, J. (2021). Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies – A review. Journal of Hazardous Materials, 417, 126039. DOI:10.1016/j.jhazmat.2021.126039
  16. Kholoshyn, I. V., Syvyj, M. J., Mantulenko, S. V., Shevchenko, O. L., Sherick, D. & Mantulenko, K. M. (2023). Assessment of military destruction in Ukraine and its consequences using remote sensing. IOP Conference Series: Earth and Environmental Science, 1254, 1, 012132. DOI:10.1088/1755-1315/1254/1/012132
  17. Lindh, P. & Lemenkova, P. (2022). Soil contamination from heavy metals and persistent organic pollutants (PAH, PCB and HCB) in the coastal area of Västernorrland, Sweden. Gospodarka Surowcami Mineralnymi–Mineral Resources Management, 38, 2, pp. 147-168. DOI:10.24425/gsm.2022.141662
  18. Liu, L., Xia, M., Hao, J., Xu, H. & Song, W. (2021). Biosorption of Pb (II) by the resistant Enterobacter sp.: Investigated by kinetics, equilibriumand thermodynamics. Archives of Environmental Protection, 47, 3, pp.28-36. DOI:10.24425/aep.2021.138461
  19. Margaryan, A. (2021). Diversity and Application of Heavy-Metal Resistant Microbes. [In] Singh, R.P., Manchanda, G., Bhattacharjee, K. & Panosyan, H. (Eds.), Microbes in Microbial Communities, pp. 153–174) Springer Singapore. DOI:10.1007/978-981-16-5617-0_7
  20. Melnyk, O., Shevchenko, O., Kuzmin, O. & Niemirich, O. (2023). Risks of toxic environmental pollution from military operations. Food security: modern challenges and mechanisms to ensure, 25. DOI:10.5281/zenodo.7859027
  21. Mitryasova, O., Smyrnov, V., Koszelnik, P., Salamon, I., Smyrnova, S. & Mats, A. (2024). Geochemical Anomalies of the Heavy Metals in the Industrial and Urban Agglomeration Soils. Ecological Engineering & Environmental Technology, 25, 3, pp. 165–177. DOI:10.12912/27197050/177838
  22. Parakhnenko, V. Н., Zadorozhna, О. М., Liakhovska, N. O. & Blahopoluchna, A. H. (2023). Environmental assessment of chemical pollution of soils as a result of the war. Taurian Scientific Herald, 131, pp. 367–373. DOI:10.32782/2226-0099.2023.131.46
  23. Petrushka, K., Malovanyy, M. S., Skrzypczak, D., Chojnacka, K. & Warchoł, J. (2024a). Risks of Soil Pollution with Toxic Elements During Military Actions in Lviv. Journal of Ecological Engineering, 25, 1, pp. 195–208. DOI:10.12911/22998993/175136
  24. Saleh, T. A., Mustaqeem, M. & Khaled, M. (2022). Water treatment technologies in removing heavy metal ions from wastewater: A review. Environmental Nanotechnology, Monitoring & Management, 17, 100617. DOI:10.1016/j.enmm.2021.100617
  25. Saran, A., Imperato, V., Fernandez, L., Gkorezis, P., d’Haen, J., Merini, L. J., Vangronsveld, J. & Thijs, S. (2020). Phytostabilization of Polluted Military Soil Supported by Bioaugmentation with PGP-Trace Element Tolerant Bacteria Isolated from Helianthus petiolaris. Agronomy, 10, 2, 204. DOI:10.3390/agronomy10020204
  26. Shahini, E., Shebanina, O., Kormyshkin, I., Drobitko, A. & Chernyavskaya, N. (2024). Environmental consequences for the world of Russia’s war against Ukraine. International Journal of Environmental Studies, 81, 1, pp. 463–474. DOI:10.1080/00207233.2024.2302745
  27. Shebanina, O., Kormyshkin, I., Bondar, A., Bulba, I. & Ualkhanov, B. (2024). Ukrainian soil pollution before and after the Russian invasion. International Journal of Environmental Studies, 81, 1, pp. 208–215. DOI:10.1080/00207233.2023.2245288
  28. Shekhunova, S. B., Stadnichenko, S. M. & Siumar, N. P. (2022). The Issue of Assessing Environmental Risks and Economic Losses of Ukraine’s Subsoil as a Result of Russian Military Aggression Against Ukraine. 16th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment, 1–5. DOI:10.3997/2214-4609.2022580249
  29. Tauqeer, H. M., Karczewska, A., Lewińska, K., Fatima, M., Khan, S. A., Farhad, M., Turan, V., Ramzani, P. M. A. & Iqbal, M. (2021). Environmental concerns associated with explosives (HMX, TNT, and RDX), heavy metals and metalloids from shooting range soils: Prevailing issues, leading management practices, and future perspectives. [In] Handbook of Bioremediation (pp. 569–590). Elsevier. DOI:10.1016/B978-0-12-819382-2.00036-3
  30. Tytykalo, R., Pavlovska, N. & Andriiets, M. (2022). Economic and administrative methods of restoration by local governments of the environment of Ukraine destroyed as a result of military operations. Baltic Journal of Economic Studies, 8, 5, pp. 184–190. DOI:10.30525/2256-0742/2022-8-5-184-190
Go to article

Authors and Affiliations

Ewa Moliszewska
1
Iryna Bida
2
Kacper Matik
1
Aleksandra Ślusarczyk
1
Dominik Pawliczek
1
Olesia Havryliuk
3 4
Vira Hovorukha
1 3
ORCID: ORCID
Oleksandr Tashyrev
1 3

  1. Institute of Environmental Engineering and Biotechnology, University of Opole, Poland
  2. Department of Extremophilic Microorganisms Biology, D.K. Zabolotny Institute of Microbiology and Virologyof the National Academy of Sciences of Ukraine, Kyiv, Ukraine
  3. Department of Extremophilic Microorganisms Biology, D.K. Zabolotny Institute of Microbiology and Virologyof the National Academy of Sciences of Ukraine, Kyiv, Ukraine
  4. Laboratory of Sanitary and Environmental Microbiology (MSMLab)-UNESCO Chair on Sustainability,Department of Chemical Engineering, Universitat Politecnica de Catalunya-BarcelonaTech, Terrassa, Spain
Download PDF Download RIS Download Bibtex

Abstract

Road infrastructure has negative environmental effects, such as noise, vibration, disruption of ecosystem services, and pollution. Noise barriers are used to reduce air pollution and absorb sound waves, but studies have shown that they can impact pollutant concentrations. A study conducted in Poland analyzed the composition of dust collected from roads with and without noise barriers and road exits. The dust was tested using an energydispersive X-ray fluorescence spectrometer, and the results were analyzed statistically. The study found that road dust collected in areas without barriers had significantly higher levels of certain elements, such as calcium, chromium, copper, nickel, lead, sulfur, and zirconium. In contrast, dust collected from areas with noise barriers had lower pollutant levels. These findings highlight the effectiveness of noise barriers in reducing pollution levels in areas adjacent to roads
Go to article

