Applied sciences

Archives of Environmental Protection


Archives of Environmental Protection | 2021 | vol. 47 | No 4

Download PDF Download RIS Download Bibtex


In this study, genotoxic potential of industrial waste water (IWW) samples was investigated using Allium cepa assay. The root tips were treated with different IWW samples (A, B and C) for 48 hours. The effects of IWW oncytological effects were determined. It was found that all IWW samples significantly increased the percentage of total abnormality. Mitotic chromosomal abnormalities such as irregular metaphase, stickiness, c-mitosis, micronucleus,vagrant chromosomes and bridges were determined. Furthermore, a significant reduction for the mitotic index that isindicative of cellular toxicity was observed in root tips cells, which were treated with IWW samples. A. cepa assaycan be used as useful tool for the detection of genotoxic and cytotoxic potential of IWWs.
Go to article


  1. Aksoy, O., Erbulucu, T. & Vatan, E. (2011). Effects of wastewater from olive oil and milk industry on growth and mitosis in Allium cepa root apical meristem. Journal of Applied Biological Sciences, 5,3, pp. 75-78.
  2. Anonymous, (2015). Regulation on the Amendments to the Surface Water Quality Management Regulation (Yüzeysel Su Kalitesi Yönetimi Yönetmeliğinde Değişiklik Yapilmasina Dair Yönetmelik), date of access: 22.05.2021
  3. Aybeke, M., Olgun, G., Sidal, U. & Kolankaya, D. (2000). The effect of olive oil mill effluent on the mitotic cell division and total protein amount of the root tips of Triticum aestivum L. Turkish Journal of Biology, 24, pp. 127-140.
  4. Babic, S., Barisic, J., Visic, H., Klobucar, R.S., Popovic, N.T., Strunjak-Perovic, I., Coz-Rakovac, R. & Klobucar, G. (2017). Embryotoxic and genotoxic effects of sewage effluents in zebrafish embryo using multiple endpoint testing. Water Research, 115, pp. 9-21. DOI: 10.1016/j.watres.2017.02.049
  5. Beyersmann, D. & Hartwig, A. (2008). Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms, Archieves of Toxicology, 82, pp. 493-512. DOI: 10.1007/s00204-008-0313-y
  6. Bianchi, E., Goldoni, A., Trintinaglia, L., Lessing, G., Silva, C.E.M., Nascimento, C.A., Ziulkoski, A.L., Spilki, F.R. & Silva, L.B. (2015). Evaluation of genotoxicity and cytotoxicity of water samples from the Sinos River Basin, southern Brazil. Brazilian Journal of Biology, 75,2, pp. 68-74. DOI: 10.1590/1519-6984.1913
  7. Butt, M.S., Sharif, K., Bajwa, B.E. & Aziz, A. (2005). Hazardous effects of sewage water on the environment: Focus on heavy metals and chemical composition of soil and vegetables. Management of Environmental Quality: An International Journal, 16, pp. 338-346. DOI 10.1108/14777830510601217
  8. Cavusoglu, K., Yapar, K., Kinalioglu, K., Turkmen, Z., Cavusoglu, K. & Yalcin, E. (2010). Protective role of Ginkgo biloba on petroleum wastewater-induced toxicity in Vicia faba L. (Fabaceae) root tip cells. Journal of Environmental Biology, 31, pp. 319-324.
  9. Darlington, C.A. & La Cour L.E. (1979). The Handling of Chromosomes. 6th ed. Allen and Unwin, London 1979.
  10. El Hajjouji, H., Pinelli, E., Guiresse, M., Merlina, G., Revel, J.C. & Hafidi, M. (2007). Assessment of the genotoxicity of olive mill waste water (OMWW) with the Vicia faba micronucleus test. Mutation Research. 634, pp. 25-31. DOI:10.1016/j.mrgentox.2007.05.015
  11. El-Shahaby, O.A., Abdel Migid, H.M., Soliman, M.I. & Mashaly, I.A. (2003). Genotoxicity screening of industrial wastewater using the Allium cepa chromosome aberration assay. Pakistan Journal of Biological Sciences, 6,1, pp. 23-28. DOI: 10.3923/pjbs.2003.23.28
  12. Fiskesjö, G. (1985). The Allium test as a standard in environmental monitoring. Hereditas, 102,1, pp. 99-112. DOI:10.1111/j.1601-5223
  13. Grant, W.F. (1994). The present status of higher plant bioassays for the detection of environmental mutagens. Mutation Research, 310, pp. 175-185. DOI:10.1016/0027-5107(94)90112-0
  14. Kanev, M.O., Ozdemir, K. & Gokalp, F.D. (2017). Evaluation of genotoxic effects on onion (Allium cepa L.) root tip cell of ergene river water. Marmara Journal of Pure and Applied Sciences, 3, pp. 111-117. DOI:10.7240/marufbd.311079
  15. Khan, S., Anas, M. & Malik, A. (2019). Mutagenicity and genotoxicity evaluation of textile industry wastewater using bacterial and plant bioassays. Toxicology Reports, 6, pp. 193-201. DOI:10.1016/j.toxrep.2019.02.002
  16. Levan, A. (1938). The effect of colchicine on root mitoses in Allium. Hereditas, 24,4, pp. 471- 486. DOI:10.1111/j.1601-5223.1938.tb03221.x
  17. Liu, D., Jiang, W., Wang, W. & Zhai, L. (1995). Evaluation of metal ion toxicity on root tip cells by the Allium test, Israel Journal of Plant Sciences, 43: 125-133. DOI:10.1080/07 929978.1995.10676598
  18. Majer, B.J., Grummt, T., Uhi, M. & Knasmuller, S. (2005). Use of plant assays for the detection of genotoxins in the aquatic environment. Acta of Hydrochemistry and Hydrobiology, 33, pp. 45-55. DOI:10.1002/aheh.200300557
  19. Oliveira Júnior, H.M., Sales, P.T.F., Oliveira, D.B., Schimidt, F., Santiago, M.F. & Campos, L.C. (2013). Characterization and genotoxicity evaluation of effluent from a pharmacy industry. AmbiAgua, Taubaté, 8,2, pp. 34-45. DOI:10.4136/ambi-agua1107
  20. Olorunfemi, D., Ogieseri, U.M. & Akinboro, A. (2011). Genotoxicity screening of industrial effluents using onion bulbs (Allium cepa L.). J. Appl. Sci. Environ. Manage, 15,1, pp. 211-216.
  21. Rank, J. & Nielsen, M.H. (1994). Evaluation of the Allium anaphase-telophase test in relation to genotoxicity screening of industrial wastewater. Mutation Research, 312,1, pp. 17-24. DOI:10.1016/0165-1161(94)90004-3
  22. Rasgele, P.G., Kekecoglu, M. & Muranli, F.D.G. (2013). Induction of micronuclei in mice bone marrow cells by cobalt and copper chlorides. Archives of Environmental Protection, 39,1, pp. 75-82. DOI:10.2478/aep-2013-0007.
  23. Solange, B.T. & Haywood, D.L. (2012). Bioindicator of Genotoxicity: The Allium cepa Test, Environmental Contamination, Jatin Kumar Srivastava, IntechOpen, Available from: DOI:10.5772/31371.
  24. Squibb, K.S. & Fowler, B.A. (1981). Relationship between metal toxicity to subcellular systems and the carcinogenic response. Environmental Health Perspectives, 40, pp. 181-188. DOI:10.1289/ehp.8140181
  25. Şık, L., Acar, O. & Aki, C. (2009). Genotoxic effects of industrial wastewater on Allium cepa L. African Journal of Biotechnology, 8,9, pp. 1919-1923.
  26. Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K. & Sutton, D.J. (2012). Heavy metal toxicity and the environment. Molecular, Clinical and Environmental Toxicology, [In:] Luch, A. (ed.), Vol 1: Molecular Toxicology (Experientia Supplementum), Birkhäuser, Berlin, 2012. 133-164. DOI:10.1007/978-3-7643-8340-4_6
  27. Turkez, H., Sisman, T., Incekara, U., Geyikoglu, F., Tatar, A. & Keles, M.S. (2009). The genotoxic and biochemical effects of wastewater samples from a fat plant in Erzurum. Journal of Balıkesir University Institute of Science and Technology, 11,2, pp. 55-63.
  28. Turkmen, Z., Cavusoglu, K., Cavusoglu, K., Yapar, K. & Yalçin, E. (2009). Protective role of Royal Jelly (honeybee) on genotoxicity and lipid peroxidation, induced by petroleum wastewater, in Allium cepa L. root tips. Environmental Technology, 30,11, pp. 1205-1214. DOI:10.1080/09593330903179757
Go to article

Authors and Affiliations

Pinar Goc Rasgele

  1. Duzce University, Faculty of Agriculture, Department of Biosystems Engineering, Duzce, Turkey
Download PDF Download RIS Download Bibtex


The profile of microbial diversity in a NABR digesting RPMW was investigated using phylogeneticanalysis of partial 16S rRNA sequences by a neighbor-joining-tree, supported by microbial morphology analysis by SEM. The results showed that microorganism inside NABR consisted of dominant Bacillus (25 strains) and Bacterium (1 strain) which were isolated from the settled sludge at the bottom of the reactor, whilst Bacillus (2 strains), Pseudomonas (2 strain) and Chryseobacterium (2 strain) were isolated from the biofilm formed on the packing material. It revealed that the microbial community strains, function, and structure changed simultaneously throughout the reactor system. The microscopic results showed rich biofacies, while the dominant microorganisms have various morphologies in every compartment of the system. It consisted of a long rod-shaped and filamentous bacterium composed majorly of bacilli of different sizes. Although the study successfully analyzed the microbial diversity and morphology in the system, the microbial communities reported in this study were different from other similar studies. This may be caused by the application of a culture-based technique that usually provides limited information due to the number of barely cultivated or uncultured strains
Go to article


  1. Araujo, J.C., Téran, F.C., Oliveira, R.A., Nour, E.A.A., Montenegro, M.A.P., Campos, J.R. & Vazoller, R.F. (2003). Comparison of hexamethyldisilazane and critical point drying treatments for SEM analysis of anaerobic biofilms and granular sludge, Journal of Electron Microscopy, 52, 4, pp.429-433. DOI:10.1093/jmicro/52.4.429
  2. Atashpaz, S., Khani, S., Barzegari, A., Barar, J., Vahed, S.Z., Azarbaijani, R. & Omidi, Y. (2010). A robust universal method for extraction of genomic DNA from bacterial species, Microbiology, 79, 4, pp.538-542. PMID:21058509
  3. Ausubel, F., Brent, R., Kingston, R., Moore, D., Seidman, J., Smith, J. & Struhl, K. (2003). Current Protocols in Molecular Biology, John Wiley & Sons.
  4. Bailon-Salas, A.M., Ordaz-Díaz, L.A., Valle-Cervantes, S., López-Miranda, J., Urtiz-Estrada, N., Páez-Lerma, J.B. & Rojas-Contreras, J.A. (2018). Characterization of Culturable Bacteria from Pulp and Paper Industry Wastewater, with the Potential for Degradation of Cellulose, Starch, and Lipids, 13(3), pp.5052-5064.
  5. Banach-Wiśniewska, A., Gamoń, F. & Ziembińska-Buczyńska, A. (2021). DNA vs RNA based studies of nitrogen removal bacteria genes via qPCR, Archives of Environmental Protection, 47, 1, pp.19-25. DOI:10.24425/aep.2021.136444
  6. Chandra, R. (2001). Microbial decolourisation of pulp and paper mill effluent in presence of nitrogen and phosphorus by activated sludge process, Journal of Eenvironmental Biology, 22, 1, pp.23-27. PMID:11480347
  7. Duran, M., Tepe, N., Yurtsever, D., Punzi, V., Bruno, C. & Mehta, R. (2006). Bioaugmenting anaerobic digestion of biosolids with selected strains of Bacillus, Pseudomonas, and Actinomycetes species for increased methanogenesis and odor control, Applied Microbiology and Biotechnology, 73, 4, pp.960-966. DOI:10.1007/s00253-006-0548-6
  8. Gao, M., Guo, B., Zhang, L., Zhang, Y. & Liu, Y. (2019). Microbial community dynamics in anaerobic digesters treating conventional and vacuum toilet flushed blackwater, Water Research, 160, 249-258. DOI:10.1016/j.watres.2019.05.077
  9. Gobi, K. & Vadivelu, V.M. (2015). Polyhydroxyalkanoate recovery and effect of in situ extracellular polymeric substances removal from aerobic granules, Bioresource Technology, 189, 169-176. DOI:10.1016/j.biortech.2015.04.023
  10. Hassan, S.R., Zwain, H.M. & Dahlan, I. (2013). Development of Anaerobic Reactor for Industrial Wastewater Treatment: An Overview, Present Stage and Future Prospects, Journal of Advanced Scientific Research, 4, 1, pp.07-12.
  11. Hooda, R., Bhardwaj, N.K. & Singh, P. (2015). Screening and Identification of Ligninolytic Bacteria for the Treatment of Pulp and Paper Mill Effluent, Water, Air, & Soil Pollution, 226, 9, pp.305. DOI:10.1007/s11270-015-2535-y
  12. Kenzaka, T. & Tani, K. (2012) Scanning Electron Microscopy, IntechOpen.
  13. Kozłowski, K., Dach, J., Lewicki, A., Malińska, K., do Carmo, I.E.P. & Czekała, W. (2019). Potential of biogas production from animal manure in Poland, Archives of Environmental Protection, 45, 3, pp.99-108. DOI:10.24425/aep.2019.128646
  14. Liu, J., Li, D. & Yang, J. (2008). Experimental research on the phase separation of Anaerobic Baffled Reactor (ABR), J. Biotechnol, 136, S657.
  15. Mehta, J., Sharma, P. & Yadav, A. (2014). Screening and Identification of Bacterial Strains for Removal of COD from Pulp and Paper Mill Effluent, Advances in Life Sciences and Health, 1, 1, pp.34-42.
  16. Ran, Z., Gefu, Z., Kumar, J.A., Chaoxiang, L., Xu, H. & Lin, L. (2014). Hydrogen and methane production in a bio-electrochemical system assisted anaerobic baffled reactor, International Journal of Hydrogen Energy, 39, 25, pp.13498-13504. DOI:10.1016/j.ijhydene.2014.02.086
  17. Shah, F.A., Mahmood, Q., Shah, M.M., Pervez, A. & Asad, S.A. (2014). Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis, The Scientific World Journal, 2014, 21. DOI:10.1155/2014/183752
  18. Sonakya, V., Raizada, N. & Kalia, V. (2001). Microbial and enzymatic improvement of anaerobic digestion of waste biomass, Biotechnology Letters, 23, 18, pp.1463-1466. DOI:10.1023/A:1011664912970
  19. Świątczak, P., Cydzik-Kwiatkowska, A. & Rusanowska, P. (2017). Microbiota of anaerobic digesters in a full-scale wastewater treatment plant, Archives of Environmental Protection, 43, 3, pp. DOI:10.1515/aep-2017-0033
  20. Thompson, G., Swain, J., Kay, M. & Forster, C.F. (2001). The treatment of pulp and paper mill effluent: a review, Bioresource Technology, 77, 3, pp.275-286. DOI:10.1016/S0960-8524(00)00060-2
  21. Tiku, D.K., Kumar, A., Chaturvedi, R., Makhijani, S.D., Manoharan, A. & Kumar, R. (2010). Holistic bioremediation of pulp mill effluents using autochthonous bacteria, International Biodeterioration & Biodegradation, 64, 3, pp.173-183. DOI:10.1016/j.ibiod.2010.01.001
  22. Tsavkelova, E., Prokudina, L., Egorova, M., Leontieva, M., Malakhova, D. & Netrusov, A. (2018). The structure of the anaerobic thermophilic microbial community for the bioconversion of the cellulose-containing substrates into biogas, Process Biochemistry, 66, pp. 183-196. DOI:10.1016/j.procbio.2017.12.006
  23. U.S. National Library of Medicine (2021). National Center for Biotechnology Information, ( (16.6.2021)).
  24. Yu, Y., Lu, X. & Wu, Y. (2014). Performance of an Anaerobic Baffled Filter Reactor in the Treatment of Algae-Laden Water and the Contribution of Granular Sludge, Water, 6, 1, pp.122-138. DOI:10.3390/w6010122
  25. Zainith, S., Purchase, D., Saratale, G.D., Ferreira, L.F.R., Bilal, M. & Bharagava, R.N. (2019). Isolation and characterization of lignin-degrading bacterium Bacillus aryabhattai from pulp and paper mill wastewater and evaluation of its lignin-degrading potential, 3 Biotech, 9, 92. DOI:10.1007/s13205-019-1631-x
  26. Zwain, H.M., Aziz, H.A. & Dahlan, I. (2016a). Effect of inoculum source and effluent recycle on the start-up performance of a modified anaerobic inclining-baffled reactor treating recycled paper mill effluent, Desalination and Water Treatment, 57, 45, pp.21350-21363. DOI:10.1080/19443994.2015.1119758
  27. Zwain, H.M., Aziz, H.A. & Dahlan, I. (2018). Performance of modified anaerobic inclining-baffled reactor treating recycled paper mill effluent: effects of influent chemical oxygen demand concentration and hydraulic retention time, Environmental Technology, 39, 12, pp.1557-1565. DOI:10.1080/09593330.2017.1332692.
  28. Zwain, H.M., Aziz, H.A., Ng, W.J. & Dahlan, I. (2017). Performance and microbial community analysis in a modified anaerobic inclining-baffled reactor treating recycled paper mill effluent, Environmental Science and Pollution Research, 24, 14, pp.13012–13024. DOI:10.1007/s11356-017-8804-0
  29. Zwain, H.M., Aziz, H.A., Zaman, N.Q. & Dahlan, I. (2016b). Effect of inoculum to substrate ratio on the performance of modified anaerobic inclining-baffled reactor treating recycled paper mill effluent, Desalination and Water Treatment, 57, 22, pp.10169-10180. DOI:10.1080/19443994.2015.1033761
  30. Zwain, H.M., Hassan, S.R., Zaman, N.Q., Aziz, H.A. & Dahlan, I. (2013). The start-up performance of modified anaerobic baffled reactor (MABR) for the treatment of recycled paper mill wastewater, Journal of Environmental Chemical Engineering, 1, 1–2, pp.61-64. DOI:10.1016/j.jece.2013.03.007
  31. Zwain, H.M., Naje, A.S., Vakili, M. & Dahlan, I. (2021). Temperature analysis of a novel MAIB reactor during the treatment of wastewater from recycled paper mill, Water Practice and Technology, 16 (2): pp. 592–604. DOI:10.2166/wpt.2021.023
Go to article