Bibliography

  1. Adamiec, E., Jarosz-Krzemińska, E., Brzoza-Woch, R., Rzeszutek, M., Bartyzel, J., Pełech-Pilichowski, T. & Zyśk, J. (2023) The geochemical and fractionation study on toxic elements in road dust collected from the arterial roads in Kraków. Archives of Envi-ronmental Protection, 49, 2, pp. 104–110. DOI: 10.24425/aep.2023.145902
  2. Aguilera, A., Bautista, F., Gutiérrez-Ruiz, M., Ceniceros-Gómez, A.E., Cejudo, R. & Goguitchaichvili, A. (2021) Heavy metal pollution of street dust in the largest city of Mexico, sources and health risk assessment. Environmental Monitoring and Assess-ment, 193, 4, 193. DOI: 10.1007/s10661-021-08993-4.
  3. Aljazzar, T. & Kocher, B. (2016) Monitoring of Contaminant Input into Roadside Soil from Road Runoff and Airborne Deposition. Transportation Research Procedia, 14, pp. 2714–2723. DOI: 10.1016/j.trpro.2016.05.451.
  4. Amato, F., Pandolfi, M., Moreno, T., Furger, M., Pey, J., Alastuey, A., Bukowiecki, N., Prevot, A.S.H., Baltensperger, U. & Querol, X. (2011) Sources and variability of in-halable road dust particles in three European cities. Atmospheric Environment, 45(37), pp. 6777–6787. DOI: 10.1016/j.atmosenv.2011.06.003.
  5. Amini, S., Ahangar, F.E., Schulte, N. & Venkatram, A. (2016) Using models to interpret the impact of roadside barriers on near-road air quality. Atmospheric Environment, 138, pp. 55–64. DOI: 10.1016/j.atmosenv.2016.05.001.
  6. Badyda, A.J. (2010) Zagrożenia środowiskowe ze strony transportu. Nauka, 4, pp. 115–125.
  7. Baldauf, R., Thoma, E., Khlystov, A., Isakov, V., Bowker, G., Long, T. & Snow, R. (2008) Impacts of noise barriers on near-road air quality. Atmospheric Environment, 42, 32, pp. 7502–7507. DOI: 10.1016/j.atmosenv.2008.05.051.
  8. Baldauf, R., Watkins, N., Heist, D., Bailey, C., Rowley, P. & Shores, R. (2009) Near-road air quality monitoring: Factors affecting network design and interpretation of data. Air Quality, Atmosphere & Health, 2, 1, pp. 1–9. DOI:10.1007/s11869-009-0028-0.
  9. Bęben, D. (2011) Air pollution and protection around transport routes. Drogownictwo, 3, pp. 82–89. (in Polish)
  10. Bernardino, C.A.R., Mahler, C.F., Santelli, R.E., Freire, A.S., Braz, B.F. & Novo, L.A.B. (2019) Metal accumulation in roadside soils of Rio de Janeiro, Brazil: impact of traf-fic volume, road age, and urbanization level. Environmental Monitoring and Assess-ment, 191, 3, 156. DOI:10.1007/s10661-019-7265-y.
  11. Bowker, G.E., Baldauf, R., Isakov, V., Khlystov, A. & Petersen, W. (2007) The effects of roadside structures on the transport and dispersion of ultrafine particles from high-ways. Atmospheric Environment, 41, 37, pp. 8128–8139. DOI:10.1016/j.atmosenv.2007.06.064.
  12. Can, A. & Aumond, P. (2018) Estimation of road traffic noise emissions: The influence of speed and acceleration. Transportation Research Part D: Transport and Environment, 58, pp. 155–171. DOI:10.1016/j.trd.2017.12.002.
  13. Charlesworth, S., De Miguel, E. & Ordóñez, A. (2011) A review of the distribution of par-ticulate trace elements in urban terrestrial environments and its application to con-siderations of risk. Environmental Geochemistry and Health, 33, 2, pp. 103–123. DOI:10.1007/s10653-010-9325-7.
  14. Czech, T., Baran, A. & Wieczorek, J. (2014) Content of heavy metals in soils and plants from the Borzęcin commune area (Lesser Poland Voivodeship).. Inżynieria Ekologiczna, 37, pp. 89–98. DOI:10.12912/2081139X.20. (in Polish)
  15. De Silva, S., Ball, A.S., Huynh, T. & Reichman, S.M. (2016) Metal accumulation in road-side soil in Melbourne, Australia: Effect of road age, traffic density and vehicular speed. Environmental Pollution, 208, pp. 102–109. DOI:10.1016/j.envpol.2015.09.032.
  16. De Silva, S., Ball, A.S., Indrapala, D.V. & Reichman, S.M. (2021) Review of the interac-tions between vehicular emitted potentially toxic elements, roadside soils, and asso-ciated biota. Chemosphere, 263, 128135. DOI:10.1016/j.chemosphere.2020.128135.
  17. Duong, T.T.T. & Lee, B.-K. (2011) Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. Journal of Environ-mental Management, 92, 3, pp. 554–562. DOI:10.1016/j.jenvman.2010.09.010.
  18. Dziubak, S.D. (2021) Contamination of the intake air of internal combustion engines of motor vehicles. Bulletin of the Military University of Technology, 70, 2, pp. 35–64. DOI:10.5604/01.3001.0015.7010.
  19. Dziubanek, G., Baranowska, R. and Oleksiuk, K. (2012) Heavy metals in the soils of Upper Silesia - a problem of the past or a current threat? Journal of Ecology and Health, 16, 4, pp. 169–176. (in Polish)
  20. Freitas, E., Mendonça, C., Santos, J.A., Murteira, C. & Ferreira, J.P. (2012) Traffic noise abatement: How different pavements, vehicle speeds and traffic densities affect an-noyance levels. Transportation Research Part D: Transport and Environment, 17, 4, pp. 321–326. DOI:10.1016/j.trd.2012.02.001.
  21. GDDKiA (2015) General Traffic Measurement (GPR) 2015, (https://www.archiwum.gddkia.gov.pl/pl/2551/GPR-2015 (10.03.2022)).
  22. Ghasemian, M., Amini, S. & Princevac, M. (2017) The influence of roadside solid and vege-tation barriers on near-road air quality. Atmospheric Environment, 170, pp. 108–117. DOI:10.1016/j.atmosenv.2017.09.028.
  23. Hagler, G.S.W., Lin, M.-Y., Khlystov, A., Baldauf, R.W., Isakov, V., Faircloth, J. & Jack-son, L.E. (2012) Field investigation of roadside vegetative and structural barrier im-pact on near-road ultrafine particle concentrations under a variety of wind condi-tions. Science of The Total Environment, 419, pp. 7–15. DOI:10.1016/j.scitotenv.2011.12.002.
  24. Hagler, G.S.W., Tang, W., Freeman, M.J., Heist, D.K., Perry, S.G. & Vette, A.F. (2011) Model evaluation of roadside barrier impact on near-road air pollution. Atmospheric Environment, 45, 15, pp. 2522–2530. DOI:10.1016/j.atmosenv.2011.02.030.
  25. Hajok, I., Rogala, D. & Spychała, A. (2017) Effectiveness of acoustic screens along express-ways in reducing exposure to heavy metaphiles from linear emissions. Hygeia, 52, 2, pp. 190–195. (in Polish)
  26. Hołtra, A. & Zamorska-Wojdyła, D. (2022) Application of individual and integrated pollu-tion indices of trace elements to evaluate the noise barrier impact on the soil envi-ronment in Wrocław (Poland). Environmental Science and Pollution Research, 30, 10, pp. 26858–26873. DOI:10.1007/s11356-022-23563-y.
  27. Jeong, S.J. (2015) A CFD Study of Roadside Barrier Impact on the Dispersion of Road Air Pollution. Asian Journal of Atmospheric Environment, 9, 1, pp. 22–30. DOI:10.5572/ajae.2015.9.1.022.
  28. Juda-Rezler, K. & Toczko, B. (eds.) (2016) Fine dust in the atmosphere. Compendium of knowledge about air pollution with suspended dust in Poland. Biblioteka Monitoringu Środowiska, Warszawa 2016. (in Polish)
  29. Karbowska, B., Sydow, M. & Zembrzuski, W. (2017) Cadmium And Lead Content In The Barrier Dusts Sampled From The Noise Barriers Located Near To Poznań (Poland) – A Preliminary Study. Architecture, Civil Engineering, Environment, 10, 1, pp. 131–136. DOI:10.21307/acee-2017-013.
  30. Kiebała, A., Kozieł, M. & Zgłobicki, W. (2015). Cr, Cu, Ni, Pb and Zn in road dust in Lu-blin. Inżynieria i Ochrona Środowiska, 18(3), pp. 299–310. (in Polish)
  31. Lazo, P., Steinnes, E., Qarri, F., Allajbeu, S., Kane, S., Stafilov, T., Frontasyeva, M.V. & Harmens, H. (2018) Origin and spatial distribution of metals in moss samples in Al-bania: A hotspot of heavy metal contamination in Europe. Chemosphere, 190, pp. 337–349. DOI:10.1016/j.chemosphere.2017.09.132.
  32. Li, F., Liao, S.S. & Cai, M. (2016) A new probability statistical model for traffic noise pre-diction on free flow roads and control flow roads. Transportation Research Part D: Transport and Environment, 49, pp. 313–322. DOI:10.1016/j.trd.2016.10.019.
  33. OpenStreetMap Contributors (2023) OpenStreetMap Data Extracts, (https://download.geofabrik.de (24.01.2023)).
  34. Pachana, K., Wattanakornsiri, A. & Nanuam, J. (2010) Heavy Metal Transport and Fate in the Environmental Compartments. Naresuan University Science Journal, 7, pp. 1–11.
  35. Pastuszka, J.S., Rogula-Kozłowska, W. & Zajusz-Zubek, E. (2010) Characterization of PM10 and PM2.5 and associated heavy metals at the crossroads and urban back-ground site in Zabrze, Upper Silesia, Poland, during the smog episodes. Environmen-tal Monitoring and Assessment, 168, 1–4, pp. 613–627. DOI:10.1007/s10661-009-1138-8.
  36. Penkała, M., Ogrodnik, P. & Rogula-Kozłowska, W. (2018) Particulate Matter from the Road Surface Abrasion as a Problem of Non-Exhaust Emission Control. Environ-ments, 5, 1, 9. DOI:10.3390/environments5010009.
  37. Penkała, M., Ogrodnik, P. & Rogula-Kozłowska, W. (2019) Silica Dust as an Additive in Concrete with Proven Impact on Human Health. Polish Journal of Environmental Studies, 28, 6, pp. 4057–4071. DOI: 10.15244/pjoes/99241.
  38. Rogula-Kozłowska, W., Klejnowski, K., Rogula-Kopiec, P., Błaszczak, B., Mathews, B. & Szopa, S. (2013) Mass Size Distribution of PM-bound Elements at an Urban Back-ground Site: Results of an Eight-month Study in Zabrze. Rocznik Ochrona Srodowiska, 15, 1, pp. 1022–1040.
  39. Rogula-Kozłowska, W., Majewski, G. & Czechowski, P.O. (2015) The size distribution and origin of elements bound to ambient particles: a case study of a Polish urban area. Environmental Monitoring and Assessment, 187, 5, 240. DOI:10.1007/s10661-015-4450-5.
  40. Rogula-Kozłowska, W., Penkała, M., Bihałowicz, J.S., Ogrodnik, P., Walczak, A. & Iwan-icka, N. (2023) Elemental Composition of the Ultrafine Fraction of Road Dust in the Vicinity of Motorways and Expressways in Poland – Asphalt Versus Concrete Sur-faces. Journal of Ecological Engineering, 24, 11, pp. 82–90. DOI:10.12911/22998993/171377.
  41. Różański, S., Jaworska, H., Matuszczak, K., Nowak, J. & Hardy, A. (2017) Impact of high-way traffic and the acoustic screen on the content and spatial distribution of heavy metals in soils. Environmental Science and Pollution Research, 24, 14, pp. 12778–12786. DOI:10.1007/s11356-017-8910-z.
  42. Rybak, J., Wróbel, M., Stefan Bihałowicz, J. & Rogula-Kozłowska, W. (2020) Selected Met-als in Urban Road Dust: Upper and Lower Silesia Case Study. Atmosphere, 11, 3, 290. DOI:10.3390/atmos11030290.
  43. Sardans, J. & Peñuelas, J. (2005) Trace element accumulation in the moss Hypnum cupressi-forme Hedw. and the trees Quercus ilex L. and Pinus halepensis Mill. in Catalonia. Chemosphere, 60, 9, pp. 1293–1307. DOI:10.1016/j.chemosphere.2005.01.059.
  44. Starzomska, A. & Strużewska, J. (2024) A six-year measurement-based analysis of traffic-related particulate matter pollution in urban areas: the case of Warsaw, Poland (2016-2021). Archives of Environmental Protection, 50, 2, pp. 75–84. DOI:10.24425/aep.2024.150554.
  45. Świetlik, R., Strzelecka, M. & Trojanowska, M. (2013) Evaluation of traffic-related heavy metals emissions using noise barrier road dust analysis. Polish Journal of Environ-mental Studies, 22, 2, pp. 561–567.
  46. Świetlik, R., Trojanowska, M., Strzelecka, M. & Bocho-Janiszewska, A. (2015) Fractiona-tion and mobility of Cu, Fe, Mn, Pb and Zn in the road dust retained on noise barri-ers along expressway – A potential tool for determining the effects of driving condi-tions on speciation of emitted particulate metals. Environmental Pollution, 196, pp. 404–413. DOI:10.1016/j.envpol.2014.10.018.
  47. Thorpe, A. & Harrison, R.M. (2008) Sources and properties of non-exhaust particulate mat-ter from road traffic: A review. Science of The Total Environment, 400, 1–3, pp. 270–282. DOI:10.1016/j.scitotenv.2008.06.007.
  48. Van Bohemen, H.D. & Janssen Van De Laak, W.H. (2003) The Influence of Road Infra-structure and Traffic on Soil, Water, and Air Quality. Environmental Management, 31, 1, pp. 50–68. DOI:10.1007/s00267-002-2802-8.
  49. Vanhooreweder, B., Marcocci, S. & De Leo, A. (2017) CEDR Technical Report 2017-02 State of the art in managing road traffic noise: noise barriers, (https://www.cedr.eu/publications#!?year=2017 (10.03.2022)).
  50. Venkatram, A., Isakov, V., Deshmukh, P. & Baldauf, R. (2016) Modeling the impact of solid noise barriers on near road air quality. Atmospheric Environment, 141, pp. 462–469. DOI:10.1016/j.atmosenv.2016.07.005.
  51. Walczak, B. (2010) Phosphate content in road dust in Zielona Góra. Zeszyty Naukowe. Inżynieria Środowiska / Uniwersytet Zielonogórski, 140, 20, pp. 42–49. (in Polish)
  52. Wang, C., Miao, X., Fang, M., Chen, Y. & Jin, T. (2024) The improvement of Beijing am-bient air quality resulting from the upgrade of vehicle emission standards. Archives of Environmental Protection, 50, 3, pp. 109–121. DOI:10.24425/aep.2024.151690.
  53. Wang, M. & Zhang, H. (2018) Accumulation of Heavy Metals in Roadside Soil in Urban Area and the Related Impacting Factors. International Journal of Environmental Re-search and Public Health, 15, 6, 1064. DOI:10.3390/ijerph15061064.
  54. Wawer, M., Rachwał, M. & Kowalska, J. (2017) Impact of noise barriers on the dispersal of solid pollutants from car emissions and their deposition in soil. Soil Science Annual, 68, 1, pp. 19–26. DOI:10.1515/ssa-2017-0003.
  55. Wedepohl, K.H. (1995) The composition of the continental crust. Geochimica et Cosmochimica Acta, 59, 7, pp. 1217 – 1232. DOI:10.1016/0016-7037(95)00038-2.
  56. Wei, B. & Yang, L. (2010) A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94, 2, pp. 99–107. DOI:10.1016/j.microc.2009.09.014.
  57. Welch, B.L. (1947) The generalization of Student's problem when several different popula-tion variances are involved. Biometrika, 34, 1–2, pp. 28–35. DOI:10.1093/biomet/34.1-2.28.
  58. Werkenthin, M., Kluge, B. & Wessolek, G. (2014) Metals in European roadside soils and soil solution – A review. Environmental Pollution, 189, pp. 98–110. DOI:10.1016/j.envpol.2014.02.025.
  59. Yan, X., Gao, D., Zhang, F., Zeng, C., Xiang, W. & Zhang, M. (2013) Relationships be-tween heavy metal concentrations in roadside topsoil and distance to road edge based on field observations in the Qinghai-Tibet Plateau, China. International Journal of Environmental Research and Public Health, 10, 3, pp. 762–775. DOI:10.3390/ijerph10030762.
  60. Yongming, H., Peixuan, D., Junji, C. & Posmentier, E.S. (2006) Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Science of The Total Environment, 355, 1–3, pp. 176–186. DOI:10.1016/j.scitotenv.2005.02.026.
  61. Zechmeister, H.G., Hohenwallner, D., Riss, A. & Hanus-Illnar, A. (2005) Estimation of el-ement deposition derived from road traffic sources by using mosses. Environmental Pollution, 138, 2, pp. 238–249. DOI:10.1016/j.envpol.2005.04.005.
  62. Zoller, W.H., Gladney, E.S. & Duce, R.A. (1974) Atmospheric Concentrations and Sources of Trace Metals at the South Pole. Science, 183, 4121, pp. 198–200. DOI:10.1126/science.183.4121.198.
Go to article