Authors and Affiliations

Haider M. Zwain
Farah A. Al-Marzook
Basim K. Nile
Mohammed Ali Jeddoa Zuhair
Aqeel H. Atallah
Irvan Dahlan
4 5
Hammed Hassan Waqed

  1. College of Water Resources Engineering, Al-Qasim Green University, 51013 Al-Qasim Province, Babylon, Iraq
  2. College of Medical and Health Technologies, Al-Zahraa University for Women, Karbala 56100, Iraq
  3. College of Engineering, University of Kerbala, Karbala 56100, Iraq
  4. School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan,14300 Nibong Tebal, Penang, Malaysia
  5. Solid Waste Management Cluster, Science and Engineering Research Centre, Universiti Sains Malaysia,Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Penang, Malaysia
Download PDF Download RIS Download Bibtex


Process baths used for electropolishing and pickling of stainless steel have become increasingly contaminated with heavy metal ions over time. There is still lack of research on the neutralization of this type of technological wastewater with high concentrations of metal ions and containing complexing compounds, which significantly hinders their effective treatment. The aim of this paper is to study how the selected methods of heavy metals removal will affect the quality of the treated, industrial post-galvanic sewage from pickling and electropolishing of chromium-nickel steel on a laboratory and technical scale. The research used sodium sulphide or a decomplexing agent based on organic sulphur to neutralize wastewater containing triethanolamine or glycerol. Treatment of electropolishing wastewater poses a challenge. Nevertheless, wastewater with glycerol is easier to neutralize than those containing triethanolamine. In the industrial scale the use of a decomplexing agent is necessary to achieve the required nickel values in the wastewater after treatment below 1 ppm. Even in the case of high concentrations of nickel ions in raw wastewater, the neutralization process of the wastewater originating only from pickling alone was effective. The search for effective methods of neutralization of mixed wastewater is especially important in industrial conditions, where it is not always possible to completely separate these two types of sewage. The paper also presents the results of the composition of post-neutralization sludge, which may be useful in planning further management and disposal of this type of waste.
Go to article


  1. Agrawal, A., Kumar, V. & Pandey, B. D. (2006). Remediation options for the treatment of electroplating and leather tanning effluent containing chromium - A review, Mineral Processing and Extractive Metallurgy Review, 27, 2, pp. 99–130. DOI:10.1080/08827500600563319
  2. Ain, Z. N., Azwan, R. M. T., Imam, M. H., Wahidah, P. S. & Rohana, M. Y.S. (2019). Removal of Nickel, Zinc and Copper from Plating Process Industrial Raw Effluent Via Hydroxide Precipitation Versus Sulphide Precipitation, IOP Conference Series: Materials Science and Engineering, 551, 1. DOI:10.1088/1757-899X/551/1/012122
  3. Alyüz, B. & Veli, S. (2009). Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins, Journal of Hazardous Materials, 167, 1–3, pp. 482–488. DOI:10.1016/j.jhazmat.2009.01.006
  4. Andrus, M. E. (2000). A review of metal precipitation chemicals for metal-finishing applications, Metal Finishing, 98, 11, pp. 20–23. DOI:10.1016/S0026-0576(00)83532-1
  5. Bhattacharya, A. K., Mandal, S. N. & Das, S. K. (2006). Adsorption of Zn(II) from aqueous solution by using different adsorbents, Chemical Engineering Journal, 123, 1–2, pp. 43–51. DOI:10.1016/j.cej.2006.06.012
  6. Bodzek, M. (2013). Inorganic micropollutants removal by means of membrane processes - State of the art, Ecological Chemistry and Engineering S, 20, 4, pp. 633–658. DOI:10.2478/eces-2013-0044
  7. Bodzek, M. & Konieczny, K. (2011). Membrane techniques in the removal of inorganic anionic micropollutants from water environment state of the art, Archives of Environmental Protection, 37, 2, pp. 15–19.
  8. Brbooti, M. M., Abid, B. & Al-shuwaiki, N. M. (2011). Removal of Heavy Metals Using Chemicals Precipitation, Enginering and Technology Journal, 29, August 2017,
  9. Bugajski, P. M., Nowobilska-Majewska, E. & Kurek, K. (2017). The variability of pollution load of organic, biogenic and chromium ions in wastewater inflow to the treatment plant in Nowy Targ, Journal of Water and Land Development, 35, 1, pp. 11–17. DOI:10.1515/jwld-2017-0063
  10. Chaudhari, L. B. & Murthy, Z. V. P. (2010). Separation of Cd and Ni from multicomponent aqueous solutions by nanofiltration and characterization of membrane using IT model, Journal of Hazardous Materials, 180, 1–3, pp. 309–315. DOI:10.1016/j.jhazmat.2010.04.032
  11. Clever, M., Jordt, F., Knauf, R., Räbiger, N., Ruedebusch, M. & Hilker-Scheibel, R. (2000). Process water production from river water by ultrafiltration and reverse osmosis, Desalination, 131, 1–3, pp. 325–336. DOI:10.1016/S0011-9164(00)90031-6
  12. Cooper, C., Jiang, J. Q. & Ouki, S. (2002). Preliminary evaluation of polymeric Fe- and Al-modified clays as adsorbents for heavy metal removal in water treatment, Journal of Chemical Technology and Biotechnology, 77, 5, pp. 546–551. DOI:10.1002/jctb.614
  13. Dahlgren, L. (2010). Treatment of Spent Pickling Acid from Stainless Steel Production, Master of Science Thesis,
  14. De Pablo, L., Chávez, M. L. & Abatal, M. (2011). Adsorption of heavy metals in acid to alkaline environments by montmorillonite and Ca-montmorillonite, Chemical Engineering Journal, 171, 3, pp. 1276–1286. DOI:10.1016/j.cej.2011.05.055
  15. Deeloed, W., Wannapaiboon, S., Pansiri, P., Kumpeerakij, P., Phomphrai, K., Laobuthee, A., et al. (2020). Crystal Structure and Hirshfeld Surface Analysis of Bis(Triethanolamine)Nickel(II) Dinitrate Complex and a Revelation of Its Characteristics via Spectroscopic, Electrochemical and DFT Studies Towards a Promising Precursor for Metal Oxides Synthesis, Crystals, 10, 474.
  16. Fu, F. & Wang, Q. (2011). Removal of heavy metal ions from wastewaters : A review, Journal of Environmental Management, 92, 3, pp. 407–418. DOI:10.1016/j.jenvman.2010.11.011
  17. Fu, F., Zeng, H., Cai, Q., Qiu, R., Yu, J. & Xiong, Y. (2007). Effective removal of coordinated copper from wastewater using a new dithiocarbamate-type supramolecular heavy metal precipitant, Chemosphere, 69, 11, pp. 1783–1789. DOI:10.1016/j.chemosphere.2007.05.063
  18. Ijagbemi, C. O., Baek, M. H. & Kim, D. S. (2009). Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions, Journal of Hazardous Materials, 166, 1, pp. 538–546. DOI:10.1016/j.jhazmat.2008.11.085
  19. Juang, R. S., Kao, H. C. & Chen, W. (2006). Column removal of Ni(II) from synthetic electroplating waste water using a strong-acid resin, Separation and Purification Technology, 49, 1, pp. 36–42. DOI:10.1016/j.seppur.2005.08.003
  20. Juang, R. S. & Shiau, R. C. (2000). Metal removal from aqueous solutions using chitosan-enhanced membrane filtration, Journal of Membrane Science, 165, 2, pp. 159–167. DOI:10.1016/S0376-7388(99)00235-5
  21. Keane, M. A. (1998). The removal of copper and nickel from aqueous solution using Y zeolite ion exchangers, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 138, 1, pp. 11–20. DOI:10.1016/S0927-7757(97)00078-2
  22. Khan, S. A., Riaz-ur-Rehman, & Khan, M. A. (1995). Adsorption of chromium (III), chromium (VI) and silver (I) on bentonite, Waste Management, 15, 4, pp. 271–282. DOI:10.1016/0956-053X(95)00025-U
  23. Kondratenko, Y., Fundamensky, V., Ignatyev, I., Zolotarev, A., Kochina, T. & Ugolkov, V. (2017). Synthesis and crystal structure of two zinc-containing complexes of triethanolamine, Polyhedron, 130, , pp. 176–183. DOI:10.1016/j.poly.2017.04.022
  24. Kondratenko, Y., Zolotarev, A. A., Ignatyev, I., Ugolkov, V. & Kochina, T. (2020). Synthesis, crystal structure and properties of copper(II) complexes with triethanolamine and carboxylic acids (succinic, salicylic, cinnamic), Transition Metal Chemistry, 45, 1, pp. 71–81. DOI:10.1007/s11243-019-00359-7
  25. Kowal, A. L. & Świderska-Bróż, M. (1981). Removal of heavy metals in water rejuvenation, Ochorona Środowiska. (in Polish)
  26. Kurama, H. (2009). Treatment and recovery of nickel rich precipitate from plating plant waste, Journal of Environmental Engineering and Landscape Management, 17, 4, pp. 212–218. DOI:10.3846/1648-6897.2009.17.212-218
  27. Kurniawan, T. A., Chan, G. Y. S., Lo, W. H. & Babel, S. (2006). Physico-chemical treatment techniques for wastewater laden with heavy metals, Chemical Engineering Journal, 118, 1–2, pp. 83–98. DOI: 10.1016/j.cej.2006.01.015
  28. Li, C., Xie, F., Ma, Y., Cai, T., Li, H., Huang, Z. & Yuan, G. (2010). Multiple heavy metals extraction and recovery from hazardous electroplating sludge waste via ultrasonically enhanced two-stage acid leaching, Journal of Hazardous Materials, 178, 1–3, pp. 823–833. DOI:10.1016/j.jhazmat.2010.02.013
  29. Lin, S. H. & Kiang, C. D. (2003). Chromic acid recovery from waste acid solution by an ion exchange process: Equilibrium and column ion exchange modeling, Chemical Engineering Journal, 92, 1–3, pp. 193–199. DOI:10.1016/S1385-8947(02)00140-7
  30. Liu, H. L., Chen, B. Y., Lan, Y. W. & Cheng, Y. C. (2004). Biosorption of Zn(II) and Cu(II) by the indigenous Thiobacillus thiooxidans, Chemical Engineering Journal, 97, 2–3, pp. 195–201. DOI:10.1016/S1385-8947(03)00210-9
  31. Lochynski, P., Kowalski, M., Szczygiel, B. & Kuczewski, K. (2016). Improvement of the stainless steel electropolishing process by organic additives, Polish Journal of Chemical Technology, 18, 4, pp. 76–81. DOI:10.1515/pjct-2016-0074
  32. Lugo-Lugo, V., Barrera-Díaz, C., Bilyeu, B., Balderas-Hernández, P., Ureña-Nuñez, F. & Sánchez-Mendieta, V. (2010). Cr(VI) reduction in wastewater using a bimetallic galvanic reactor, Journal of Hazardous Materials, 176, 1–3, pp. 418–425. DOI:10.1016/j.jhazmat.2009.11.046
  33. Łyczkowska-Widłak, E., Lochyński, P. & Nawrat, G. (2020). Electrochemical polishing of austenitic stainless steels, Materials, 13, 11, pp. 1–25. DOI:10.3390/ma13112557
  34. Malaviya, P. & Singh, A. (2011). Physicochemical technologies for remediation of chromium-containing waters and wastewaters, Critical Reviews in Environmental Science and Technology, 41, 12, pp. 1111–1172. DOI:10.1080/10643380903392817
  35. Panayotova, M. & Velikov, B. (2002). Kinetics of heavy metal ions removal by use of natural zeolite, Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 37, 2, pp. 139–147. DOI:10.1081/ESE-120002578
  36. Papadopoulos, A., Fatta, D., Parperis, K., Mentzis, A., Haralambous, K. J. & Loizidou, M. (2004). Nickel uptake from a wastewater stream produced in a metal finishing industry by combination of ion-exchange and precipitation methods, Separation and Purification Technology, 39, 3, pp. 181–188. DOI:10.1016/j.seppur.2003.10.010
  37. Petrinic, I., Korenak, J., Povodnik, D. & Hélix-Nielsen, C. (2015). A feasibility study of ultrafiltration/reverse osmosis (UF/RO)-based wastewater treatment and reuse in the metal finishing industry, Journal of Cleaner Production, 101, , pp. 292–300. DOI:10.1016/j.jclepro.2015.04.022
  38. Priya, P. G., Basha, C. A., Ramamurthi, V. & Begum, S. N. (2009). Recovery and reuse of Ni(II) from rinsewater of electroplating industries, Journal of Hazardous Materials, 163, 2–3, pp. 899–909. DOI:10.1016/j.jhazmat.2008.07.072
  39. Rodríguez-Iznaga, I., Gómez, A., Rodríguez-Fuentes, G., Benítez-Aguilar, A. & Serrano-Ballan, J. (2002). Natural clinoptilolite as an exchanger of Ni2+ and NH4+ ions under hydrothermal conditions and high ammonia concentration, Microporous and Mesoporous Materials, 53, 1–3, pp. 71–80. DOI:10.1016/S1387-1811(02)00325-6
  40. Rubel, E., Tomassi, P. & Ziółkowski, J. (2009). Best Available Techniques (BAT) - Wytyczne dla powierzchniowej obróbki metali i tworzyw sztucznych. pp. 91. (in Polish)
  41. Szymański, K., Janowska, B., Sidełko, R. & Maciołek, P. (2018). Impact of environmental conditions on transformation of mineral pollutants present in landfill leachates, Przemysl Chemiczny, 97, 9, pp. 1517–1519. DOI:10.15199/62.2018.9.23
  42. Taha, A. A., Shreadah, M. A., Heiba, H. F. & Ahmed, A. M. (2017). Validity of Egyptian Na-montmorillonite for adsorption of Pb2+, Cd2+ and Ni2+ under acidic conditions: characterization, isotherm, kinetics, thermodynamics and application study, Asia-Pacific Journal of Chemical Engineering, 12, 2, pp. 292–306. DOI:10.1002/apj.2072
  43. Thomas, M., Białecka, B. & Zdebik, D. (2018). Removal of copper, nickel and tin from model and real industrial wastewater using sodium trithiocarbonate. The negative impact of complexing compounds, Archives of Environmental Protection, 44, 1, pp. 33–47. DOI:10.24425/118179
  44. Thomas, M., Kozik, V., Bąk, A., Barbusiński, K., Jazowiecka-Rakus, J. & Jampilek, J. (2021). Removal of Heavy Metal Ions from Wastewaters: An Application of Sodium Trithiocarbonate and Wastewater Toxicity Assessment, Materials, 14, 3, pp. 655. DOI:10.3390/ma14030655
  45. Wang, Z., Li, J., Song, W., Zhang, X. & Song, J. (2019). Decomplexation of electroplating wastewater by ozone-based advanced oxidation process, Water Science and Technology, 79, 3, pp. 589–596. DOI:10.2166/wcc.2018.167
Go to article

Authors and Affiliations

Paweł Lochyński
Paweł Wiercik
Sylwia Charazińska
Maciej Ostrowski

  1. Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, Poland
Download PDF Download RIS Download Bibtex


Surface wastewater pollution due to accidental runoff or release of oil or its products is a longstanding and common environmental problem. The aim of the study was to investigate the impact of concentrations of oil products (diesel) and suspended solids, the sorbent type, the water flow rate and the interfering factors (chlorides) on the dynamic sorption of diesel and to test regeneration of polypropylene after its use for sorption. The sorbents used for study included common wheat straw (Triticum aestivum), polypropylene and sorbents modified with hydrogen peroxide solution. Standard methods were used for the determination of the investigated parameters and an in-house procedure employing a gas chromatograph was used for the determination of diesel concentration. The following factors that impact the sorption of diesel were investigated during the study: diesel concentration, concentration of suspended solids; type of sorbent (common wheat straw (Triticum aestivum), wheat straw modified with hydrogen peroxide, and polypropylene), water flow rate; and influence of the interfering factors (chlorides). Filtration speed in the range of investigated speeds does not affect the efficiency of diesel removal. Removal efficiency does not depend on the concentration of diesel before the sorbent reaches its maximum sorption capacity. Filling containing 50% of polypropylene and 50% of wheat straw was used for the study. It was found that polypropylene and wheat straw do not remove chlorides and suspended solids from solution. The study found that the solution of hydrogen peroxide boosts the hydrophobic properties of common wheat straw, but does not affect the sorption of diesel. The recommended number of regenerations of polypropylene should be limited to two.
Go to article


  1. Adebajo, M.O., Frost, R.I., Kloprogge, J.T., Carmody, O. & Kokot, S. (2003). Porous materials for oil spill cleanup: A review of synthesis and absorbing properties, Journal of Porous Material, 3, pp. 159-170. DOI:10.1023/A:1027484117065
  2. Akpomie, K.G. & Conradie, J. (2021). Ultrasonic aided sorption of oil from oil-in-water emulsion onto oleophilic natural organic-silver nanocomposite, Chemical Engineering Research and Design, 165, pp. 12-24. DOI:10.1016/j.cherd.2020.10.019
  3. American Chemistry Council. (2018). (
  4. Baig, N. & Saleh, T.A. (2019). Novel hydrophobic macroporous polypropylene monoliths for efficient separation of hydrocarbons, Composites Part B: Engineering, 173, pp. 106805. DOI:10.1016/j.compositesb.2019.05.016
  5. Baiseitov, D.A., Tulepov, M.I., Sassykova, L.R., Gabdrashova, S.E., Essen, G.A., Kudaibergenov, K.K. & Mansurov, Z.A. (2016). Sorption capacity of oil sorbent for the removal of thin films of oil, Bulgarian Chemical Communications, 3, pp. 446-450.
  6. Bayat, A., Aghamiri, S. F., Moheb, A. & Vakili-Nezhaad, G. (2005). Oil spill cleanup from sea water by sorbent materials, Journal of Chemical Engineering Technology, 12, pp. 1525-1528. DOI:10.1002/ceat.200407083
  7. Chandra, S., Sharma, R., Singh, K. & Sharma, A. (2013). Application of bioremediation technology in the environment contaminated with oil hydrocarbon, Annals of Microbiology, 63, pp. 417-431. DOI: 10.1007/s13213-012-0543-3
  8. Chaouki, Z., Zaitan, H., Nawdali M., Vasarevičius S. & Mažeikienė, A. (2020). Oil removal from refinery wastewater through adsorption on low cost natural biosorbents, Environmental engineering and management journal, 1, pp. 105-112. DOI:10.30638/eemj.2020.011
  9. Deschamps, G., Caruel, H., Borredon, M. E., Albasi, C., Riba, J. P., Bonnin, C. & Vignoles, C. (2003). Oil removal from water by sorption on hydrophobic cotton fibers. 2. Study of sorption properties in dynamic mode, Environmental science & technology, 21, pp. 5034-5039. DOI:10.1021/es020249b
  10. Gushchin, A.A., Grinevich, V.I., Gusev, G.I., Kvitkova, E.Y. & Rybkin, V.V. (2018). Removal of oil products from water using a combined process of sorption and plasma exposure to DBD, Plasma Chemistry and Plasma Processing, 5, pp. 1021-1033. DOI:10.1007/s11090-018-9912-4
  11. Hybská, H., Mitterpach, J., Samešová, D., Schwarz, M., Fialová, J. & Veverková, D. (2018). Assessment of ecotoxicological properties of oils in water, Archives of Environmental Protection, 4, pp. 31-37. DOI:10.24425/aep.2018.122300
  12. Kamble, S.P., Mangrulkar, P.A., Bansiwal, A.K. & Rayalu, S.S. (2007). Adsorption of phenol and o-chlorophenol on surface altered fly ash based molecular sieves, Chemical Engineering Journal, 138, pp. 73–83. DOI:10.1016/j.cej.2007.05.030
  13. Karyab, H., Mirhosseini, M. Moradi, S. & Karimi, F.F. (2016). Removal of light petroleum hydrocarbons from water sources using polypropylene and titanium dioxide nano-composite, Journal of Inflammatory Disease, 3, pp. 32-26.
  14. Król, M. & Rożek, P. (2020). Sorption of oil products on the synthetic zeolite granules, Mineralogia, 51, pp. 1-7. DOI:10.2478/mipo-2020-0001
  15. Kwaśny, J. A., Kryłów, M. & Balcerzak, W. (2018). Oily wastewater treatment using a zirconia ceramic membrane–a literature review, Archives of Environmental Protection, 3, pp. 3-10. DOI: 10.24425/aep.2018.122293
  16. Li, G., Guo, S. & Hu, J. (2016). The influence of clay minerals and surfactants on hydrocarbon removal during the washing of petroleum-contaminated soil, Chemical Engineering Journal, 286, pp. 191-197. DOI:10.1016/j.cej.2015.10.006
  17. Li, S., Wu, X., Cui, L., Zhang, Y., Luo, X., Zhang, Y. & Dai, Z. (2015). Utilization of modification polyester non-woven as an affordable sorbent for oil removal, Desalination and Water Treatment, 11, pp. 3054-3061. DOI:10.1080/19443994.2014.913264
  18. Lurchenko, V., Melnikova, O., Mikhalevich, N. & Borzenko, O. (2019). Surface wastewater treatment from various fractions of petroleum products from the territory of highway infrastructure facilities, Environmental problems, 2, pp. 74-81. DOI:10.23939/ep2019.02.074
  19. Maceiras, R., Alfonsin, V., Martinez, J. & de Rey, C.M.V. (2018). Remediation of diesel-contaminated soil by ultrasonic solvent extraction, International Journal of Environmental Research, 5, pp. 651-659. DOI:10.1007/s41742-018-0121-z
  20. Mandal, S. & Mayadevi, S. (2009). Defluoridation of water using as-synthesized Zn/Al/Cl anionic clay adsorbent: euilibrium and regeneration studies, Journal of Hazardous Materials, 167, pp. 873-978. DOI:10.1016/j.jhazmat.2009.01.069
  21. Mauricio-Gutiérrez, A., Machorro-Velázquez, R., Jiménez-Salgado, T., Vázquez-Crúz, C., Sánchez-Alonso, M. P. & Tapia-Hernández, A. (2020). Bacillus pumilus and Paenibacillus lautus effectivity in the process of biodegradation of diesel isolated from hydrocarbons contaminated agricultural soils, Archives of Environmental Protection, 4, pp. 56-69. DOI:10.24425/aep.2020.135765
  22. Mažeikiene, A. & Švediene, S. (2015). The suitability of natural and synthetic filter material for the removal of oil products from the aqueous media, Desalination and Water Treatment, 27, pp. 12487-12495. DOI:10.1080/19443994.2015.1053993
  23. Mažeikienė, A., Rimeika, M. & Švedienė, S. (2014). Oil removal from water by filtration, Journal of Environmental Engineering and Landscape Management, 1, pp. 64-70. DOI:10.3846/16486897.2014.885906
  24. Mohammadi, L., Rahdar, A., Bazrafshan, E., Dahmardeh, H., Susan, M., Hasan, A.B. & Kyzas, G.Z. (2020). Petroleum Hydrocarbon Removal from Wastewaters: A Review, Processes, 4, pp. 447. DOI:10.3390/pr8040447
  25. Moshe, S.B. & Rytwo, G. (2018). Thiamine-based organoclay for phenol removal from water, Applied Clay Science, 155, pp. 50-56. DOI:10.1016/j.clay.2018.01.003
  26. Paulauskiene, T. (2018). Ecologically friendly ways to clean up oil spills in harbor water areas: crude oil and diesel sorption behavior of natural sorbents, Environmental Science and Pollution Research, 10, pp. 9981-9991. DOI:10.1007/s11356-018-1316-8
  27. Quím, R.C. (2020). Highly porous polymeric composite with γ-Fe2O3 nanoparticles for oil products sorption, Revista Cubana de Química, 1, pp. 104-116.
  28. Rudkovsky, A.V., Fetisova, O.Y. & Chesnokov, N.V. (2016). Sorption of oil products by carbon sorbents from Siberian larch bark, Chemistry, 1, pp. 109. DOI:10.17516/1998-2836-2016-9-1-109-118
  29. Sari, G. L., Trihadiningrum, Y. & Ni'matuzahroh, N. (2018). Petroleum hydrocarbon pollution in soil and surface water by public oil fields in Wonocolo sub-district, Indonesia, Journal of Ecological Engineering, 2, pp.184-193. DOI:10.12911/22998993/82800
  30. The surface waste water management regulation (2019). ( (in Lithuanian)
  31. Thilagavathi, G. & Das, D. (2018). Oil sorption and retention capacities of thermally-bonded hybrid nonwovens prepared from cotton, kapok, milkweed and polypropylene fibers, Journal of environmental management, 219, pp. 340-349. DOI:10.1016/j.jenvman.2018.04.107
  32. Varjani, S.J. Rana, D.P. Jain, A.K. Bateja, S. & Upasani, V.N. (2015). Synergistic ex-situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat, India, International Biodeterioration & Biodegradation, 103, pp. 116-124. DOI:10.12911/22998993/82800
  33. Vilūnas, A., Švedienė, S. & Mažeikienė, A. (2014). The research of sorbent usage for oil products removal from storm water runoff. (
  34. Voronov, A.A, Malyshkina, E.S., Vialkova, E.I. & Maksimova, S.V. (2018). Development of the rational urban engineering systems for the surface wastewater treatment, Urban сonstruction and architecture, 3, pp. 43-50. DOI: 0.17673/Vestnik.2018.03.10
  35. Vuruna, M., Veličković, Z., Perić, S., Bogdanov, J., Ivanković, N. & Bučko, M. (2017). The influence of atmospheric conditions on the migration of diesel fuel spilled in soil, Archives of Environmental Protection, 1, pp. 73-79. DOI:10.1515/aep-2017-0004
  36. Xiao Jun, Z., Zhengang, L. & Min Dong, C. (2016). Effect of H2O2 concentrations on copper removal using the modified hydrothermal biochar, Journal of Bioresourse Technology, 1, pp. 262-267. DOI:10.1016/j.biortech.2016.02.032
  37. Yalcinkaya, F., Boyraz, E., Maryska, J. & Kucerova, K. (2020). A review on membrane technology and chemical surface modification for the oily wastewater treatment, Materials, 13, pp. 1-14. DOI:10.3390/ma13020493
Go to article

Authors and Affiliations

Dainius Paliulis

  1. Vilnius Gediminas Technical University, Lithuania
Download PDF Download RIS Download Bibtex


The research covered two lakes: Karczemne and Domowe Małe, which served as receivers for rainwater and municipal or industrial sewage. The sediment cores were obtained using a Kajak tube sampler. Analyses of HM, PAH and PCB were done by the AAS, ICP-AES and GC MS methods. OM, SiO2, TH, Ca, Mg, CO2, Fe, Al, Mn, TN and TP were measured. The research showed that the sediments of Lake Karczemne, into which the untreated municipal sewage was discharged, are characterized by a high content of P. It was found that the sediments accumulate toxins, OM and pollutants characteristic for various industries. Karczemne Lake which collected municipal and industrial wastewater, contained a high content of Pb, Cu and PAH in the sediments, and Domowe Małe Lake, receiving stormwater, contained high concentrations of PAH. Research has shown that one of the most important tools for selecting an appropriate method of lake restoration is the analysis of the spatial distribution of pollutants in the bottom sediments. Thanks to such an analysis of the composition of the bottom sediments and the correlation between the components of the sediments and their sorption properties, the restoration of the Karczemne Lake using the Ripl method was planned and the possibility of restoration of the Domowe Małe Lake in this way was eliminated.
Go to article