Authors and Affiliations

Wioletta Rogula-Kozłowska
1
ORCID: ORCID
Magdalena Penkała
2
ORCID: ORCID
Jan Stefan Bihałowicz
1
ORCID: ORCID
Patrycja Kornelia Rogula-Kopiec
3
ORCID: ORCID
Joanna Bihałowicz
1
ORCID: ORCID
Barbara Błaszczak
3
ORCID: ORCID

  1. Fire University, Warsaw, Poland
  2. The University College of Applied Sciences in Chełm, Poland
  3. Institute of Environmental Engineering of the Polish Academy of Sciences, Zabrze, Poland
Download PDF Download RIS Download Bibtex

Abstract

This study explores the use of deep learning neural network models for predicting greenhouse gas emissions, focusing on small-sample time-series data sets, an area with limited prior research. It utilizes Recurrent Neural Networks (RNNs), Long Short-Term Memory Networks (LSTMs), Gated Recurrent Units (GRUs), and Transformers combined with Genetic Algorithms to forecast CO 2 emissions from industrial sources in Texas, a major contributor to U.S. greenhouse gas emissions. The analysis is based on the Environmental Protection Agency's (EPA) "Inventory of U.S. Greenhouse Gas Emissions and Sinks" dataset, spanning 1990 to 2020. The results indicate that LSTM and Transformer models are particularly effective, with LSTM outperforming Transformers in
computational efficiency by 6.97 times. These findings highlight the potential of LSTM and Transformer models as accurate and stable tools for predicting CO2 emissions in small-sample time-series data, offering valuable insights for future research and policy development in environmental management.
Go to article