  1. Algül, F. & Beyhan, M. (2020). Concentrations and sources of heavy metals in shallow sediments in Lake Bafa, Turkey. Scientific Reports, 10, 11728. DOI:10.1038/s41598-020-68833-2.
  2. Alves, C., Gonçalves, C., Evtyugina, M., Pio, C., Mirante, F. & Puxbaum, H. (2010). Particulate organic compounds emitted form experimental wildland fires in a Mediterranean ecosystem. Atmospheric Environment, 44, 23, pp. 2750-2759. DOI:10.1016/j.atmosenv.2010.04.029.
  3. Augustyniak, R., Grochowska, J.K., Łopata, M., Parszuto, K., Tandyrak, R. & Tunowski, J. (2019). Sorption properties of the bottom sediment of a lake restored by phosphorus inactivation method15 years after the termination of the lake restoration procedures. Water, 11, 10, 1-20. DOI:10.3390/w11102175.
  4. Augustyniak, R., Neugebauer, M., Kowalska, J., Szymański, D., Wiśniewski, G., Filipkowska, Z., Grochowska, J., Łopata, M., Parszuto, K. & Tandyrak, R. (2015). Bottom deposits of stratified, seepage, urban lake (on the example of Tyrsko Lake, Poland) as a factor potentially shaping lake water quality. Journal of Ecological Engineering, 18, 5, pp. 55-62.
  5. Barbusiński, K. & Nocoń, W. (2011). Heavy metal compound content in Kłodnica bottom sediments. Environmental Protection, 33, 1, pp. 13 – 17. (in Polish)
  6. Bartoli, G., Papa, S., Sagnella, E. & Fioretto, A. (2012). Heavy metal content in sediments along the Calore river: Relationships with physical–chemical characteristics. Journal of Environmental Management, 95, pp. 9-14. DOI:10.1016/j.jenvman.2011.02.013.
  7. Bing, H.J., Wu, Y.H., Sunz, B. & Yao, S.C. (2011). Historical trends of heavy metal contamination and their sources in lacustrine sediment from Xijiu Lake, Taihu Lake Catchment, China. Journal of Environmental Sciences, 23, 10, pp. 1671-1678. DOI:10.1016/s1001-0742(10)60593-1.
  8. Birch, G. & Taylor, S. (1999). Source of heavy metals in sediments of the Port Jackson estuary, Australia. Science of The Total Environment, 227, (2–3), pp. 123-138.
  9. Bocca, B., Alimonti, A., Petrucci, F., Violante, N., Sancesario, G. & Forte, G. (2004). Quantification of trace elements by sector field inductively coupled plasma spectrometry in urine, serum, blood and cerebrospinal fluid of patients with Parkinson’s disease. Spectrochimica Acta, 59, 4, pp. 559–566. DOI:10.1016/j.sab.2004.02.007.
  10. Bojakowska, I. & Sokołowska, G. (1996). Heavy metals in lake sediments of the Kashubian Lake District. Geological Review, 44, 9, pp. 920 – 923. (in Polish)
  11. Bojakowska, I., Sztuczyńska, A. & Grabiec-Raczak, E. (2012). Monitoring studies of lake sediments in Poland: polycyclic aromatic hydrocarbons. Bulletin of the Polish Geological Institute, 450, pp. 17-26. (in Polish)
  12. Brzozowska, R. & Gawrońska, H. (2009). The influence of a long-term artificial aeration on the nitrogen compounds exchange between bottom sediments and water in Lake Długie. Oceanological and Hydrobiological Studies, 38, 1, pp. 113-119.
  13. Cappacioni, B., Martini, M. & Mangani, F. (1995). Light hydrocarbons in hydrothermal and magmatic fumaroles: hints of catalytic and thermal reactions. Bulletin of Volconalogy, 56, 8, pp. 593-600.
  14. Chen, M., Ding, S., Zhang, L., Li, Y., Sun, Q. & Zhang, Ch. (2017). An investigation of the effects of elevated phosphorus in water on the release of heavy metals in sediments at a high resolution. Science of The Total Environment, 575, pp. 330-337. DOI:10.1016/j.scitotenv.2016.10.063.
  15. Dhanakumar, S., Solaraj, G. & Mohanraj, R. (2015). Heavy metal partitioning in sediments and bioaccumulation in commercial fish species of three major reservoirs of river Cauvery delta region, India. Ecotoxicology and Environmental Safety, 113, pp. 145-151. DOI:10.1016/j.ecoenv.2014.11.032.
  16. EPA (2001). Parameters of Water Quality. Interpretation and Standards. Environmental Protection Agency, Wexford.
  17. Fu, J., Zhao, Ch., Luo, Y., Liu, Ch., Kyzas, G.Z., Luo, Y., Zhao, D., An, S. & Zhu, H. (2014). Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors. Journal of Hazardous Materials, 270, pp. 102-109. DOI:10.1016/j.jhazmat.2014.01.044.
  18. Gabarrón, M., Faz, A., Martínez-Martínez, S., Zornoza, R. & Acosta, J.A. (2017). Assessment of metals behaviour in industrial soil using sequential extraction, multivariable analysis and a geostatistical approach. Journal of Geochemical Exploration, 172, pp. 174-183. DOI:10.1016/j.gexplo.2016.10.015.
  19. Grochowska, J., Augustyniak, R., Łopata, M. & Tandyrak, R. (2020). Is it possible to restore a heavily polluted, shallow, urban lake? Applied Science, 10, 11, pp. 3698. DOI:10.3390/app10113698.
  20. Grochowska, J., Augustyniak, R., Łopata, M., Parszuto, K., Tandyrak, R. & Płachta, A. (2019). From saprotrophic to clear water status: the restoration path of a degraded urban lake. Water, Air & Soil Pollution, 230, pp. 1-14. DOI:10.1007/s11270-019-4138-5.
  21. Grochowska, J., Tandyrak, R. & Wiśniewski, G. (2014). Long-term hydrochemical changes in a lake after the application of several protection measures in the catchment. Polish Journal of Natural Sciences, 29, 3, pp. 251 - 263.
  22. Håkanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14, pp. 975-1001.
  23. Håkanson, L. (2004). Internal loading: A new solution to an old problem in aquatic sciences. Lake and Reservoir and Management, 9, 1, pp. 3-23. DOI:10.1111/j. 1440-1770.2004.00230.x.
  24. Hermanowicz, W., Dożańska, W., Dojlido, J., Koziorowski, B. & Zerbe, J. (1999). Physico - chemical study of water and wastewater. Ed. Arkady, Warsaw, Poland, 1999. (in Polish)
  25. Jansson, M. (1987). Anaerobic dissolution of iron-phosphorus complex in sediment due to the activity of nitrate-reducing bacteria. Microbial Ecology, 14, pp. 81-89.
  26. Jeremiason, J.D., Eisenreich, S.J. & Peterson, M.J. (2011). Accumulation and recycling of PCBs and PAHs in artificially eutrophied lake 227. Canadian Journal of Fisheries and Aquatic Sciences, 56, 4, pp. 650-660. DOI:10.1139/cjfas-56-4-650.
  27. Jeremiason, J.D., Eisenreich, S.J., Peterson, M.J., Beaty, K.G., Hecky, R. & Elser, J.J. (1999). Biogeochemical cycling of PCBs in lakes of variable trophic status: A paired-lake experiment. Limnology and Oceanography, 44, 3, 2, pp. 889-902. DOI:10.4319/lo.1999.44.3.
  28. Joniak, T., Jakubowska, N. & Szeląg-Wasilewska, E. (2013). Degradation of the recreational functions of urban lake: A preliminary evaluation of water turbidity and light availability (Strzeszyńskie Lake, Western Poland). Polish Journal of Natural Sciences, 28, pp. 43–51.
  29. Juśkiewicz, W., Marszelewski, W. & Tylmann, W. (2015). Differentiation of the concentration of heavy metals and persistent organic pollutants in lake sediments depending on the catchment management (Lake Gopło case study). Bulletin of Geography. Physical Geography Series, 8, 71-80. DOI:10.1515/bgeo-2015-0006.
  30. Kaca, E. (2003). Measurements of water flow volume and mass of substance contained in it, and its uncertainty on the example of fish ponds. Water-Environment-Rural Areas, 13, 41, pp. 31-57. (in Polish)
  31. Kang, X., Song, J., Yuan, H., Duan, L., Li, X., Li, N., Liang, X. & Qu, B. (2017). Speciation of heavy metals in different grain sizes of Jiaozhou Bay sediments: bioavailability, ecological risk assessment and source analysis on a centennial timescale. Ecotoxicology and Environmental Safety, 143, pp. 296-306. DOI:10.1016/j.ecoenv.2017.05.036.
  32. Katsoyiannis, A., Terzi, E. & Cai, Q.Y. (2007). On the use of PAH molecular diagnostic ratios in sewage sludge for the understanding of the PAH sources. Is this use appropriate? Chemosphere, 69, pp. 1337-1339. DOI:10.1016/j.chemosphere.2007.05.084.
  33. Kishe, M.A. & Machiwa, J.F. (2003). Distribution of heavy metals in sediments of Mwanza Gulf of Lake Victoria, Tanzania. Environment International, 28, 7, pp. 619-625. DOI:10.1016/S0160-4120(02)00099-5.
  34. Kondracki, J.A. (2011). Regional Geography of Poland. Ed. PWN, Warsaw, Poland. (in Polish)
  35. Kowalczewska-Madura, K., Dondajewska, R., Gołdyn, R., Kozak, A. & Messyasz, B. (2018). Internal phosphorus loading from the bottom sediments of a dimictic lake during its sustainable restoration. Water, Air & Soil Pollution, 229, 8, pp. 280. DOI:10.1007/s11270-018-3937-4.
  36. Kowalczewska-Madura, K., Gołdyn, R. & Dondajewska, R. (2011). Phosphorus release from the bottom sediments of Lake Rusałka (Poznań, Poland). Oceanological and Hydrobiological Studies, 38, 4, pp. 135-144. DOI:10.2478/VI00009-010-0046-0.
  37. LAWA – Länder-Arbeitsgemeinschaft Wasser. Beurteilung der Wasserbeschaffenheit von Fließgewässern in der Bundesrepublik Deutschland – chemische Gewässergüteklassifi kation. Zielvorgaben zum Schutz oberirdischer Binnengewässer, Berlin, Germany, Band 2, 10, pp. 1–26.
  38. Lidell, M., Bremle, G., Broberg, O. & Larsson, P. (2001). Monitoring of persistent organic pollutants (POPs): examples from Lake Väner, Sweden. Ambio 30, 8, pp. 545-551. DOI:10.1579/0044-7447-30.8.545.
  39. Liu, B., Xu, H., Lan, J., Sheng, E., Che, S. & Zhou, X. (2014). Biogenic silica contents of Lake Quinghai sediments and its environmental significance. Frontiers of Earth Science, 8, 4, pp. 573-581. DOI:10.1007/s11707-014-0440-0.
  40. Liu, D., Yuan, P., Tian, Q., Liu, H., Deng, L., Song, Y., Zhou, J., Losic, D., Zhou, J., Song, H., Guo, H. & Fan, W. (2019). Lake sedimentary biogenic silica from diatoms constitutes a significant global sink for aluminium. Nature Communications, 10, pp. 4829. DOI:10.1038/s41467-019-12828-9.
  41. Łopata, M. (2010). Water-legal survey for the introduction of substances inhibiting the growth of algae to the waters of Domowe Duże and Domowe Małe lakes in Szczytno in connection with the planned reclamation of the lakes using the phosphorus inactivation method. Typescript. (in Polish)
  42. Mamindy-Pajany, Y., Hamer, B., Romeo, M., Geret, F., Galgani, F., Durmisi, E., Hurel, Ch. & Marmier, N. (2011). The toxicity of composed sediments from Mediterranean ports evaluated by several bioassays. Chemosphere, 82, 3, pp. 362-369. DPO:10.1016/j.chemosphere.2010.10.005.
  43. Migaszewski, Z.M. & Gałuszka, A. (2003). Outline of environmental geochemistry. Publishing of the Świętokrzyska Academy, Kielce, Poland.(in Polish)
  44. Nasr, S.M., Okbah, M.A. & Kasem, S.M. (2006). Environmental assessment of heavy metal pollution in bottom sediments of Aden Port, Yemen. International Journal of Oceans and Oceanography, 1, 1, pp. 99-109.
  45. Ordinance of the Ministry of the Environment of 1 September 2016 on the method of conducting an assessment of the soil surface pollution. Journal of Laws of 2016, item 1395. (in Polish)
  46. Ordinance of the Ministry of the Environment of 11 May 2015 on the recovery of waste outside installations and equipment. Journal of Laws of 2015, item 796. (in Polish)
  47. Piaścik, H. (1996). Geological and geomorphological conditions of the Masurian Lake District and the Sępopolska Plain. Problem Journals of the Progress of Agricultural Sciences, 431, pp. 31-45. (in Polish)
  48. Piasecki, D. (1960). Geological and morphological sketch of the Radunia river basin. Annals of the Polish Geological Society, XXIX, 4, pp. 385-394. (in Polish)
  49. Planter, M., Jędrychowska, G. & Łaźniewski, J. (2005). Assessment of the purity of the Bartąg, Domowe Duże, Domowe Małe and Ukiel lakes according to the research from 2004. VIEP Olsztyn, 30, 2, pp. 1-5. (in Polish)
  50. Pohl, A., Kostecki, M., Jureczko, I., Czaplicka, M. & Łozowski, B. (2018). Polycyclic aromatic hydrocarbons in water and bottom sediments of a shallow, lowland dammed reservoir (on the example of reservoir Blachownia, South Poland). Archives of Environment Protection, 44, 1, pp. 10-23. DOI:10.24425/118177.
  51. Prosowicz, D. (2008). Metals in bottom sediments of Wigry Lake. Geologia, 34, pp. 85–108. (in Polish)
  52. Ripl, W. (1976a). Biochemical oxidation of polluted lake sediment with nitrate. A new restoration method. Ambio, 5, pp. 132–135.
  53. Ripl, W. (l976b). Prozeßsteuerung in geschädigten See-Ökosystemen. Vierteljahresschrift der Naturforschenden Gesell-schaft Zürich, 121, pp. 301–308.
  54. Roden, E.& Emonds, J. (1997). Phosphate mobilization in iron-rich anaerobic sediments: microbial Fe(III) oxide reduction versus iron-sulfide formation. Archive fur Hydrobiologie, 139, 3, pp. 347-378. DOI:10.1127/archiv-hydrobiol/139/1997/347.
  55. Sanders, G., Hamilton-Taylor, J. & Jones, K.C. (1996). PCB and PAH dynamics in a small rural lake. Environmental Science and Technology, 30, 10, pp. 2958-2966. DOI:10.10.21/es9509240.
  56. Sojka, M., Jaskuła, J. & Siepak, M. (2018). Heavy metals in bottom sediments of reservoirs in the lowland area of Western Poland: concentrations, distribution, sources and ecological risk. Water, 11, pp. 56. DOI:10.3390/w11010056.
  57. Stogiannidis, E. & Laane, R. (2015). Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: an overview of possibilities. In: Whitacre, D.M. (ed.) Reviews of environmental contamination and toxicology. Springer International Publishing, Switzerland, 234, pp. 49-133.
  58. Tibco Software Inc. STATISTICA version 13.0 2018.
  59. Waisberg, M., Joseph, P., Hale, B. & Beyersmann, D. (2003). Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology, 192, (2-3), pp. 95–117. DOI:10.1016/s0300-483x(03)00305-6.
  60. Wakida, F.T., Lara-Ruiz, D., Temores-Pen, J., Rodriguez-Ventura, J.G., Diaz, C. & Garcia-Flores, E. (2008). Heavy metals in sediments of the Tecate River, Mexico. Environmental Geology, 54, 3, pp. 637-642. DOI:10.1007/s00254-007-0831-6.
  61. Wang, X., Zhang, L., Zhao, Z. & Cai, Y. (2018). Heavy metal pollution in reservoir in the hilly area of southern China: Distribution, source apportionment and health risk assessment. Science of the Total Environment, 634, pp. 158-169. DOI:10.1016/j.scitotenv.2018.03.340.
  62. Wilson, D.C. (2018). Potential urban runoff impacts and contaminant distributions in shoreline and reservoir environments of Lake Havasu, southwestern United States. Science of the Total Environment, 621, pp. 95-107. DOI:10.1016/j.scitotenv.2017.11.223.
  63. Wróbel, P. (2012). Elaboration of bathymetry and morphometric chart of the Lake Domowe Małe. Typescript. (in Polish)
  64. Yunker, M.B., Macdonald, R.W., Vingarzan, R., Mitchell, R.H., Goyette, D. & Sylvestre, S. (2002). PAH in the Fraser River basin: a critical appraisal of PAH ratios as indicator of PAH source and composition. Organic Geochemistry, 33, pp. 489-515. DOI:10.1016/s0146-6380(02)00002.
  65. Zamparas, M. & Zacharias, I. (2014). Restoration of eutrophic freshwater by managing internal nutrient loads. Science of the Total Environment, 496, pp. 551-562. DOI:10.1016/j.scitotenv.2014.07.076.
Go to article

Authors and Affiliations

Jolanta Katarzyna Grochowska
Renata Tandyrak
Renata Augustyniak
Michał Łopata
Dariusz Popielarczyk
Tomasz Templin

  1. University Warmia and Mazury in Olsztyn, Poland
Download PDF Download RIS Download Bibtex


The area of the Coastal Landscape Park (CLP) due to its location is extremely attractive touristi carea. In the summer season, a significant increase in population density is observed, which influences surface water quality. Large numbers of tourists generate an increased amount of municipal wastewater, being treated in local treatment plants and discharged into rivers and streams. The paper presents preliminary research from summer 2016 on three watercourses ending in the Baltic Sea: Piaśnica, Karwianka and Czarna Wda rivers. It is a part of a long-term project conducted in CLP to assess surface waters quality. The scope of research included measurements of in situ parameters (temperature, conductivity, pH, dissolved oxygen). Chemical Oxygen Demand was determined using a spectrophotometer. Ion chromatography was used to determine ions concentrations (including biogenic compounds). Sanitary state of watercourses was assessed based on fecal coliforms abundance, which number was determined by the cultivation method. The determination of microbiological parameters such as: prokaryotic cell abundance expressed as total cells number (TCN), prokaryotic cell biovolume expressed as average cell volume (ACV), the prokaryotic biomass (PB) and prokaryotic cell morphotype diversity was determined using epifluorescence microscopy method. Results showed that water quality of Piaśnica and Czarna Wda rivers were affected by discharged treated wastewater. In the case of Karwianka River, the main pollution source could be surface runoff from fields and unregulated sewage management in this area. The conducted research confirmed the urgent need for better protection of this area to conserve both its ecosystem and value for tourism.
Go to article


  1. Amin, A., Ahmed, I., Salam, N., Kim, B. Y., Singh, D., Zhi, X. Y., Xiao, M. & Li, W. J. (2017). Diversity and Distribution of Thermophilic Bacteria in Hot Springs of Pakistan. Microbial Ecology, 74 (1), pp. 116–127. DOI:10.1007/s00248-017-0930-1
  2. APHA. (2005). Standard methods for the examination of water and wastewater. In 21st ed. Washington DC, USA.
  3. Baczkowska, E., Kalinowska, A., Ronda, O., Jankowska, K., Bray, R., Płóciennik, B. & Polkowska, Ż. (2022). Microbial and chemicalquality assessment of the small rivers entering the South Baltic. Part II: Case study on the watercourses in the Puck Bay catchment area. Archives of Environmental Protection. (under review
  4. Becerra-Castro, C., Macedo, G., Silva, A. M. T., Manaia, C. M. & Nunes, O. C. (2016). Proteobacteria become predominant during regrowth after water disinfection. Science
  5. of the Total Environment, 573, pp. 313–323. DOI:10.1016/j.scitotenv.2016.08.054
  6. Borkowski, R. (2019). Wyzwania i zagrożenia dla turystyki na Półwyspie Helskim w XXI wieku. Bezpieczeństwo. Teoria i Praktyka, 3, pp. 55–70. DOI:10.34697/2451-0718-b. (in Polish)
  7. Brysiewicz, A., Bonisławska, M., Czerniejewski, P. & Kierasiński, B. (2019). Quality analysis of waters from selected small watercourses within the river basins of Odra river and Wisła river. Rocznik Ochrona Srodowiska, 21(2), pp. 1202–1216. (in Polish)
  8. Bugajski, P. & Satora, S. (2009). Bilans ścieków dopływających i dowożonych do oczyszczalni na przykładzie wybranego obiektu. Infrastruktura i Ekologia Terenów Wiejskich, 5, pp. 73–82. (in Polish)
  9. Cai, L. & Zhang, T. (2013). Detecting human bacterial pathogens in wastewater treatment plants by a high-throughput shotgun sequencing technique. Environmental Science and Technology, 47(10), pp. 5433–5441. DOI:10.1021/es400275r
  10. Caruso, G., La Ferla, R., Azzaro, M., Zoppini, A., Marino, G., Petochi, T., Corinaldesi, C., Leonardi, M., Zaccone, R., Fonda, S., Caroppo, C., Monticelli, L., Azzaro, F., Decembrini, F., Maimone, G., Cavallo, R., Stabili, L., Todorova, N., Karamfilov, V. & Danovaro, R. (2016). Microbial assemblages for environmental quality assessment: Knowledge, gaps and usefulness in the European marine strategy framework directive. Critical Reviews in Microbiology, 42(6). DOI:10.3109/1040841X.2015.1087380
  11. Chien, A. C., Hill, N. S. & Levin, P. A. (2012). Cell size control in bacteria. Current Biology, 22(9), R340–R349. DOI:10.1016/j.cub.2012.02.032
  12. Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., Lancelot, C. & Likens, G. E. (2009). Ecology - Controlling eutrophication: Nitrogen and phosphorus. In Science (Vol. 323, Issue 5917, pp. 1014–1015). American Association for the Advancement of Science. DOI:10.1126/science.1167755
  13. Council of Ministers, 2011: Rozporządzenia Ministra Środowiska z dnia 9 listopada 2011 r. w sprawie klasyfikacji stanu ekologicznego, potencjału ekologicznego i stanu chemicznego jednolitych części wód powierzchniowych , (2011) (testimony of (Dz. U. poz. 1549, zał 6). (in Polish)
  14. Council of Ministers, 2014: Rozporządzenie Ministra Środowiska z dnia 22 października 2014 r. w sprawie sposobu klasyfikacji stanu jednolitych części wód powierzchniowych oraz środowiskowych norm jakości dla substancji priorytetowych., (2014) (testimony of Dz.U.2014 poz.1482). (in Polish)
  15. Council of Ministers, 2015: Rozporządzenie Ministra Zdrowia z dnia 3 lipca 2015 r. zmieniające rozporządzenie w sprawie prowadzenia nadzoru nad jakością wody w kąpielisku i miejscu wykorzystywanym do kąpieli, 1 (2015) (testimony of Dz.U. 2015. poz. 1510). (in Polish)
  16. Council of Ministers, 2016a: Rozporządzenie Ministra Środowiska z dnia 21 lipca 2016 r. w sprawie sposobu klasyfikacji stanu jednolitych części wód powierzchniowych oraz środowiskowych norm jakości dla substancji priorytetowych., (2016) (testimony of Dz.U.2016 poz.1187). (in Polish)
  17. Council of Ministers, 2016b: Rozporządzenie Rady Ministrów z dnia 18 października 2016 r. w sprawie Planu gospodarowania wodami na obszarze dorzecza Wisły, (2016) (testimony of Dz.U.2016 poz.1991). (in Polish)
  18. Council of Ministers, 2016c: Rozporządzenie Rady Ministrów z Dnia 18 Października 2016 r. w Sprawie Planu Gospodarowania Wodami Na Obszarze Dorzecza Wisły, (2016) (testimony of Dz.U. 2016 poz. 1911). (in Polish)
  19. Council of Ministers, 2019: Rozporządzenie Ministra Zdrowia z dnia 17 stycznia 2019 r. w sprawie nadzoru nad jakością wody w kąpielisku i miejscu okazjonalnie wykorzystywanym do kąpieli, (2019) (testimony of Dz.U.2019 poz.255). (in Polish)
  20. Council of Ministers, 2021: Rozporządzenie Ministra Infrastruktury z dnia 25 czerwca 2021 r. w sprawie klasyfikacji stanu ekologicznego, potencjału ekologicznego i stanu chemicznego oraz sposobu klasyfikacji stanu jednolitych części wód powierzchniowych, a także środowiskowych norm, (2021) (testimony of Dz.U. 2021 poz. 1475). (in Polish)
  21. Curr, R. H. F., Koh, A., Edwards, E., Williams, A. T. & Davies, P. (2000). Assessing anthropogenic impact on Mediterranean sand dunes from aerial digital photography. Journal of Coastal Conservation, 6(1), pp. 15–22. DOI:10.1007/BF02730463
  22. De Brauwere, A., Ouattara, N. K., & Servais, P. (2014). Modeling fecal indicator bacteria concentrations in natural surface waters: A review. Critical Reviews in Environmental Science and Technology, 44(21), pp. 2380–2453. DOI:10.1080/10643389.2013.829978
  23. de la Vega, C., Schückel, U., Horn, S., Kröncke, I., Asmus, R. & Asmus, H. (2018). How to include ecological network analysis results in management? A case study of three tidal basins of the Wadden Sea, south-eastern North Sea. Ocean and Coastal Management, 163(May), pp. 401–416. DOI:10.1016/j.ocecoaman.2018.07.019
  24. Dodds, W. K. & Smith, V. H. (2016). Nitrogen, phosphorus, and eutrophication in streams. Inland Waters, 6(2), pp. 155–164. DOI:10.5268/IW-6.2.909
  25. Drury, B., Rosi-Marshall, E. & Kelly, J. J. (2013). Wastewater treatment effluent reduces the abundance and diversity of benthic bacterial communities in urban and suburban rivers. Applied and Environmental Microbiology, 79(6), pp. 1897–1905. DOI:10.1128/AEM.03527-12
  26. Fry, J. C. (1990). Direct Methods and Biomass Estimation. In Grigorova, R. & Norris J. R. B. T.-M. (Eds.), Techniques in Microbial Ecology (Vol. 22, pp. 41–85). Academic Press. DOI:10.1016/S0580-9517(08)70239-3
  27. García-Llorente, M., Harrison, P. A., Berry, P., Palomo, I., Gómez-Baggethun, E., Iniesta-Arandia, I., Montes, C., García del Amo, D. & Martín-López, B. (2018). What can conservation strategies learn from the ecosystem services approach? Insights from ecosystem assessments in two Spanish protected areas. Biodiversity and Conservation, 27(7), pp.1575–1597. DOI:10.1007/s10531-016-1152-4
  28. Gössling, S., Hall, C. M. & Scott, D. (2018). Coastal and Ocean Tourism. Handbook on Marine Environment Protection, pp. 773–790. DOI:10.1007/978-3-319-60156-4_40
  29. Grabic, J., Duric, S., Ciric, V. & Benka, P. (2018). Water quality at special nature reserves in Vojvodina, Serbia. Croatian Journal of Food Science and Technology, 10(2), pp. 179–184. DOI:10.17508/cjfst.2018.10.2.05
  30. Hachich, E.M.; Di Bari, M.; Christ, A.P.G.; Lamparelli, C.C.; Ramos, S.S.& Sato, M.I.Z. (2012) Comparison of thermotolerant coliforms and Escherichia coli densities in freshwater bodies. Brazilian J. Microbiol., 43, pp. 675–681.
  31. Huo, Y., Bai, Y. & Qu, J. (2017). Unravelling riverine microbial communities under wastewater treatment plant effluent discharge in large urban areas. Applied Microbiology and Biotechnology, 101(17), pp. 6755–6764. DOI:10.1007/s00253-017-8384-4
  32. Infoeko, 2004: Available online: Accessed on 20 October 2020. (in Polish)
  33. Johnston, E. L. & Roberts, D. A. (2009). Contaminants reduce the richness and evenness of marine communities: A review and meta-analysis. Environmental Pollution, 157(6), pp. 1745–1752. DOI:10.1016/j.envpol.2009.02.017
  34. Justić, D., Rabalais, N. N., Turner, R. E. & Dortch, Q. (1995). Changes in nutrient structure of river-dominated coastal waters: Stoichiometric nutrient balance and its consequences. Estuarine, Coastal and Shelf Science, 40(3), pp. 339–356. DOI:10.1016/S0272-7714(05)80014-9
  35. Kaczor, G. (2011). Wpływ wiosennych roztopów śniegu na dopływ wód przypadkowych do oczyszczalni ścieków bytowych. Acta Sci. Pol., Formatio Circumiectus, 10(2), pp. 27–34. (in Polish)
  36. Kosek, K., Kozak, K., Kozioł, K., Jankowska, K., Chmiel, S. & Polkowska, Z. (2018). The interaction between bacterial abundance and selected pollutants concentration levels in an arctic catchment (southwest Spitsbergen, Svalbard). Science of the Total Environment, 622–623, pp. 913–923. DOI:10.1016/j.scitotenv.2017.11.342
  37. Kosek, K. & Polkowska, Ż. (2016). Determination of selected chemical parameters in surface water samples collected from the Revelva catchment (Hornsund fjord, Svalbard). Monatshefte Fur Chemie, 147(8), pp. 1401–1405. DOI:10.1007/s00706-016-1771-1
  38. Kowalski, T. (1989). Analiza chemicznych i biochemicznych właściwości zanieczyszczeń występujących w ściekach. Ochrona Środowiska. (in Polish)
  39. Kozak, K., Ruman, M., Kosek, K., Karasiński, G., Stachnik, Ł. & Polkowska, Z. (2017). Impact of volcanic eruptions on the occurrence of PAHs compounds in the aquatic ecosystem of the southern part of West Spitsbergen (Hornsund Fjord, Svalbard). Water (Switzerland), 9(1). DOI:10.3390/w9010042
  40. Krajewska, Z. & Fac-Beneda, J. (2016). Transport of biogenic substances in water-courses of coastal landscape park. Journal of Elementology, 21(2), pp. 413–423. DOI:10.5601/jelem.2015.20.1.800
  41. Kutyła, S. (2015). Characteristics of water level fluctuations in Polish lakes – a review of the literature. Ochrona Srodowiska i Zasobów Naturalnych, 25(3), pp. 27–34. DOI:10.2478/oszn-2014-0011
  42. la Ferla, R., Maimone, G., Azzaro, M., Conversano, F., Brunet, C., Cabral, A. S. & Paranhos, R. (2012). Vertical distribution of the prokaryotic cell size in the Mediterranean Sea. Helgoland Marine Research, 66(4), pp. 635–650. DOI:10.1007/s10152-012-0297-0
  43. Luczkiewicz, A., Jankowska, K., Bray, R., Kulbat, E., Quant, B., Sokolowska, A. & Olańczuk-Neyman, K. (2011). Antimicrobial resistance of fecal indicators in disinfected wastewater. Water Science and Technology, 64(12), 2352. DOI:10.2166/wst.2011.769
  44. Luczkiewicz, A., Jankowska, K., Langas, V. & Kaiser, A. (2019). Inventory of existing treatment technologies in wastewater treatment plants Case studies in four coastal regions of the South Baltic Sea.
  45. Łuczkiewicz, A., Jankowska, K., Fudala-Książek, S. & Olańczuk-Neyman, K. (2010). Antimicrobial resistance of fecal indicators in municipal wastewater treatment plant. Water Research, 44(17), pp. 5089–5097. DOI:10.1016/j.watres.2010.08.007
  46. Majdak, P. (2008). Tourist amenities of Hel and conceptions of their development. Turystyka i Rekreacja Tom 4. (in Polish)
  47. Michałkiewicz, M. (2018). Ścieki i ich negatywna rola w środowisku. Technologia Wody, 5(61), pp. 30–33.
  48. Munksgaard, D. G. & Young, J. C. (1980). Flow and load variations at wastewater treatment plants. Journal of the Water Pollution Control Federation, 52(8), pp. 2131–2144.
  49. Norland S. (1993). The relationship between biomass and volume of bacteria. In Cole, J.J. (Ed.), Handbook of methods in aquatic microbial ecology (pp. 303–308). Lewis Publishers,.
  50. Nübel, U., Garcia-Pichel, F., Kühl, M. & Muyzer, G. (1999). Quantifying microbial diversity: morphotypes, 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats. Applied and Environmental Microbiology, 65(2),pp. 422–430.
  51. Olańczuk-Neyman, K., Quant, B., Łuczkiewicz, A., Kulbat, E., Jankowska, K., Sokołowska, A., Bray, R. & Kulbat, E. (2015). Dezynfekcja ścieków. Seidel-Przywecki sp. z.o.o. (in Polish)
  52. Olson, D. M. & Dinerstein, E. (1998). The global 200: A representation approach to conserving the earth’s most biologically valuable ecoregions. Conservation Biology, 12(3), pp. 502–515. DOI:10.1046/j.1523-1739.1998.012003502.x
  53. Ostroumov, S. A. (2017). Water Quality and Conditioning in Natural Ecosystems: Biomachinery Theory of Self-Purification of Water. Russian Journal of General Chemistry, 87(13), pp. 3199–3204. DOI:10.1134/S107036321713014X
  54. Porter, K. G. & Feig, Y. S. (1980). The use of DAPI for identifying and counting aquatic microflora. Limnological Oceanography, 25(5), pp. 943–948.
  55. Rees, G. & Bartram, J. (2002). Monitoring bathing waters: a practical guide to the design and implementation of assessments and monitoring programmes. CRC Press.
  56. Statistics Poland, 2016: Available online: Accessed on 20 October 2020, Accessed on 20 October 2020. (in Polish)
  57. Straza, T. R. A., Cottrell, M. T., Ducklow, H. W. & Kirchman, D. L. (2009). Geographic and phylogenetic variation in bacterial biovolume as revealed by protein and nucleic acid staining. Applied and Environmental Microbiology, 75(12), pp. 4028–4034. DOI:10.1128/AEM.00183-09
  58. Świątecki, A. (1997). Zastosowanie wskaźników bakteriologicznych w ocenie wód powierzchniowych. (Monografie). Wyższa Szkoła Pedagogiczna. (in Polish)
  59. Trussell, R. R. (1990). Evaluation of the Health Risks Associated with Disinfection. Critical Reviews in Environmental Control, 20(2), pp. 77–113. DOI:10.1080/10643389009388392
  60. Wiskulski, T. (2015). Geography For Society (Issue January 2015).
  61. Wojciechowska, E., Pietrzak, S., Matej-Łukowicz, K., Nawrot, N., Zima, P., Kalinowska, D., Wielgat, P., Obarska-Pempkowiak, H., Gajewska, M., Dembska, G., Jasiński, P., Pazikowska-Sapota, G., Galer-Tatarowicz, K. & Dzierzbicka-Głowacka, L. (2019). Nutrient loss from three small-size watersheds in the southern Baltic Sea in relation to agricultural practices and policy. Journal of Environmental Management, 252(May). DOI:10.1016/j.jenvman.2019.109637
  62. Young, K. D. (2006). The Selective Value of Bacterial Shape. Microbiology and Molecular Biology Reviews, 70(3), pp.660–703. DOI:10.1128/MMBR.00001-06
  63. Zaborska, A., Siedlewicz, G., Szymczycha, B., Dzierzbicka-Głowacka, L. & Pazdro, K. (2019). Legacy and emerging pollutants in the Gulf of Gdańsk (southern Baltic Sea) – loads and distribution revisited. Marine Pollution Bulletin, 139(November 2018), pp. 238–255. DOI:10.1016/j.marpolbul.2018.11.060
Go to article