Bibliography

  1. Alibrahim, H. & Ludwig, S. A. (2021, 28 June-1 July 2021). Hyperparameter Optimization: Comparing Genetic Algorithm against Grid Search and Bayesian Optimization. 2021 IEEE Congress on Evolutionary Computation (CEC),
  2. AlKheder, S. & Almusalam, A. (2022). Forecasting of carbon dioxide emissions from power plants in Kuwait using United States Environmental Protection Agency, Intergovernmental panel on climate change, and machine learning methods. Renewable Energy, 191, pp. 819-827.
  3. EIA. (2022). Texas State Energy Profile. U.S. Energy Information Administration Retrieved from https://www.eia.gov/state/print.php?sid=TX
  4. Fang, Z., Yang, H., Li, C., Cheng, L., Zhao, M. & Xie, C. (2021). Prediction of PM2. 5 hourly concentrations in Beijing based on machine learning algorithm and ground-based LiDAR. Archives of Environmental Protection, 47(3).
  5. Hochreiter, S. & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), pp. 1735-1780.
  6. Hsu, A., Wang, X., Tan, J., Toh, W. & Goyal, N. (2022). Predicting European cities’ climate mitigation performance using machine learning. Nature Communications, 13(1), 7487. DOI:10.1038/s41467-022-35108-5
  7. Hyndman, R. J. & Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts.
  8. Mitchell, M. (1998). An introduction to genetic algorithms. MIT press.
  9. Potvin, J.-Y. (1996). Genetic algorithms for the traveling salesman problem. Annals of Operations Research, 63, pp. 337-370.
  10. Riekstin, A. C., Langevin, A., Dandres, T., Gagnon, G. & Cheriet, M. (2020). Time Series-Based GHG Emissions Prediction for Smart Homes. IEEE Transactions on Sustainable Computing, 5(1), pp. 134-146. DOI:10.1109/TSUSC.2018.2886164
  11. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), pp. 533-536.
  12. Şahin, U. (2019). Forecasting of Turkey's greenhouse gas emissions using linear and nonlinear rolling metabolic grey model based on optimization. Journal of Cleaner Production, 239, 118079.
  13. Sen, P., Roy, M. & Pal, P. (2016). Application of ARIMA for forecasting energy consumption and GHG emission: A case study of an Indian pig iron manufacturing organization. Energy, 116, pp. 1031-1038.
  14. Sonata, I. & Heryadi, Y. (2024, 17-18 July 2024). Comparison of LSTM and Transformer for Time Series Data Forecasting. 2024 7th International Conference on Informatics and Computational Sciences (ICICoS),
  15. Sun, W. & Liu, M. (2016). Prediction and analysis of the three major industries and residential consumption CO2 emissions based on least squares support vector machine in China. Journal of Cleaner Production, 122, pp. 144-153.
  16. Szeląg, B., Bartkiewicz, L., Studziński, J. & Barbusinski, K. (2017). Evaluation of the impact of explanatory variables on the accuracy of prediction of daily inflow to the sewage treatment plant by selected models nonlinear. Archives of Environmental Protection, 43. DOI:10.1515/aep-2017-0030
  17. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł. & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
  18. Yin, L., Sharifi, A., Liqiao, H. & Jinyu, C. (2022). Urban carbon accounting: An overview. Urban Climate, 44, 101195.DOI:10.1016/j.uclim.2022.101195
Go to article

Authors and Affiliations

Shih-Hsien Tseng
1
Chia-Hsuan Wang
1
Thi Ha Trang Duong
1

  1. National Taiwan University of Science and Technology,Taiwan
Download PDF Download RIS Download Bibtex

Abstract

The main aim of the study was to achieve a better understanding of the chemical composition, seasonal variation, and sources of ambient particulate matter in two mid-sized towns in Southern Poland, characterized by a significant air pollution issues: Nowy Targ and Zabierzów. Daily PM10 samples were chemically analyzed for the content of water-soluble ions, carbonaceous matter and trace elements. Positive Matrix Factorization (PMF) was applied for source apportionment. The annual mean PM10 concentrations were 38 μg/m3 and 41 μg/m3 in Zabierzów and Nowy Targ, respectively. Secondary species (SIA + SOC) constituted, on average, 23% of PM10 in Nowy Targ, while in Zabierzów, this share varied from 32% to 41% during the non-heating and heating seasons, respectively. The proportion of primary pollutants (EC + POC) in PM10 substantially increased during the heating season in both locations, reaching 24% and 37% of PM10 in Zabierzów and Nowy Targ, respectively. PMF analyses identifies four sources with similar profiles at both sites: residential coal combustion, residential wood combustion, road transport, and secondary aerosol. In both locations, residential coal and wood combustion were the largest contributing sources (on average 44% and 50% of PM10 in Zabierzów and Nowy Targ, respectively), followed by road transport (on average 14% and 21% of PM10). Local sources were the dominant contributors to PM10 at both sites, accounting for 86% and 90% of PM10 in Nowy Targ and Zabierzów, respectively. These findings underscore the importance of implementing control strategies tailored to local factors to improve air quality in these towns
Go to article