Authors and Affiliations

Emilia Bączkowska
Agnieszka Kalinowska
Oskar Ronda
2 3
Katarzyna Jankowska
Rafał Bray
Bartosz Płóciennik
Żaneta Polkowska
3 2

  1. Department of Water and Wastewater Technology, Faculty of Civil and Environmental Engineering,Gdansk University of Technology, Gdansk, Poland
  2. Department of Analytical Chemistry, Faculty of Chemistry Gdansk University of Technology, Gdansk, Poland
  3. EkoTech Center, Gdansk University of Technology, Gdansk, Poland
  4. Costal Landscape Park, Wladyslawowo, Poland
Download PDF Download RIS Download Bibtex


The development of civilization contributed to the exponential growth in the production of plastics. Policy of the, so-called, “European Green Deal” places particular emphasis on reducing the use of plastics through various mechanisms, including their reuse, recycling and, in particular, the development of new biodegradable and compostable plastics. In order to check if plastics are suitable for biodegradability and compostability they must undergo a series of tests in accordance with applicable standards. The biodegradation test procedures are very general and allow for the use of different temperatures of the biodegradation process in the test. The aim of the research was to evaluate the influence of temperature on the biodegradation process of selected packaging materials. The obtained results show a significant influence of the temperature of the biodegradation process of all 3 tested types of packaging materials: oxy-biodegradable, corn starch and paper. Statistically significant differences in the biodegradation rate of the tested packaging materials were demonstrated in as low as 40°C, despite the low intensity of the process. As the process temperature increased to 45 and 50°C, a statistically significant increase in CO2 productions was recorded. CO2 is produced by the degradation of polymers and is an indicator for this process. At 50°C, the highest decomposition rate, resulting in the highest CO2 production, was recorded in the case of corn starch films. Oxy-biodegradable material showed worst degradation potential what excludes it from composting processes.
Go to article


  1. Abdelmoez, W., Dahab, I., Ragab, E.M., Abdelsalam, O.A. & Mustafa A. (2021). Bio- and oxo-degradable plastics: Insights on facts and challenges. Polymers for Advanced Technologies, 32:1981–1996. DOI:10.1002/pat.5253
  2. Abioye, A.A., Oluwadare, O.P., Abioye O.P., Obuekwe, Ch.C., Afolalu, A.S., Atanda, P.O. & Fajobi, M.A. (2019). Environmental Impact on Biodegradation Speed and Biodegradability of Polyethylene and Zea Mays Starch Blends. Journal of Ecological Engineering 20(9), pp. 277–284
  3. Adamcova, D., Vaverková, M.D., Mašíček, T. & Břoušková E. (2016). Analysis of biodegrability of degradable/biodegradable plastic material in controlled composting environment. Journal of Ecological Engineering, 17(4), pp. 1–10. DOI:10.12911/22998993/64564
  4. Ahmed, S., Hall, A. M. & Ahmed, S. F. (2018) Biodegradation of Different Types of Paper in a Compost Environment. Proceedings of the 5th International Conference on Natural Sciences and Technology (ICNST’18) March 30 - 31, (2018), Asian University for Women, Chittagong, Bangladesh
  5. Arefian, M., Tahmourespour, A. & Zia, M. (2020). Polycarbonate biodegradation by newly isolated Bacillus strains. Archives of Environmental Protection. 46(1) pp. 14–20. DOI:10.24425/aep.2020.132521
  6. Czarnecka-Komorowska, D., Bryll, K., Kostecka, E., Tomasik, M., Piesowicz, E. & Gawdzińska K. (2021). The composting of PLA/HNT biodegradable composites as an eco-approach to the sustainability. Bulletin of The Polish Academy of Sciences Technical Sciences, 69(2). DOI:10.24425/Bpasts.2021.136720
  7. Domka, L., Malicka, A., Jagła, K. & Kozak, A. (2009). Biodegradation of Starch-Modified Foil in Natural Conditions. Polish J. of Environ. Stud. 18(2), pp. 191-195
  8. Du, Y.L., Cao, Y., Lu, F., Li, F., Cao, Y., Wang, X.L., & Wang, Y.Z. (2008) Biodegradation behaviors of thermoplastic starch (TPS) and thermoplastic dialdehyde starch (TPDAS) under controlled composting conditions. Polymer Testing 27, pp. 924–930. DOI:10.1016/j.polymertesting.2008.08.002
  9. Ghorpade, V.M., Gennadios, A. & Hanna, M.A. (2001). Laboratory composting of extruded poly(lactic acid) sheets. Bioresource Technology 76, pp. 57-61.
  10. Gomez, E.F. & Michel, F.C. Jr. (2013). Biodegradability of conventional and bio-based plastics and natural fiber composites during composting, anaerobic digestion and long-term soil incubation. Polymer Degradation and Stability 98, pp. 2583-2591. DOI:10.1016/j.polymdegradstab.2013.09.018
  11. Gorokhova, E., Ek, K. & Reichelt S. (2020) Algal Growth at Environmentally Relevant Concentrations of Suspended Solids: Implications for Microplastic Hazard Assessment. Frontiers in Environmental Science 19 Nov. 2020. DOI:10.3389/fenvs.2020.551075
  12. Herniou–Julien, C., Mendieta, J.R. & Gutiérrez T.J. (2019). Characterization of biodegradable/non-compostable films made from cellulose acetate/corn starch blends processed under reactive extrusion conditions. Food Hydrocolloids 89, pp. 67–79 DOI:10.1016/j.foodhyd.2018.10.024
  13. Ivankovic, A., Zeljko, K., Talic, S., Martinovic Bevanda, A. & Lasic M. (2017). Biodegradable packaging in the food industry. Arch Lebensmittelhyg 68, pp. 26–38. DOI:10.2376/0003-925X-68-26
  14. Luchese, C.L., Benelli, P., Spada, J.C. & Tessaro I.C. (2018). Impact of the starch source on the physicochemical properties and biodegradability of different starch-based films. Journal of Applied Polymer Science. DOI:10.1002/APP.46564
  15. Maria, P., Cadar, O., Cadar, s., Levei, E., Pojar-Feneşan, M., Balea, A. & Pascalau, V. (2010). Biodegradability determination of vegetal originated packaging materials under controlled composting conditions. Agricultura – Ştiinţă şi practică 1-2, pp. 73-77
  16. Markowicz, F., Król, G., Szymańska-Pulikowska, A. (2018). Biodegradable Package – Innovative Purpose or Source of the Problem. Journal of Ecological Engineering, 20(1), pp. 228–237. DOI:10.12911/22998993/94585
  17. Markowicz, F. & Szymańska-Pulikowska, A. (2019). Analysis of the Possibility of Environmental Pollution by Composted Biodegradable and Oxo-Biodegradable Plastics. Geosciences, 9(11). DOI:10.3390/geosciences9110460
  18. McLauchlin, A., Thomas, N.L., Patrick, S.G. & Clarke J. (2012) Oxo-degradable plastics: Degradation, environmental impact and recycling. Waste and Resource Management, 165(3), pp. 133-140. DOI:10.1680/warm.11.00014
  19. Popa, M., Mitelut, A., Niculita, P., Geicu, M., Ghidurus, M. & Turtoi M. (2011). Biodegradable materials for food packaging applications. Journal of Environmental Protection and Ecology, 12(4). pp. 1825-1834
  20. Seruga, P., Krzywonos, M., Wilk, M. & Borowiak D. (2019). The Effect of Selected Parameters on the Stabilization Efficiency of the Organic Fraction of Municipal Solid Waste (OFMSW) in the Mechanical and Biological Treatment Plant (MBT). Annual Set The Environment Protection, 21, pp. 316-329.
  21. Spiridon, I., Anghel, N.C., Darie-Nita, R.N., Iwańczuk, A. Ursu, R.G. & Spiridon I.A. (2019). New composites based on starch/Ecoflex®/biomass wastes: Mechanical, thermal, morphological and antimicrobial properties. International Journal of Biological Macromolecules, 156, pp. 1435-1444. DOI:10.1016/j.ijbiomac.2019.11.185
  22. Tabasi, R.Y. & Ajji, A. (2015). Selective degradation of biodegradable blends in simulated laboratory composting. Polymer Degradation and Stability, 120, pp. 435-442. DOI:10.1016/j.polymdegradstab.2015.07.020
  23. Yashchuk, O., Portillo, F.S. & Hermida, E. B.(2012). Degradation of polyethylene film samples containing oxodegradable additives. Procedia Materials Science, 1, pp. 439 – 445.
  24. Youssef, A.M. & El.-Sayed S.M. (2019). Bionanocomposites materials for food packaging applications: Concepts and future outlook. Carbohydrate Polymers. 193, 1 pp. 19-27. DOI:10.1016/j.carbpol.2018.03.088
  25. Vasile, C., Pamfil, D., Râpă, M., Darie-Niţăa, R.N., Mitelut, A.C., Popa E.E., Popescu, P.A., Draghici, M.C. & Popac, M.E. (2018). Study of the soil burial degradation of some PLA/CS biocomposites. Composites Part B 142, pp. 251–262. DOI:10.1016/j.compositesb.2018.01.026
  26. Wróblewska-Krepsztul, J., Rydzkowski, T., Borowski, G., Szczypiński, M., Klepka, T. & Thakur, V.K. (2018). Recent Progress in Biodegradable Polymers and Nanocomposites Based Packaging Materials for Sustainable Environment. International Journal of Polymer Analysis and Characterization. 23, 4, pp. 383-395. DOI:10.1080/1023666X.2018.1455382
Go to article

Authors and Affiliations

Joanna Poluszyńska
Tomasz Ciesielczuk
Marcin Biernacki
Maciej Paciorkowski

  1. Research Network Łukasiewicz – Institute of Ceramics and Building Materials, Division of Material,Processing and Environmental Engineering, Opole, Poland
  2. Opole University, Opole, Poland
Download PDF Download RIS Download Bibtex


Dumping sites or landfills are considered as foremost common option of waste management worldwide. Dumping sites, often not lined, represent a potential environmental issue causing a long-term risk to the environment and health. A number of computers model-based studies have described the solid waste collection and its management, but provide little information about the relative contributions regarding environmental impacts of landfilling especially in the context of developing world. The aim of study was to estimate environmental impacts from dumping site by using EASEWASTE model. A case study was carried out at an old and closed dumping site filled with mixed waste without bottom liner, no leachate collection and gas collection. On the basis of the existing dumping site investigation, a Mahmood Booti Dumping Site Scenario was developed, and related data of waste generation & composition was collected and added to assess environmental impacts. The results show that human toxicity via soil (9.14E+09 m3 soil) had the highest potential impact, followed by global warming (8.83E+11 Kg CO2-eq), eco-toxicity in water (6.25E+11 m3 water), and eco-toxicity in soil (6.54E+10 m3 soil). This is mostly caused by leaching of heavy metals from ashes (e.g. residues from roads cleaning and vacuum cleaning bags), batteries, paper and metals. The adopted risk analysis approach uses easily accessible computer aided models, for open dumping sites, appears to be a key tool to assist decision makers in establishing priorities for remediation action.
Go to article


  1. Alam, A., Tabinda, A.B., Qadir, A., Butt, T.E., Siddique, S. & Mahmood A. (2017). Ecological Risk Assessment of an Open Dumping Site at Mehmood Booti Lahore, Pakistan. Environmental Science and Pollution Research, 24(21), pp. 17889–99. DOI:10.1007/s11356-017-9215-y
  2. Alam, A., Chaudhry, M.N., Mahmood, A., Ahmad, S.R., & Butt,T.E. (2021). Development & application of Conceptual Framework Model (CFM) for environmental risk assessment of contaminated lands. Saudi Journal of Biological Sciences, 28(11),pp. 6167–6177. DOI: 10.1016/j.sjbs.2021.06.069 Buratti, C., Barbanera, M., Testarmata, F. & Fantozzi, F. (2015). Life Cycle Assessment of Organic Waste Management Strategies: An Italian Case Study. Journal of Cleaner Production, 89, pp.125–36. DOI:10.1016/j.jclepro.2014.11.012
  3. Diaz, R. & Warith, M. (2006). Life-Cycle Assessment of Municipal Solid Wastes: Development of the WASTED Model. Waste Management, 26(8), pp. 886–901. DOI:10.1016/j.wasman.2005.05.007
  4. Fatima, S.A., Chaudhry, M. N. & Batool, S.A. (2019). Environmental Impacts of the Existing Solid Waste Management System of Northern Lahore. Chinese Journal of Urban and Environmental Studies, 07(03), pp. 1950013. DOI:10.1142/S2345748119500131
  5. Gentil, E. C., Damgaard, A., Hauschild, M., Finnveden, G., Eriksson, O., Thorneloe, S. & Christensen, T. H. (2010). Models for waste life cycle assessment: Review of technical assumptions. Waste Management, 30(12), pp. 2636–2648. DOI:0.1016/j.wasman.2010.06.004
  6. Grzesik, K. (2017). Comparative environmental impact assessment of the landfilling and incineration of residual waste in Krakow. Environment Protection Engineering, 43(4), pp. 135–148. DOI:10.5277/epel70411
  7. Guleria, A. & Chakma, S. (2019). Probabilistic human health risk assessment of groundwater contamination due to metal leaching: A case study of Indian dumping sites. Human and Ecological Risk Assessment: An International Journal, pp. 1–33. DOI:10.1080/10807039.2019.1695193
  8. Jagoda G.S (2018). Municipal waste thermal treatment installations in Poland – a source of energy of environmental importance. Archives of Environmental Protection, 105, pp. 147–156. DOI:10.24425/124370
  9. Laurent, A., Bakas, I., Clavreul, J., Bernstad, A., Niero, M., Gentil, E. & Christensen, T. H. (2014). Review of LCA studies of solid waste management systems – Part I: Lessons learned and perspectives. Waste Management, 34(3), pp. 573–588. DOI:10.1016/j.wasman.2013.10.045
  10. Liu, Y., Sun, W. & Liu, J. (2017). Greenhouse gas emissions from different municipal solid waste management scenarios in China: Based on carbon and energy flow analysis. Waste Management, 68, pp. 653–661. DOI:10.1016/j.wasman.2017.06.020
  11. Maalouf, A. & El-Fadel, M. (2019). Life cycle assessment for solid waste management in Lebanon: Economic implications of carbon credit. Waste Management and Research, 37(1), pp. 14–26. DOI:10.1177/0734242X18815951
  12. Mahmood, A. & Malik, R. N. (2014). Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arabian Journal of Chemistry, 7(1), pp. 91–99. DOI:10.1016/j.arabjc.2013.07.002
  13. Mahmood, K., Batool, S. A., Chaudhary, M. N. & Ul-Haq, Z. (2017). Ranking criteria for assessment of municipal solid waste dumping sites. Archives of Environmental Protection, 43(1), pp. 95–105. DOI:10.1515/aep-2017-0009
  14. Maiti, S. K., De, S., Hazra, T., Debsarkar, A. & Dutta, A. (2016). Characterization of Leachate and Its Impact on Surface and Groundwater Quality of a Closed Dumpsite – A Case Study at Dhapa, Kolkata, India. Procedia Environmental Sciences, 35, pp. 391–399. DOI:10.1016/j.proenv.2016.07.019
  15. Majeed, A., Batool, S. & Chaudhry, M. (2018). Environmental Quantification of the Existing Waste Management System in a Developing World Municipality Using EaseTech: The Case of Bahawalpur, Pakistan. Sustainability, 10(7), pp. 2424. DOI:10.3390/su10072424
  16. Mali, S. T. & Patil, S. S. (2016). Life-cycle assessment of municipal solid waste management. Proceedings of Institution of Civil Engineers: Waste and Resource Management, 169(4), pp. 181–190. DOI:10.1680/jwarm.16.00013
  17. Malinauskaite, J., Jouhara, H., Czajczyńska, D., Stanchev, P., Katsou, E., Rostkowski, P. & Spencer, N. (2017). Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. Energy, 141, pp. 2013–2044. DOI:10.1016/
  18. Maria, C., Góis, J. & Leitão, A. (2020). Challenges and perspectives of greenhouse gases emissions from municipal solid waste management in Angola. Energy Reports, 6 (Supplement 1), pp. 364–369. DOI:10.1016/j.egyr.2019.08.074
  19. Marshall, R. E. & Farahbakhsh, K. (2013). Systems approaches to integrated solid waste management in developing countries. Waste Management, 33(4), pp. 988–1003. DOI:10.1016/j.wasman.2012.12.023
  20. Noya, I., Inglezakis, V., González-García, S., Katsou, E., Feijoo, G. & Moreira, M. (2018). Comparative environmental assessment of alternative waste management strategies in developing regions: A case study in Kazakhstan. Waste Management & Research, 36(8), pp. 689–697. DOI:10.1177/0734242X18786388
  21. Parkes, O., Lettieri, P. & Bogle, I. D. L. (2015). Life cycle assessment of integrated waste management systems for alternative legacy scenarios of the London Olympic Park. Waste Management, 40, pp. 157–166. DOI:10.1016/j.wasman.2015.03.017
  22. Popiţa, G. E., Baciu, C., Rédey, Á., Frunzeti, N., Ionescu, A., Yuzhakova, T. & Popovici, A. (2017). Life cycle assessment (LCA) of municipal solid waste management systems in Cluj county, Romania. Environmental Engineering and Management Journal, 16(1), pp. 47–58. DOI:10.30638/eemj.2017.006
  23. Rajaeifar, M. A., Tabatabaei, M., Ghanavati, H., Khoshnevisan, B. & Rafiee, S. (2015). Comparative life cycle assessment of different municipal solid waste management scenarios in Iran. Renewable and Sustainable Energy Reviews, 51, pp. 886-898 DOI:10.1016/j.rser.2015.06.037
  24. Ramachandra, T. V., Bharath, H. A., Kulkarni, G. & Han, S. S. (2018). Municipal solid waste: Generation, composition and GHG emissions in Bangalore, India. Renewable and Sustainable Energy Reviews, 82, pp. 1122–1136. DOI:10.1016/j.rser.2017.09.085
  25. Rana, R., Ganguly, R. & Gupta, A. K. (2019). Life-cycle assessment of municipal solid-waste management strategies in Tricity region of India. Journal of Material Cycles and Waste Management, 21(3), pp. 606–623. DOI:10.1007/s10163-018-00822-0
  26. Sharma, B. K. & Chandel, M. K. (2017). Life cycle assessment of potential municipal solid waste management strategies for Mumbai, India. Waste Management and Research, 35(1), pp. 79–91. DOI:10.1177/0734242X16675683
  27. Singh, A. & Raj, P. (2018). Segregation of waste at source reduces the environmental hazards of municipal solid waste in Patna, India. Archives of Environmental Protection, 44(4), pp. 96–110. DOI:10.24425/aep.2018.122306
  28. Smol, M., Kulczycka, J., Lelek, Ł., Gorazda, K. & Wzorek, Z. (2020). Life Cycle Assessment (LCA) of the integrated technology for the phosphorus recovery from sewage sludge ash (SSA) and fertilizers production. Archives of Environmental Protection, 46(2), pp. 42–52. DOI:10.24425/aep.2020.133473
  29. Szymański, K. & Janowska, B. (2016). Migration of pollutants in porous soil environment. Archives of Environmental Protection, 42(3), pp. 87–95. DOI:10.1515/aep-2016-0026
  30. Thomsen, M., Seghetta, M., Mikkelsen, M. H., Gyldenkærne, S., Becker, T., Caro, D. & Frederiksen, P. (2017). Comparative life cycle assessment of biowaste to resource management systems – A Danish case study. Journal of Cleaner Production, 142, pp. 4050–4058. DOI:10.1016/j.jclepro.2016.10.034
  31. Vimpolšek, B., Jereb, B., Lerher, T., Kutnar, A. & Lisec, A. (2019). Models for life cycle assessment: Review of technical assumptions in collection and transportation processes. Tehnicki Vjesnik, 26(6), pp. 1861–1868. DOI:10.17559/TV-20181209160911
  32. Winkler, J. & Bilitewski, B. (2007). Comparative evaluation of life cycle assessment models for solid waste management. Waste Management, 27(8), pp. 1021–1031. DOI:10.1016/j.wasman.2007.02.023
Go to article