Bibliography

  1. Banerjee, T., Murari, V., Kumar, M. & Raju, M.P. (2015). Source apportionment of airborne particulates through receptor modeling: Indian scenario, Atmospheric Research, 164–165, pp. 167–187. DOI:10.1016/j.atmosres.2015.04.017
  2. Błaszczak, B., Mathews, B., Słaby, K. & Klejnowski, B. (2023). Distribution of EC and OC temperature fractions in different research materials, Archives of Environmental Protection, 49, 2, pp. 95–103. DOI:10.24425/aep.2023.145901
  3. Błaszczak, B., Zioła, N., Mathews, B., Klejnowski, K. & Słaby, K. (2020). The role of PM2.5 chemical composition and meteorology during high pollution periods at a suburban background station in Southern Poland, Aerosol and Air Quality Research, 20, 11, pp. 2433–2447. DOI:10.4209/aaqr.2020.01.0013
  4. Cavalli, F., Viana, M., Yttri, K.E., Genberg, J. & Putaud, J.-P. (2010). Toward a standarised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol, Atmospheric Measurement Techniques, 3, 1, pp. 79–89. DOI:10.5194/amt-3-79-2010
  5. Castro, L.M., Pio, C.A., Harrison, R.M. & Smith, D.J.T. (1999). Carbonaceous aerosol in urban and rural European atmospheres: Estimation of secondary organic carbon concentrations, Atmospheric Environment, 33, 17, pp. 2771–2781. DOI:10.1016/S1352-2310(98)00331-8
  6. Cesari, D., De Benedetto, G.E., Bonasoni, P., Busetto, M., Dinoi, A., Merico, E., Chirizzi, D., Cristofanelli, P., Donateo, A., Grasso, F.M., Marinoni, A., Pennetta, A. & Contini, D. (2018). Seasonal variability of PM2.5 and PM10 composition and sources in an urban background site in Southern Italy, Science of The Total Environment, 612, pp. 202–213. DOI:10.1016/j.scitotenv.2017.08.230
  7. Cheng, M.T., Lin, Y.C., Chio, C.P., Wang, C.F. & Kuo, C.Y. (2005). Characteristics of aerosols collected in central Taiwan during an Asian dust event in spring 2000, Chemosphere, 61(10), pp. 1439–1450. DOI:10.1016/j.chemosphere.2005.04.120
  8. EEA (2023a). European Environment Agency, 2023. Air quality in Europe 2023, (https://www.eea.europa.eu/publications/europes-air-quality-status-2023 (20.04.2024)).
  9. EEA (2023b). European Environment Agency, 2023. Air pollutant emissions data viewer (Gothenburg Protocol, Air Convention) 1990-2021, (https://www.eea.europa.eu/data-and-maps/dashboards/air-pollutant-emissions-data-viewer-5 (20.05.2024)).
  10. Fabbri, D., Torri, C., Simoneit, B.R.T., Marynowski, L., Rushdi, A.I. & Fabiańska, M.J. (2009). Levoglucosan and other cellulose and lignin markers in emissions from burning of Miocene lignites, Atmospheric Environment, 43, 14, pp. 2286–2295. DOI:10.1016/j.atmosenv.2009.01.030
  11. Fachinger, F., Drewnick, F. & Borrman, S. (2021). How villages contribute to their local air quality – The influence of traffic- and biomass combustion-related emissions assessed by mobile mappings of PM and its components, Atmospheric Environment, 263, 118648, pp. 1–12. DOI:10.1016/j.atmosenv.2021.118648
  12. Geochemistry, Geophysics, Geosystems, 2, 2000GC000109. DOI:10.1029/2000GC000109
  13. Godłowska, J., Kaszowski, K. & Kaszowki, W. (2022). Application of the FAPPS system based on the CALPUFF model in short-term air pollution forecasting in Krakow and Lesser Poland, Archives of Environmental Protection, 48, 3, pp. 109–117, DOI:10.24425/aep.2022.142695
  14. Hopke, P.K., Dai, Q., Li, L. & Feng, Y. (2020). Global review of recent source apportionments for airborne particulate matter, Science of The Total Environment, 740, 140091, pp. 1–10. DOI:10.1016/j.scitotenv.2020.140091
  15. Juda-Rezler, K., Reizer, M., Maciejewska, K., Błaszczak, B. & Klejnowski K. (2020). Characterization of atmospheric PM2.5 sources at a Central European urban background site, Science of The Total Environment, 713, 136729, pp. 1–15. DOI:10.1016/j.scitotenv.2020.136729
  16. Klyta, J., Janoszka, K., Czaplicka, M., Rachwał, T. & Jawor, K. (2023). Co-combustion of wood pellet and waste in residential heating boilers – comparison of carbonaceous compound emission, Archives of Environmental Protection, 49, 3, pp. 100–106. DOI:10.24425/aep.2023.147332
  17. Manousakas, M., Diapouli, E., Belis, C.A., Vasilatou, V., Gini, M., Lucarelli, F., Querol, X. & Eleftheriadis, K. (2021). Quantitative assessment of the variability in chemical profiles from source apportionment analysis of PM10 and PM2.5 at different sites within a large metropolitan area, Environmental Research, 192, 110257, pp. 1–13. DOI:10.1016/j.envres.2020.110257
  18. Mazurek, I., Skawińska, A. & Sajdak, M. (2021). Analysis of chlorine forms in hard coal and the impact of leaching conditions on chlorine removal, Journal of the Energy Institute, 94, pp. 337–351. DOI:10.1016/j.joei.2020.10.002
  19. McLennan, S.M. (2001). Relationships between the trace element composition of sedimentary rocks and upper continental crust, Geochemistry, Geophysics, Geosystems, 2, 2000GC000109. DOI:10.1029/2000GC000109
  20. Nava, S., Lucarelli, F., Amato, F., Becagli, S., Calzolai, G., Chiari, M., Giannoni, M., Traversi, R. & Udisti, R. (2015). Biomass burning contributions estimated by synergistic coupling of daily and hourly aerosol composition records, Science of The Total Environment, 511, pp. 11–20. DOI:10.1016/j.scitotenv.2014.11.034
  21. Paatero, P. & Hopke, P.K. (2003). Discarding or downweighting high-noise variables in factor analytic models, Analytica Chimica Acta, 490, 1–2, pp. 277–289. DOI:10.1016/S0003-2670(02)01643-4
  22. Paatero, P. & Tapper, U. (1994). Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, 5, 2, pp. 111–126. DOI:10.1002/env.3170050203
  23. Polissar, A.V., Hopke, P.K., Paatero, P., Malm, W.C. & Sisler, J.F. (1998). Atmospheric aerosol over Alaska – 2. Elemental composition and sources, Journal of Geophysical Research, 103, D15, pp. 19045–19057. DOI:10.1029/98JD01212
  24. Querol, X., Alastuey, A., Rodríguez, S., Plana, F., Ruiz, C.R., Cots, N., Massagué, G. & Puig O. (2001). PM10 and PM2.5 source apportionment in the Barcelona Metropolitan Area, Catalonia, Spain, Atmospheric Environment, 35–36, pp. 6407–6419. DOI:10.1016/S1352-2310(01)00361-2
  25. Reizer, M., Calzolai, G., Maciejewska, K., Orza, J.A.G., Carraresi, L., Lucarelli, F. & Juda-Rezler K. (2021). Measurement report: Receptor modeling for source identification of urban fine and coarse particulate matter using hourly elemental composition, Atmospheric Chemistry and Physics, 21, 19, pp. 14471–14492. DOI:10.5194/acp-21-14471-2021
  26. Reizer, M. & Juda-Rezler, K. (2016). Explaining the high PM10 concentrations observed in Polish urban areas, Air Quality, Atmosphere & Health, 9, pp. 517–531. DOI:10.1007/s11869-015-0358-z
  27. Squizzato, S., Cazzaro, M., Innocente, E., Visin, F., Hopke, P.K. & Rampazzo, G. (2017). Urban air quality in a mid-size city – PM2.5 composition, sources and identification of impact areas: From local to long range contributions, Atmospheric Research, 186, pp. 51–62. DOI:10.1016/j.atmosres.2016.11.011
  28. Tammekivi, T., Kaasik, M., Hamer, P., Santos, G.S. & Šteinberga, I. (2023). Air pollution in small towns, including winter resorts: a comparative study of three cases in Northern Europe, Air Quality, Atmosphere & Health, 16, pp. 945–961. DOI:10.1007/s11869-023-01315-2
  29. Trippetta, S., Sabia, S. & Caggiano, R. (2016). Fine aerosol particles (PM1): natural and anthropogenic contributions and health risk assessment. Air Quality, Atmosphere and Health, 9, pp. 621–629. DOI:10.1007/s11869-015-0373-0
  30. WHO (2021). WHO global air quality guidelines: particulate matter (‎PM2.5 and PM10)‎, ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization, Geneva 2021.
  31. Wielgosiński, G. & Czerwińska, J. (2020). Smog Episodes in Poland, Atmosphere, 11, 3, 277, pp. 1–13. DOI:10.3390/atmos11030277
  32. Wiśniewska, K., Lewandowska, A.U. & Staniszewska, M. (2019). Air quality at two stations (Gdynia and Rumia) located in the region of Gulf of Gdansk during periods of intensive smog in Poland, Air Quality, Atmosphere & Health, 12, pp. 879–890. DOI:10.1007/s11869-019-00708-6
  33. Yin, H., Brauer, M., Zhang, J., Cai, W., Navrud, S., Burnett, R., Howard, C., Deng, Z., Kammen, D.M., Schellnhuber, H.J., Chen, K., Kan, H., Chen, Z.-M., Chen, B., Zhang, N., Mi, Z., Coffman, D., Cohen, A.J., Guan, D., Zhang, Q., Gong, P. & Liu, Z. (2021). Population ageing and deaths attributable to ambient PM2.5 pollution: a global analysis of economic cost, The Lancet Planetary Health, 5, pp. e356–e367. DOI:10.1016/S2542-5196(21)00131-5
  34. Zabalza, J., Ogulei, D., Hopke, P.K., Lee, J.H., Hwang, I., Querol, X., Alastuey, A. & Santamaria, J.M. (2006). Concentration and sources of PM10 and its constituents in Alsasua, Spain, Water, Air & Soil Pollution, 174, pp. 385–404. DOI:10.1007/s11270-006-9136-8
  35. Zhao, C. & Luo K. (2018). Household consumption of coal and related sulfur, arsenic, fluorine and mercury emissions in China, Energy Policy, 112, pp. 221–232. DOI:10.1016/j.enpol.2017.10.021
Go to article

Authors and Affiliations

Magdalena Reizer
1
Katarzyna Maciejewska
1
Barbara Błaszczak
2
ORCID: ORCID
Krzysztof Klejnowski
2
Katarzyna Juda-Rezler
1

  1. Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Poland
  2. The Institute of Environmental Engineering of the Polish Academy of Sciences,Zabrze, Poland

Instructions for authors

Archives of Environmental Protection
Instructions for Authors

Archives of Environmental Protection is a quarterly published jointly by the Institute of Environmental Engineering of the Polish Academy of Sciences and the Committee of Environmental Engineering of the Polish Academy of Sciences. Thanks to the cooperation with outstanding scientists from all over the world we are able to provide our readers with carefully selected, most interesting and most valuable texts, presenting the latest state of research in the field of engineering and environmental protection.

Scope
The Journal principally accepts for publication original research papers covering such topics as:
– Air quality, air pollution prevention and treatment;
– Wastewater treatment and utilization;
– Waste management;
– Hydrology and water quality, water treatment;
– Soil protection and remediation;
– Transformations and transport of organic/inorganic pollutants in the environment;
– Measurement techniques used in environmental engineering and monitoring;
– Other topics directly related to environmental engineering and environment protection.

The Journal accepts also authoritative and critical reviews of the current state of knowledge in the topic directly relating to the environment protection.

If unsure whether the article is within the scope of the Journal, please send an abstract via e-mail to: aep@ipispan.edu.pl

Preparation of the manuscript
The following are the requirements for manuscripts submitted for publication:
• The manuscript (with illustrations, tables, abstract and references) should not exceed 20 pages. In case the manuscript exceeds the required number of pages, we suggest contacting the Editor.
• The manuscript should be written in good English.
• The manuscript ought to be submitted in doc or docx format in three files:
– text.doc – file containing the entire text, without title, keywords, authors names and affiliations, and without tables and figures;
– figures.doc – file containing illustrations with legends;
– tables.doc – file containing tables with legends;
• The text should be prepared in A4 format, 2.5 cm margins, 1.5 spaced, preferably using Time New Roman font, 12 point. Thetext should be divided into sections and subsections according to general rules of manuscript editing. The proposed place of tables and figures insertion should be marked in the text.
• Legends in the figures should be concise and legible, using a proper font size so as to maintain their legibility after decreasing the font size. Please avoid using descriptions in figures, these should be used in legends or in the text of the article. Figures should be placed without the box. Legends should be placed under the figure and also without box.
• Tables should always be divided into columns. When there are many results presented in the table it should also be divided into lines.
• References should be cited in the text of an article by providing the name and publication year in brackets, e.g. (Nowak 2019). When a cited paper has two authors, both surnames connected with the word “and” should be provided, e.g. (Nowak and Kowalski 2019). When a cited paper has more than two author, surname of its first author, abbreviation ‘et al.’ and publication year should be provided, e.g. (Kowalski et al. 2019). When there are more than two publications cited in one place they should be divided with a coma, e.g. (Kowalski et al. 2019, Nowak 2019, Nowak and Kowalski 2019). Internet sources should be cited like other texts – providing the name and publication year in brackets.
• The Authors should avoid extensive citations. The number of literature references must not exceed 30 including a maximum of 6 own papers. Only in review articles the number of literature references can exceed 30.
• References should be listed at the end of the article ordered alphabetically by surname of the first author. References should be made according to the following rules:

1. Journal:
Surnames and initials. (publication year). Title of the article, Journal Name, volume, number, pages, DOI.
For example:

Nowak, S.W., Smith, A.J. & Taylor, K.T. (2019). Title of the article, Archives of Environmental Protection, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330

If the article has been assigned DOI, it should be provided and linked with the website on which it is made available.

2. Book:
Surnames and initials. (publication year). Title, Publisher, Place and publishing year.
For example:

Kraszewski, J. & Kinecki, K. (2019). Title of book, Work & Studies, Zabrze 2019.

3. Edited book:

Surnames and initials of text authors. (publishing year). Title of cited chapter, in: Title of the book, Surnames and
initials of editor(s). (Ed.)/(Eds.). Publisher, Place, pages.
For example:

Reynor, J. & Taylor, K.T. (2019). Title of chapter, in: Title of the cited book, Kaźmierski, I. & Jasiński, C. (Eds.). Work & Studies, Zabrze, pp. 145–189.

4. Internet sources:
Surnames and initials or the name of the institution which published the text. (publication year). Title, (website address (accessed on)).
For example:

Kowalski, M. (2018). Title, (http://www.krakow.pios.gov.pl/publikacje/2009/ (03.12.2018)).

5. Patents:

Orszulik, E. (2009). Palenisko fluidalne, Patent polski: nr PL20070383311 20070910 z 16 marca 2009.
Smith, I.M. (1988). U.S. Patent No. 123,445. Washington, D.C.: U.S. Patent and Trademark Office.

6. Materials published in language other than English:
Titles of cited materials should be translated into English. Information of the language the materials were published in should be provided at the end.
For example:

Nowak, S.W. & Taylor, K.T. (2019). Title of article, Journal Name, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330. (in Polish)

Not more than 30 references should be cited in the original research paper.


Submission of the manuscript
By submitting the manuscript Author(s) warrant(s) that the article has not been previously published and is not under consideration by another journal. Authors claim responsibility and liability for the submitted article.
The article is freely available and distributed under the terms of Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0, https://creativecommons.org/licenses/by-sa/4.0/legalcode), which permits use, distribution and reproduction in any medium provided the article is properly cited.


© 2021. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0, https://creativecommons.org/licenses/by-sa/4.0/legalcode), which permits use, distribution, and reproduction in any medium, provided that the article is properly cited.


The manuscripts should be submitted on-line using the Editorial System available at http://www.editorialsystem.com/aep.

Review Process
All the submitted articles are assessed by the Editorial Board. If positively assessed by at least two editors, Editor in Chief, along with department editors selects two independent reviewers from recognized authorities in the discipline.
Review process usually lasts from 1 to 4 months.
Reviewers have access to PUBLONS platform which integrates into Bentus Editorial System and enables adding reviews to their personal profile.
After completion of the review process Authors are informed of the results and – if both reviews are positive – asked to correct the text according to reviewers’ comments. Next, the revised work is verified by the editorial staff for factual and editorial content.

Acceptance of the manuscript

The manuscript is accepted for publication on grounds of the opinions of independent reviewers and approval of Editorial Board. Authors are informed about the decision and also asked to pay processing charges and to send completed declaration of the transfer of copyright to the editorial office.

Proofreading and Author Correction
All articles published in the Archives of Environmental Protection go through professional proofreading process. If there are too many language errors that prevent understanding of the text, the article is sent back to Authors with a request to correct the indicated fragments or – in extreme cases – to re-translate the text.
After proofreading the manuscript is prepared for publishing. The final stage of the publishing process is Author correction. Authors receive a page proof copy of the article with a request to make final corrections.

Article publication charges


The publication fee in the Journal of an article up to 20 pages is 520 EUR/2500 zł

Payments in Polish zlotys
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001

Payments in Euros
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001
IBAN: PL 20 1130 1091 0003 9111 7820 0001
SWIFT: GOSKPLPW

Authors are kindly requested to inform the editorial office of making payment for the publication, as well as to send all necessary data for issuing an invoice
 

Peer-review Procedure

The reviewing procedure for papers published in Archives of Environmental Protection

1) After accepting the paper as matching to the scope of the Journal Editor-in-Chief with Section Editors choose two independent Reviewers (authorities in the domain/discipline). The chosen Reviewers (from professors and senior academic staff members) have to guarantee:

  • autonomous opinion,
  • the lack of interests conflict – especially the lack of personal and business relations with the Authors of the paper,
  • the preservation of confidentiality about the paper content and the Reviewer opinion about the paper.

2) After the Reviewers selection, Assistant Editor send them (via e-mail) requests to review the paper. Reviewers receive the full text of the paper (without Author personal data) qualified for the reviewing process and referee form, sometimes supplemented with the additional questions connected with the article. In the e-mail Assistant Editor also determine the extent of the review and the deadline (usually a month).

3) The personal data of Reviewers are not open (double-blind review). It can be declassify only on Author’s special request and after the Reviewer agreement. It sometimes happen when the review outcome is: manuscript rejection or when the paper contain controversial issues.

4) The reviewer send the review to the Editorial Office via e-mail. After receiving the review the Assistant Editor:

  • inform Authors about it (in the case of the review without corrections or when there are only small, editorial changes needed),
  • send the reviews to Authors. Authors have to correct the paper according to Reviewers comment and prepare the reply to Reviewers,
  • send the paper corrected by Authors to Reviewers again – when Reviewer wanted to review it again.

5) The final decision about manuscript is made by the Editorial Board on the basis of the analysis of remarks contained in the review and the final version of the paper send by Authors. 6) The final version of the paper, after typesetting and text makeup is being sent to Authors, who make an author’s corrections. Afterwards the paper is ready to be printed in the specific issue.