Authors and Affiliations

Asifa Alam
Muhammad Nawaz Chaudhry
Sajid Rashid Ahmad
Aadila Batool
Adeel Mahmood
Huda Ahmad Al-Ghamdi

  1. College of Earth and Environmental Sciences, University of the Punjab, Pakistan
  2. Department of Environmental Science and Policy, Lahore School of Economics, Pakistan
  3. Remote Sensing, GIS and Climatic Research Lab, Department of Space Sciences, University of the Punjab, Pakistan
  4. Department of Environmental Sciences, Government College Women University, Sialkot, Pakistan
  5. Department of Biology, College of Sciences, King Khalid University, Abha, Saudi Arabia
Download PDF Download RIS Download Bibtex


A method to improve the quality of purifi ed water, reduce the cost of reagents for the regeneration of resin and create low-waste processes have been developed. This paper presents the results of ion exchange separation of sulfates and nitrates using AV-17-8 anion exchange resin in NO3 form. The effi ciency of anion separation on the highly basic anion exchange resin AV-17-8 depends on the magnitude and ratio of their concentrations in water. Separation on the AV-17-8 anion exchange resin has been shown to be eff ective at concentrations of sulfates up to 800 mg/dm3 and nitrates up to 100 mg/dm3. Conditions for regeneration of 10% NaNO3 anion exchange resin were determined. Reagent precipitation of sulfates from the used regeneration solution in the form of calcium sulfate was carried out. Calcium sulfate precipitate can be used in the manufacturing of building materials. The regeneration solution is suitable for reuse. The developed results will allow to introduce low-waste desalination technology of highly mineralized waters.
Go to article


  1. Berbar, Y., Amara, M. & Kerdjoudj, H. (2008). Anion exchange resin applied to a separation between nitrate and chloride ions in the presence of aqueous soluble polyelectrolyte, Desalination, 223, 238–242.
  2. Berger, E., Fro¨r, O. & Schäfer, R.B. (2019). Salinity impacts on river ecosystem processes: a critical mini-review, Phil. Trans. R. Soc. B, 374, 20180010. DOI:10.1098/rstb.2018.0010.
  3. Bodzek, M. (2019). Membrane separation techniques – removal of inorganic and organic admixtures and impurities from water environment – review, Archives of Environmental Protection, 45 , 4, pp. 4–19. DOI:10.24425 / aep.2019.130237.
  4. Bodzek, M., Konieczny, K. & Rajca, M. (2019). Membranes in water and wastewater disinfection – review, Archives of Environmental Protection, 45, pp. 3–18. DOI:10.24425/aep.2019.126419.
  5. Boyacioglu, H. (2014). Spatial dıfferentiation of water quality between reservoirs under anthropogenic and natural factors based on statistical approach, Archives of Environmental Protection, 40/1, pp. 41–50. DOI:10.2478 / aep-2014-0002.
  6. Chen, Q.-B., Ren, H., Tian, Z., Sun, L. & Wang, J. (2019). Conversion and pre-concentration of SWRO reject brine into high solubility liquid salts (HSLS) by using electrodialysis metathesis, Separation and Purification Technology, 213, pp. 587-598. DOI:10.1016/j.seppur.2018.12.018.
  7. Dharminder, Ram Kumar Singh, Vishal Kumar, Anoop Kumar Devedee, Mruthyunjaya, M. & Reshu Bhardwaj (2019). The clean water: The basic need of human and agriculture, International Journal of Chemical Studies, 7, 2, pp. 1994-1998.
  8. Hilary A. Dugan, H.A., Bartlett, S.L., Burke, S.M., Doubek, J.P. & Krivak, F.E. (2017). Salting our freshwater lakes, Proc. Natl Acad. Sci. USA, 114, 17, pp. 4453-4458. DOI:10.1073/pnas.1620211114.
  9. Gomelya, M.D., Trus, I.M. & Shabliy, T.O. (2014). Application of aluminium coagulants for the removal of sulphate from mine water, Chemistry & Chemical Technology, 8, 2, pp. 197-203.
  10. Griffith, M.B. (2017). Toxicological perspective on the osmoregulation and ionoregulation physiology of major ions by freshwater animals: teleost fish, crustacea, aquatic insects, and Mollusca, Environ. Toxicol. Chem., 36, pp. 576-600. DOI:10.1002/etc.3676.
  11. Grodzka-Łukaszewska, M., Pawlak, Z. & Sinicyn, G. (2021). Spatial distribution of the water exchange through river cross-section – measurements and the numerical model, Archives of Environmental Protection, 47, 1, pp. 69–79. DOI:10.24425/aep.2021.136450.
  12. Halysh, V., Trus, I., Nikolaichuk, A., Skiba, M., Radovenchyk, I., Deykun, I., Vorobyova, V., Vasylenko, I. & Sirenko, L. (2020). Spent Biosorbents as Additives in Cement Production, Journal of Ecological Engineering, 21, 2, pp. 131–138. DOI:10.12911/22998993/116328.
  13. Hardikar, M., Marquez, I. & Achilli, A. (2020). Emerging investigator series: membrane distillation and high salinity: analysis and implications, Environmental Science: Water Research & Technology, 6, 6, pp. 1538-1552. DOI:10.1039/C9EW01055F.
  14. Kaushal, S.S. (2016). Increased salinization decreases safe drinking water, Environ. Sci. Technol., 50, pp. 2765-2766. DOI:10.1021/acs.est.6b00679.
  15. Lu, H., Wang, L., Wycisk, R., Pintauro, P.N. & Lin, S. (2020). Quantifying the kinetics-energetics performance tradeoff in bipolar membrane electrodialysis, Journal of Membrane Science, 612, 118279. DOI:10.1016/j.memsci.2020.118279.
  16. Luo, T., Abdu, S. & Wessling, M. (2018). Selectivity of ion exchange membranes: A review, Journal of Membrane Science, 555, pp. 429-454. DOI:10.1016/j.memsci.2018.03.051.
  17. Mester, T., Szabó, G., Bessenyei, É., Karancsi, G., Barkóczi, N. & Balla, D. (2017). The effects of uninsulated sewage tanks on groundwater. A case study in an eastern Hungarian settlement, J. Water Land Dev., 33, pp.123-129. DOI:10.1515/jwld-2017-0027.
  18. Mirzavand, M., Ghasemieh, H., Sadatinejad, S.J. & Bagheri, R. (2020). An overview on source, mechanism and investigation approaches in groundwater salinization studies, Int. J. Environ. Sci. Technol., 17, pp. 2463–2476. DOI:10.1007/s13762-020-02647-7.
  19. Mubita, T., Porada, S., Aerts, P. & van der Wal, A. (2020). Heterogeneous anion exchange membranes with nitrate selectivity and low electrical resistance, Journal of Membrane Science, 607, 118000.
  20. Panagopoulos, A. (2020). A comparative study on minimum and actual energy consumption for the treatment of desalination brine, Energy, 212, 118733. DOI:10.1016/
  21. Radovenchyk, I., Trus, I., Halysh, V., Krysenko, T.,Chuprinov, E. & Ivanchenko, A. (2021). Evaluation of Optimal Conditions for the Application of Capillary Materials for the Purpose of Water Deironing, Ecol. Eng. Environ. Technol., 2, pp. 1–7. DOI:10.12912/27197050/133256.
  22. Rajca, M. (2012). The impact of selected factors on the removal of anionic water pollutants in ion-exchange process of MIEX®DOC, Archives of Environmental Protection, 38, pp. 115–121. DOI:10.2478/v10265-012-0010-z.
  23. Schuler, M.S., Cañedo-Argüelles, M., Hintz, W.D., Dyack, B., Birk, S. & Relyea, R.A. (2018). Regulations are needed to protect freshwater ecosystems from salinization, Philos Trans R Soc Lond B Biol Sci, 374, 1764, 20180019. DOI:10.1098/rstb.2018.0019.
  24. Trokhymenko, G., Magas, N., Gomelya, N., Trus, I. & Koliehova, A. (2020). Study of the Process of Electro Evolution of Copper Ions from Waste Regeneration Solutions, Journal of Ecological Engineering, 21, 2, pp. 29–38. DOI:10.12911/22998993/116351
  25. Trus, I. & Gomelya, M. (2021). Effectiveness nanofiltration during water purification from heavy metal ions, Journal of Chemical Technology and Metallurgy, 56, 3, pp. 615–620,
  26. Trus, I., Radovenchyk, I., Halysh, V., Skiba, M., Vasylenko, I., Vorobyova, V., Hlushko, O. & Sirenko, L. (2019). Innovative Approach in Creation of Integrated Technology of Desalination of Mineralized Water, Journal of Ecological Engineering, 20, 8, pp. 107–113. DOI:10.12911/22998993/110767.
  27. Trus, I.M., Gomelya, M.D., Makarenko, I.M., Khomenlo, A.S. & Trokhymenko, G.G. (2020). The Study of the particular aspects of water purification from heavy metal ions using the method of nanofiltration, Naukovyi Visnyk Natsionalnogo Hirnychogo Universytety, 4, pp.117–123. DOI:10.33271/nvngu/2020-4/117
  28. Vörösmarty, C.J., McIntyre, P.B., Gessner, M.O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, Sullivan, C.A.,LiermannC.R. & Davies, P.M.. (2010). Global threats to human water security and river biodiversity, Nature, 467, pp. 555-561. DOI:10.1038/nature09440.
  29. Wiśniowska, E. & Włodarczyk-Makuła, M. (2020). Removal of nitrates and organic compounds from aqueous solutions by zero valent (ZVI) iron reduction coupled with coagulation/precipitation process, Archives of Environmental Protection, 46, 3, pp. 22–29. DOI:10.24425 / aep.2020.134532.
Go to article

Authors and Affiliations

Inna Trus
Mukola Gomelya
Viktoria Vorobyova
Margarita Skіba

  1. National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine
  2. Ukrainian State Chemical-Engineering University, Dnipro, Ukraine
Download PDF Download RIS Download Bibtex


Fluorine and sodium chloride are common elements present in the water environment. According to WHO guidelines fluoride content in water cannot be not higher than 1.5 mgF-/dm3. Elevated fluoride content was observed all over the world and it leads to many health issues. It can be removed with the usage of various methods (ion exchange, membrane processes, adsorption, precipitation). In this paper fluoride removal with nanofiltration usage was described. Tests were performed with the application of Amicon 86400 filtration cells. Two types of commercial nanofiltration membranes NP010P and NP030P (Microdyn Nadir) were used. Transmembrane pressure was established as 0.3 MPa. For lower fluoride concentrations (5 mgF-/dm3) NF process allowed to decrease fluoride content under level 1.5 mgF-/dm3. Removal efficiency decreased with increasing fluoride content. Membrane NP030P showed better separation properties. Sodium chloride influenced removal efficiency as well as fluoride adsorption on/in membranes during the process. According to obtained data, better hydraulic properties exhibited membrane NP010P. For both membranes decrease in permeate flux in comparison to pure water was noticed what was observed. Relative permeability was lowered even to 0.32.
Go to article