Reviewers

All Reviewers in 2022

Alonso Rosa (University of the Basque Country/EHU, Bilbao, Spain), Alwaeli Mohamed (Silesian University of Technology), Arora Amarpreet (Sherpa Space Inc., Republic of Korea), Babu A.( Yeungnam University, Gyeongsan, Republic of Korea), Barbieri Maurizio (Sapienza University of Rome), Bień Jurand (Wydział Infrastruktury i Środowiska, Politechnika Częstochowska), Bogacki Jan (Wydział Instalacji Budowlanych, Hydrotechniki i Inżynierii Środowiska, Politechnika Warszawska), Bogumiła Pawluśkiewicz (Katedra Kształtowania Środowiska, SGGW), Boutammine Hichem (Laboratory of Industrial Process Engineering and Environment, Faculty of Process Engineering, University of Science and Technology, Bab-Ezzouar, Algiers, Algeria), Burszta-Adamiak Ewa (Uniwersytet Przyrodniczy we Wrocławiu), Cassidy Daniel (Western Michigan University, United States), Chowaniec Józef (Polish Geological Institute - National Research Institute), Czerniawski Robert (Instytut Biologii, Uniwersytet Szczeciński), da Silva Elaine (Fluminense Federal University, UFF, Brazil), Dąbek Lidia (Wydział Inżynierii Środowiska, Geodezji i Energetyki Odnawialnej, Politechnika Świętokrzyska), Dannowski Ralf (Leibniz-Zentrum für Agrarlandschaftsforschung: Müncheberg, Brandenburg, DE), Delgado-González Cristián Raziel (Universidad Autónoma del Estado de Hidalgo, Tulancingo , Mexico), Dewil Raf (KU Leuven, Belgium), Djemli Samir (University Badji Mokhtar Annaba, Algeria), Du Rui (University of Chinese Academy of Sciences, China), Egorin AM (Institute of Chemistry FEBRAS, Russia), Fadillah‬ ‪Ganjar‬‬ (Universitas Islam Indonesia, Indonesia), Gangadharan Praveena (Indian Institute of Technology Palakkad, India), Garg Manoj (Amity University, Noida, India), Gębicki Jacek (Politechnika Gdańska, Poland), Generowicz Agnieszka (Politechnika Krakowska, Poland), Gnida Anna (Silesian University of Technology, Poland), Golovatyi Sergey (Belarusian State University, Belarus), Grabda Mariusz (General Tadeusz Kosciuszko Military Academy of Land Forces, Poland), Guo Xuetao (Northwest A&F University, China), Gusiatin Mariusz (Uniwersytet Warminsko-Mazurski, Polska), Han Lujia (Instytut Badań Systemowych PAN, Polska), Holnicki Piotr (Systems Research Institute of the Polish Academy of Sciences, Poland), Houali Karim (University Mouloud MAMMERI, Tizi-Ouzou , Algeria), Iwanek Małgorzata (Lublin University of Technology, Poland), Janczukowicz Wojciech (University of Warmia and Mazury in Olsztyn, Poland), Jan-Roblero J. (Instituto Politécnico Nacional,Prol.de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, Mexico), Jarosz-Krzemińska Elżbieta (AGH, Wydział Geologii, Geofizyki i Ochrony Środowiska, Katedra Ochrony Środowiska), Jaspal Dipika (Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University), (SIU), Jorge Dominguez (Universidade de Vigo, Spain), Kabała Cezary (Wroclaw University of Environmental and Life Sciences, Poland), Kalka Joanna (Silesian University of Technology, Poland), Karaouzas Ioannis (Hellenic Centre for Marine Research, Greece), Khadim Hussein (University of Baghdad, Iraq), Khan Moonis Ali (King Saud University, Saudi Arabia), Kojić Ivan (University of Belgrade, Serbia), Kongolo Kitala Pierre (University of Lubumbashi, Congo), Kozłowski Kamil (Uniwersytet Przyrodniczy w Poznaniu, Poland), Kucharski Mariusz (IUNG Puławy, Poland), Lu Fan (Tongji University, China), Łukaszewski Zenon (Politechnika Poznańska; Wydział Technologii Chemicznej), Majumdar Pradeep (Addis Ababa Sciennce and Technology University, Ethiopia), Mannheim Viktoria (University of Miskolc, Hungary), Markowska-Szczupak Agata (Zachodniopomorski Uniwersytet Technologiczny w Szczecinie; Wydział Technologii i Inżynierii Chemicznej), Mehmood Andleeb (Shenzhen University, China), Mol Marcos (Fundação Ezequiel Dias, Brazil), Mrowiec Bożena (Akademia Techniczno-Humanistyczna w Bielsku-Białej, Poland), Nałęcz-Jawecki Grzegorz (Zakład Toksykologii i Bromatologii, Wydział Farmaceutyczny, WUM), Ochowiak Marek (Politechnika Poznańska, Poland), Ogbaga Chukwuma (Nile University of Nigeria, Nigeria), Oleniacz Robert (AGH University of Science and Technology in Krakow, Poland), Pan Ligong (Northeast Forestry University, China) Paruch Adam (Norwegian Institute of Bioeconomy Research, Norway), Pietras Dariusz (ATH Bielsko-Biała, Poland), Piotrowska-Seget Zofia (Uniwersytet Ślaski, Polska), Płaza Grażyna (IETU Katowice, Poland), Pohl Alina (IPIS PAN Zabrze, Poland), Poikane Sandra (European Commission, Joint Research Centre (JRC), Ispra, Italy), Poluszyńska Joanna (Łukasiewicz Research Network - Institute of Ceramics and Building Materials, Poland), Dudzińska Marzenna (Katedra Jakości Powietrza Wewnętrznego i Zewnętrznego, Politechnika Lubelska), Rawtani Deepak (National Forensic Sciences University, Gandhinagar, India) Rehman Khalil (GC Women University Sialkot, Pakistan), Rogowska Weronika (Bialystok University of Technology, Poland), Rzeszutek Mateusz (AGH, Wydział Geodezji Górniczej i Inżynierii Środowiska, Katedra Kształtowania i Ochrony Środowiska), Saenboonruang Kiadtisak (Faculty of Science, Kasetsart University, Bangkok), Sebakhy Khaled (University of Groningen, Netherlands), Sengupta D.K. (Regional Research Laboratory, Bhubaneswar. India), Shao Jing (Anhui University of Traditional Chinese Medicine, Chile), Sočo Eleonora (Rzeszów University of Technology, Poland), Sojka Mariusz (Poznan University of Life Sciences, Poland), Sonesten Lars (Swedish University of Agricultural Sciences, Sweden), Song Wencheng (Anhui Province Key Laboratory of Medical Physics and Technology, Chinese), Song ZhongXian (Henan University of Urban Construction, China), Spiak Zofia (Uniwersyet Przyrodniczy we Wrocławiu, Poland), Srivastav Arun (Chitkara University, Himachal Pradesh, India), Steliga Teresa (Instytut Nafty i Gazu -Państwowy Instytut Badawczy, Poland), Surmacz-Górska Joanna (Silesian University of Technology, Poland), Świątkowski Andrzej (Wojskowa Akademia Techniczna, Poland), Symanowicz Barbara (Siedlce University of Natural Sciences and Humanities, Poland), Szklarek Sebastian (European Regional Centre for Ecohydrology, Polish Academy of Sciences), Tabina Amtul (GC University,Lahore, Pakistan), Tang Lin (Hunan University, China), Torrent Sergi (Innovación, Aigües de Manresa, S.A, Manresa, Spain, Spain), Trafiałek Joanna (Warsaw University of Life Sciences, Poland), Vijay U. (Department of Microb, Jaipur, India, India), Vojtkova Hana (University of Ostrava, Czech Republic), Wang Qi (City University of Hong Kong, Hong Kong), Wielgosiński Grzegorz (Wydziału Inżynierii Procesowej i Ochrony Środowiska, Politechnika Łódzka), Wilk Pawel (IMGW-PIB, Poland), Wiśniewska Marta (Warsaw University of Technology, Poland), Yin Xianqiang (Northwest A&F University, Yangling China), Zając Grzegorz (University Of Life Sciences in Lublin, Poland), Zalewski Maciej (European Regional Centre for Ecohydrologyunder the auspices of UNESCO, Poland), Zegait Rachid (Ziane Achour University of Djelfa), Zerafat Mohammad (Shiraz University, Shiraz, Iran), Zgórska Aleksandra (Central Mining Institute, Poland), Zhang Chunhui (China University of Mining & Technology, China), Zhang Wenbo (Northwest Minzu University, Lanzhou China), Zhu Guocheng (Hunan University of Science and Technology, Xiangtan, China), Zwierzchowski Ryszard (Zakład Systemów Ciepłowniczych i Gazowniczych, Politechnika Warszawska)

All Reviewers in 2021

Adamkiewicz Łukasz, Aksoy Özlem, Alwaeli Mohamed, Aneta Luczkiewicz, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Babbar Deepakshi, Badura Marek, Bajda Tomasz, Biedka Paweł, Błaszczak Barbara, Bodzek Michał, Bogacki Jan, Burszta-Adamiak Ewa, Cheng Gan, Chojecka Agnieszka, Chrzanowski Łukasz, Chwojnowski Andrzej, Ciesielczuk Tomasz, Cimochowicz-Rybicka Małgorzata, Curren Emily, Cydzik-Kwiatkowska Agnieszka, Czajka Agnieszka, Danielewicz Jan, Dannowski Ralf, Daoud Mounir, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Demirbaş Ahmet, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Franus Wojciech, G. Uchrin Christopher, Generowicz Agnieszka, Gębicki Jacek, Giergiczny Zbigniew, Gierszewski Piotr, Glińska-Lewczuk Katarzyna, Godłowska Jolanta, Gokalp Fulya, Gospodarek Janina, Górecki Tadeusz, Grabińska-Sota Elżbieta, Grifoni M., Gromiec Marek, Guo Xuetao, Gusiatin Zygmunt, Hartmann Peter, He Jianzhong, He Yong, Heese Tomasz, Hybská Helena, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Janowski Mirosław, Jordanov Igor, Jóżwiakowski Krzysztof, Juśkiewicz Włodzimierz, Kabsch-Korbutowicz Małgorzata, Kalinowski Radosław, Kalka Joanna, Kapusta Paweł, Karczewska Anna, Karczmarczyk Agnieszka, Kicińska Alicja, Kiciński Jan, Kijowska-Strugała Małgorzata, Klejnowski Krzysztof, Kłosok-Bazan Iwona, Kolada Agnieszka, Konieczny Krystyna, Kostecki Maciej, Kowalczewska-Madura Katarzyna, Kowalczuk Marek, Kozielska Barbara, Kozłowski Kamil, Krzemień Alicja, Kulig Andrzej, Kwaśny Justyna, Kyzioł-Komosińska Joanna, Ledakowicz Stanislaw, Leites Luchese Claudia, Leszczyńska-Sejda Katarzyna, Li Mingyang, Liu Chao, Mahmood Khalid, Majewska-Nowak Katarzyna, Makisha Nikolay, Malina Grzegorz, Markowska-Szczupak Agata, Mocek Andrzej, Mokrzycki Eugeniusz, Molenda Tadeusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Myrta Anna, Narayanasamy Selvaraju, Nzila Alexis, OIkuski Tadeusz, Oleniacz Robert, Pacyna Jozef, Pająk Tadeusz, Pal Subodh Chandra, Panagopoulos Argyris, Paruch Adam, Paszkowski Waldemar, Pawęska Katarzyna, Paz-Ferreiro Jorge, Paździor Katarzyna, Pempkowiak Janusz, Piątkiewicz Wojciech, Piechowicz Janusz, Piotrowska-Seget Zofia, Pisoni E., Piwowar Arkadiusz, Pleban Dariusz, Policht-Latawiec Agnieszka, Polkowska Żaneta, Poluszyńska Joanna, Rajca Mariola, Reizer Magdalena, Riesgo Fernández Pedro, Rith Monorom, Rybicki Stanisław, Rydzkowski Tomasz, Rzepa Grzegorz, Rzeźnik Wojciech, Rzętała Mariusz, Sabovljevic Marko, Scudiero Rosaria, Sekret Robert, Sheng Yanqing, Sławomir Stelmach, Słowik Leszek, Sočo Eleonora, Sojka Mariusz, Sophonrat Nanta, Sówka Izabela, Spiak Zofia, Stachowski Piotr, Stańczyk-Mazanek Ewa, Stebel Adam, Sulieman Magboul, Surmacz-Górska Joanna, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szopińska Kinga, Szymański Kazimierz, Ślipko Katarzyna, Tepe Yalçin, Tórz Agnieszka, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Urošević Mira, Uzarowicz Łukasz, Vakili Mohammadtaghi, Van Harreveld A.P., Voutchkova Denitza, Wang Gang, Wang X.K., Werbińska-Wojciechowska Sylwia, Wiatkowski Mirosław, Wielgosiński Grzegorz, Wilk Pawel, Willner Joanna, Wisniewski Jacek, Wiśniowska Ewa, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojnowska-Baryła Irena, Wolska Małgorzata, Wszołek Tadeusz, Wu Yonghua, Yusuf Mohammad, Zuberi Amina, Zuwała Jarosław, Zwoździak Jerzy.


All Reviewers in 2020

Adamiec Ewa, Adamkiewicz Łukasz, Ahammed M. Mansoor, Akcicek Ekrem, Ameur Houari, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Badura Marek, Barabasz Wiesław, Barthakur Manoj, Battegazzore Daniele, Biedka Paweł, Bilek Maciej, Bisschop Lieselot, Błaszczak Barbara, Błażejewski Ryszard, Bochoidze Inga, Bodzek Michał, Bogacki Jan, Borella Paola, Borowiak Klaudia, Borralho Teresa, Boyacioglu Hülya, Bunjongsiri Kultida, Burszta-Adamiak Ewa, Calderon Raul, Chatveera Burachat Chatveera, Cheng Gan, Chiwa Masaaki, Chojnicki Józef, Chrzanowski Łukasz, Ciesielczuk Tomasz, Czajka Agnieszka, Czaplicka Marianna, Daoud Mounir, Dąbek Lidia, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Dereszewska Alina, Dębowski Marcin, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Dymaczewski Zbysław, El-Maradny Amr, Farfan-Cabrera Leonardo, Filizok Işık, Franus Wojciech, García-Ávila Fernando, Gariglio N.F., Gaya M.S, Gebicki Jacek, Giergiczny Zbigniew, Glińska-Lewczuk Katarzyna, Gnida Anna, Gospodarek Janina, Grabińska-Sota Elżbieta, Gusiatin Zygmunt, Harnisz Monika, Hartmann Peter, Hawrot-Paw Małgorzata, He Jianzhong, Hirabayashi Satoshi, Hulisz Piotr, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Jacukowicz-Sobala Irena, Jeż-Walkowiak Joanna, Jordanov Igor, Jóżwiakowski Krzysztof, Kabsch-Korbutowicz Małgorzata, Kajda-Szcześniak Małgorzata, Kalinowski Radosław, Kalka Joanna, Karczewska Anna, Karwowska Ewa, Kim Ki-Hyun, Klejnowski Krzysztof, Klojzy-Karczmarczyk Beata, Korniłłowicz-Kowalska Teresa, Korus Irena, Kostecki Maciej, Koszelnik Piotr, Koter Stanisław, Kowalska Beata, Kowalski Zygmunt, Kozielska Barbara, Krzyżyńska Renata, Kulig Andrzej, Kwarciak-Kozłowska Anna, Kyzioł-Komosińska Joanna, Lagzdins Ainis, Ledakowicz Stanislaw, Ligęza Sławomir, Liu Xingpo, Loga Małgorzata, Łebkowska Maria, Macherzyński Mariusz, Makisha Nikolay, Makowska Małgorzata, Masłoń Adam, Mazur Zbigniew, Michel Monika, Miechówka Anna, Miksch Korneliusz, Mnuchin Nathan, Mokrzycki Eugeniusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Muntean Edward, Myrta Anna, Nahorski Zbigniew, Narayanasamy Selvaraju, Naumczyk Jeremi, Nawalany Marek, Noubactep C., Nowakowski Piotr, Obarska-Pempkowiak Hanna, Orge C.A., Paul Lothar, Pawęska Katarzyna, Paździor Katarzyna, Pempkowiak Janusz, Peña A., Pietr Stanisław, Piotrowska-Seget Zofia, Pisoni E., Płaza Grażyna, Polkowska Żaneta, Reizer Magdalena, Renman Gunno, Rith Monorom, Romanovski Valentin, Rybicki Stanisław, Rydzkowski Tomasz, Rzętała Mariusz, Sadeghi Mahdi, Sakakibara Yutaka, Scudiero Rosaria, Semaan Mary, Seredyński Franciszek, Sergienko Ruslan, Shen Yujun, Sheng Yanqing, Sidełko Robert, Sočo Eleonora, Sojka Mariusz, Sówka Izabela, Spiak Zofia, Stegenta-Dąbrowska Sylwia, Steliga Teresa, Sulieman Magboul, Surmacz-Górska Joanna, Suryadevara Nagaraja, Suska-Malawska Małgorzata, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szpyrka Ewa, Szulczyński Bartosz, Szwast Maciej, Szyszlak-Bargłowicz Joanna, Ślipko Katarzyna, Świetlik Ryszard, Tabernacka Agnieszka, Tepe Yalçin, Tobiszewski Marek, Treichel Wiktor, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Uzarowicz Łukasz, Van Harreveld A.P., Wang X. K., Wasielewski Ryszard, Wiatkowski Mirosław, Wielgosiński Grzegorz, Willner Joanna, Wisniewski Jacek, Witczak Joanna, Witkiewicz Zygfryd, Włodarczyk Małgorzata, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojtkowska Małgorzata, Xinhui Duan, Yang Chunping, Yaqian Zhao Yaqian, Załęska-Radziwiłł Monika, Zamorska Justyna, Zasina Damian, Zawadzki Jarosław, Zdeb Monika M., Zheng Guodi, Zhu Ivan X., Ziułkiewicz Maciej, Zuberi Amina, Zwoździak Jerzy, Żabczyński Sebastian, Żukowski Witold, Żygadło Maria.




Plagiarism Policy

Anti-plagiarism policy

In accordance with AEP requirements, the authors of all articles submitted to the Editorial Office declare that the paper is an original work. Articles that have been approved by the Editorial Board for further processing are checked for originality using the program and iThenticate. As plagiarism, the Editorial Board (according to the definition of plagiarism/anti-plagiarism) recognizes:

• claiming someone else's work or parts of it as your own;
• copying someone else's or your own (self-plagiarism) fragments of articles without reference to the publication (title of the work, names of authors) from which it was taken
• inserting fragments of other works into the article, changing only the order of the sentence or introducing only minor changes to it
• an article in which the copied fragments, despite citing their sources, constitute a significant/major part of the article.

In case of plagiarism/self-plagiarism, further work on this article is stopped and it is removed from the Editorial System. The authors of the article (via the corresponding author) submitted to the Editorial Office of the AEP are informed about the reasons for removing the article.

This page uses 'cookies'. Learn more