  1. Akuno, M. H., Nocella, G., Milia, E. P. & Gutierrez, L. (2019). Factors influencing the relationship between fluoride in drinking water and dental fluorosis: A ten-year systematic review and meta-analysis. Journal of Water and Health, 17(6), pp. 845–862. DOI: 10.2166/wh.2019.300
  2. Ali, I., Alothman, Z. A. & Sanagi, M. M. (2015). Green Synthesis of Iron Nano-Impregnated Adsorbent for Fast Removal of Fluoride from Water. Journal of Molecular Liquids, 211, pp. 457–465. DOI: 10.1016/j.molliq.2015.07.034
  3. Ayala, L. I. M., Paquet, M., Janowska, K., Jamard, P., Quist-Jensen, C. A., Bosio, G. N., Mártire, D. O., Fabbri, D. & Boffa, V. (2018). Water Defluoridation: Nanofiltration vs Membrane Distillation. Industrial and Engineering Chemistry Research, 57(43), pp. 14740–14748. DOI: 10.1021/acs.iecr.8b03620
  4. Banasiak, L. J. & Schäfer, A. I. (2009). Removal of boron, fluoride and nitrate by electrodialysis in the presence of organic matter. Journal of Membrane Science, 334(1–2), pp. 101–109. DOI: 10.1016/j.memsci.2009.02.020
  5. Bannoud, A. H. & Darwich, Y. (2007). Elimination des ions fluorures et manganèses contenus dans les eaux par nanofiltration. Desalination, 206(1–3), pp. 449–456. DOI:10.1016/j.desal.2006.02.071
  6. Bhatnagar, A., Kumar, E. & Sillanpää, M. (2011). Fluoride removal from water by adsorption - A review. Chemical Engineering Journal, 171(3), pp. 811–840. DOI:10.1016/j.cej.2011.05.028
  7. Bowen, W. R., Mohammad, A. W. & Hilal, N. (1997). Characterisation of nanofiltration membranes for predictive purposes - Use of salts, uncharged solutes and atomic force microscopy. Journal of Membrane Science, 126(1), pp. 91–105. DOI:10.1016/S0376-7388(96)00276-1
  8. Carvalho, A. L., Maugeri, F., Silva, V., Hernández, A., Palacio, L. & Pradanos, P. (2011). AFM analysis of the surface of nanoporous membranes: Application to the nanofiltration of potassium clavulanate. Journal of Materials Science, 46(10), pp. 3356–3369. DOI:10.1007/s10853-010-5224-7
  9. Cassano, A., Bentivenga, A., Conidi, C., Galiano, F., Saoncella, O. & Figoli, A. (2019). Membrane-based clarification and fractionation of red wine lees aqueous extracts. Polymers, 11(7), pp. 1–16. DOI:10.3390/polym11071089
  10. Chatterjee, S. & De, S. (2014). Adsorptive removal of fluoride by activated alumina doped cellulose acetate phthalate (CAP) mixed matrix membrane, Sepparation and Purification Technology, 125, pp. 223–238. DOI:10.1016/j.seppur.2014.01.055
  11. Chen, C., Han, B., Li, J., Shang, T., Zou, J. & Jiang, W. (2001). A new model on the diffusion of small molecule penetrants in dense polymer membranes. Journal of Membrane Science, 187(1–2), pp. 109–118. DOI:10.1016/S0376-7388(00)00689-X
  12. Chibani, A., Barhoumi, A., Ncib, S., Bouguerra, W. & Elaloui, E. (2019). Fluoride removal from synthetic groundwater by electrocoagulation process: parameters ad energy evaluation. Desalination and Water Treatment, 157, pp. 100–109. DOI:10.5004/dwt.2019.24087
  13. Damtie, M. M., Woo, Y. C., Kim, B., Hailemariam, R. H., Park, K. D., Shon, H. K., Park, C. & Choi, J. S. (2019). Removal of fluoride in membrane-based water and wastewater treatment technologies: Performance review. Journal of Environmental Management, 251, pp. 1–24. DOI:10.1016/j.jenvman.2019.109524
  14. Diawara, C. K., Paugam, L., Pontié, M., Schlumpf, J. P., Jaouen, P. & Quéméneur, F. (2005). Influence of chloride, nitrate, and sulphate on the removal of fluoride ions by using nanofiltration membranes. Separation Science and Technology, 40, pp. 3339–3347. DOI:10.1080/01496390500423706
  15. Elimelech, M., Zhu, X., Childress, A. E. & Hong, S. (1997). Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. Journal of Membrane Science, 127(1), pp. 101–109. DOI:10.1016/S0376-7388(96)00351-1
  16. Epsztein, R., Shaulsky, E., Dizge, N., Warsinger, D.M. & Elimelech, M. (2018). Role of ionic charge density in Donnan exclusion of monovalent anions by nanofiltration. Environmental Science and Technology, 52, pp. 4108–4116. DOI:10.1021/acs.est.7b06400
  17. Fierro, D., Boschetti-de-Fierro, A. & Abetz, V. (2012). The solution-diffusion with imperfections model as a method to understand organic solvent nanofiltration of multicomponent systems. Journal of Membrane Science, 413–414, pp. 91–101. DOI:10.1016/j.memsci.2012.04.027
  18. Gomes, A.C., Cabral Goncalves, I. & de Pinho, M.N, The role of adsorption on nanofiltration of azo dyes (2005). Journal of Membrane Science, 255, pp. 157–165. DOI:10.1016/j.memsci.2005.01.031
  19. He, J., Yang, Y., Wu, Z., Xie, C., Zhang, K., Kong, L. & Liu, J. (2020). Review of fluoride removal from water environment by adsorption. Journal of Environmental Chemical Engineering, 8(6), pp. 1–101. DOI:10.1016/j.jece.2020.104516
  20. Hirose, M., Ito, H. & Kamiyama, Y. (1996). Effect of skin layer surface structures on the flux behaviour of RO membranes. Journal of Membrane Science, 121(2), pp. 209–215. DOI:10.1016/S0376-7388(96)00181-0
  21. Hoinkis, J., Valero-Freitag, S., Caporgno, M. P. & Pätzold, C. (2011). Removal of nitrate and fluoride by nanofiltration - A comparative study. Desalination and Water Treatment, 30(1–3), pp. 278–288. DOI:10.5004/dwt.2011.2103
  22. Hong, S.U., Malaisamy, R. & Bruening, M.L. (2007). Separation of fluoride from other monovalent anions using multilayer polyelectrolyte nanofiltration membranes, Langmuir, 23, 1716 –1722. DOI:10.1021/la061701y
  23. Hu, K. & Dickson, J. M. (2006). Nanofiltration membrane performance on fluoride removal from water. Journal of Membrane Science, 279(1–2), pp. 529–538. DOI:10.1016/j.memsci.2005.12.047
  24. Kambarani, M., Bahmanyar, H., Mousavian, M. A. & Mousavi, S. M. (2016). Crossflow filtration of sodium chloride solution by a polymeric nanofilter: Minimization of concentration polarization by a novel backpulsing method. Iranian Journal of Chemistry and Chemical Engineering, 80, pp. 135–141. DOI:10.30492/IJCCE.2016.23595
  25. Klimonda, A. & Kowalska, I. (2019). Application of polymeric membranes for the purification of solutions containing cationic surfactants. Water Science and Technology, 79(7), pp. 1241–1252. DOI:10.2166/wst.2019.115
  26. Kowalik-Klimczak, A., Zalewski, M. & Gierycz, P. (2016). Removal of Cr(III) ions from salt solution by nanofiltration: Experimental and modelling analysis. Polish Journal of Chemical Technology, 18(3), pp. 10–16. DOI:10.1515/pjct-2016-0042
  27. Krieg, H. M., Modise, S. J., Keizer, K. & Neomagus, H. W. J. P. (2004). Salt rejection in nanofiltration for single and binary salt mixtures in view of sulphate removal. Desalination, 171, pp. 205–215. DOI:10.1016/j.desal.2004.05.005
  28. Labarca, F. & Bórquez, R. (2020). Comparative study of nanofiltration and ion exchange for nitrate reduction in the presence of chloride and iron in groundwater. Science of the Total Environment, 723, pp. 1–12. DOI:10.1016/j.scitotenv.2020.137809
  29. Lee, S., Lee, E., Elimelech, M. & Hong, S. (2011). Membrane characterization by dynamic hysteresis: Measurements, mechanisms, and implications for membrane fouling. Journal of Membrane Science, 366, pp. 17–24. DOI:10.1016/j.memsci.2010.09.024
  30. Ma, W. F., Liu, W. J. & Chen, G. W. (2009). Factors influencing the removal of fluoride from groundwater by Nanofiltration. 3rd International Conference on Bioinformatics and Biomedical Engineering, ICBBE 2009, pp. 1–5. DOI:10.1109/ICBBE.2009.5162848
  31. Madaeni, S. S. & Salehi, E. (2009). Adsorption of cations on nanofiltration membrane: Separation mechanism, isotherm confirmation and thermodynamic analysis. Chemical Engineering Journal, 150(1), pp. 114–121. DOI:10.1016/j.cej.2008.12.005
  32. Mnif, A., Ali, M. B. S. & Hamrouni, B. (2010). Effect of some physical and chemical parameters on fluoride removal by nanofiltration. Ionics, 16, pp. 245–253. DOI:10.1007/s11581-009-0368-7
  33. Nasr, A. B., Charcosset, C., Amar, R. B. & Walha, K. (2013). Defluoridation of water by nanofiltration. Journal of Fluorine Chemistry, 150, pp. 92–97. DOI:10.1016/j.jfluchem.2013.01.021
  34. Nechifor, G., Pascu, D.E. & Pascu, M. (2013). Study of adsorption kinetics and zeta potential of phosphate and nitrate ions on a cellulosic membrane. Revue Roumaine de Chimie, 58 (7–8), pp. 591–597
  35. Park, N., Cho, J., Hong, S. & Lee, S. (2010). Ion transport characteristics in nanofiltration membranes: Measurements and mechanisms. Journal of Water Supply: Research and Technology - AQUA, 59(2–3), pp. 179–190. DOI:10.2166/aqua.2010.034
  36. Richards, L. A., Vuachère, M. & Schäfer, A. I. (2010). Impact of pH on the removal of fluoride, nitrate and boron by nanofiltration/reverse osmosis. Desalination, 261(3), pp. 331–337. DOI:10.1016/j.desal.2010.06.025
  37. Salgado, C., Carmona, F.J., Palacio, L., Hernández, A. & Prádanos, P. (2016). Fouling study of nanofiltration membranes for sugar control in grape must: Analysis of resistances and the role of osmotic pressure. Separation Science and Technology, 51(3), pp. 525–541. DOI:10.1080/01496395.2015.1094490
  38. Shen, J. & Schäfer, A. (2014a). Removal of fluoride and uranium by nanofiltration and reverse osmosis: A review. Chemosphere, 117(1), pp. 679–691. DOI:10.1016/j.chemosphere.2014.09.090
  39. Shen, J. & Schäfer, A. (2015). Factors affecting fluoride and natural organic matter (NOM) removal from natural waters in Tanzania by nanofiltration/reverse osmosis. Science of the Total Environment, 527–528, pp. 520–529. DOI:10.1016/j.scitotenv.2015.04.037
  40. Shu, L., Waite, T. D., Bliss, P. J., Fane, A. & Jegatheesan, V. (2005). Nanofiltration for the possible reuse of water and recovery of sodium chloride salt from textile effluent. Desalination, 172, pp. 235–243. DOI:10.1016/j.desal.2004.07.037
  41. Shurvell, T., Keir, G., Jegatheesan, V., Shu, L. & Farago, L. (2014). Removal of ametryn through nanofiltration and reverse osmosis. Desalination and Water Treatment, 52, pp. 643–649. DOI:10.1080/19443994.2013.829594
  42. Silva, F. C. (2018). Fouling of Nanofiltration Membranes, IntechOpen, London 2018, DOI:10.5772/intechopen.75353
  43. Steele, D. (1966). Group la: the Alkali Metals Li, Na, K, Rb, Cs, Fr, Pergamon, Tallahassee 1966. DOI:10.1016/b978-0-08-011853-6.50010-2
  44. Szmagara, A. & Krzyszczak, A. (2019). Monitoring of fluoride content in bottled mineral and spring waters by ion chromatography. Journal of Geochemical Exploration, 202, pp. 27–34. DOI:10.1016/j.gexplo.2019.03.008
  45. Tahaikt, M., El Habbani, R., Ait Haddou, A., Achary, I., Amor, Z., Taky, M., Alami, A., Boughriba, A., Hafsi, M. & Elmidaoui, A. (2007). Fluoride removal from groundwater by nanofiltration. Desalination, 212(1–3), pp. 46–53. DOI:10.1016/j.desal.2006.10.003
  46. Teixeira, M. R., Rosa, M. J. & Nyström, M. (2005). The role of membrane charge on nanofiltration performance. Journal of Membrane Science, 265(1–2), pp. 160–166. DOI:10.1016/j.memsci.2005.04.046
  47. Tsuru, T., Nakao, S.I. & Kimura, S. (1991). Calculation of ion rejection by extended nernst-planck Equation with charged reverse osmosis membranes for single and mixed electrolyte solutions. Journal of Chemical Engineering of Japan, 24(4), pp. 511–517. DOI:10.1252/jcej.24.511
  48. Van der Bruggen, B. & Vandecasteele, C. (2001). Flux decline during nanofiltration of organic components in aqueous solution. Environmental Science Technology, 35, pp. 3535–3540. DOI: 10.1021/es0100064
  49. Van Der Bruggen, B., Braeken, L. & Vandecasteele, C. (2002). Flux decline in nanofiltration due to adsorption of organic compounds. Separation and Purification Technology, 29(1), pp. 23–31. DOI:10.1016/S1383-5866(01)00199-X
  50. Vieira, G.S, Moreira, F.K.V., Matsumoto, R.L.S., Michelon, M., Filho, F.M. & Hubinger, M.D. (2018). Influence of nanofiltration membrane features on enrichment of jussara ethanolic extract (Euterpe edulis) in anthocyanins. Journal of Food Engineering, 226, pp. 31–41. DOI:10.1016/j.jfoodeng.2018.01.013
  51. Vinati, A., Mahanty, B. & Behera, S. K. (2015). Clay and clay minerals for fluoride removal from water: A state-of-the-art review. Applied Clay Science, 114, pp. 340–348. DOI:10.1016/j.clay.2015.06.013
  52. Vigneswaran, S. & Kwon, D.-Y. (2015). Effect of ionic strength and permeate flux on membrane fouling: analysis of forces acting on particle deposit and cake formation. Environmental Engineering, 19, pp. 1604–1611. DOI:10.1007/s12205-014-0079-0
  53. Wang, Y., Shu, L., Jegatheesan, V. & Gao, B. (2010). Removal and adsorption of diuron through nanofiltration membrane: The effects of ionic environment and operating pressures. Separation and Purification Technology, 74(2), pp. 236–241. DOI:10.1016/j.seppur.2010.06.011
  54. WHO, Guidelines for Drinking-Water Quality, 2017 (4th ed.), World Health Organization, 763 Geneva
  55. Xi, B., Wang, X., Liu, W., Xia, X., Li, D., He, L., Wang, H., Sun, W., Yang, T. & Tao, W. (2014). Fluoride and Arsenic Removal by Nanofiltration Technology from Groundwater in Rural Areas of China: Performances with Membrane Optimization. Separation Science and Technology (Philadelphia), 49, pp. 2642–2649. DOI:10.1080/01496395.2014.939761
  56. Xu, H., Xiao, K., Yu, J., Huang, B., Wang, X., Liang, S., Wei, C., Wen, X. & Huang, X. (2020). A simple method to identify the dominant fouling mechanisms during membrane filtration based on piecewise multiple linear regression. Membranes, 10(8), 1–14. DOI:10.3390/membranes10080171
Go to article

Authors and Affiliations

Martyna Grzegorzek

  1. Wrocław University of Science and Technology,Wrocław, Poland
Download PDF Download RIS Download Bibtex


The alternative waste fuels have a significant share in the fuel mix of the cement industry in Poland. The conditions inside cement kilns are favorable enough for environmentally-friendly use of waste fuels. In the article, the authors discuss the current situation concerning the use of alternative fuels in Poland, from difficult beginning in the 1990s to the present time, different kinds of fuels, and the amounts of used fuels. The use of fuels in Poland is presented against the global and EU consumption (including Central European countries and companies). The increased use of waste-derived fuels, from the level of about 1% at the end of the 1990s to the present level of about 70%, allowed for the limitation of waste storage, including avoidance of greenhouse gas emissions and consumption of conventional energy sources; those effects also contributed to the implementation of the sustainable development and circular economy conceptions. The experiences of the cement plants worldwide prove that the use of waste fuels is ecological and economical. The examples showed in the article confirm that cement plants are greatly interested in using waste fuels from waste, as they invest in the infrastructure allowing to store bigger amounts of waste and dose them more efficiently. Thus, the cement industry has become an important element of the country’s energy economy and waste management system.
Go to article


  1. Aranda Usón, A., López-Sabirón, A.M., Ferreira, G. & Llera Sastresa, E. (2013). Uses of alternative fuels and raw materials in the cement industry as sustainable waste management options, Renewable & Sustainable Energy Reviews, 23, pp. 242–260.
  2. Bąblewski, P. (2012). Co-combustion of alternative fuels in the cement plants Cemex-Poland, in: Proceedings of Conference – Waste to Energy – Warszawa, 14th June 2012. (in Polish)
  3. Beer, J. de, Cihlar, J. & Hensing, I. (2017a). Status and prospects of co-processing of waste in EU cement plants. ( (16.07.2021)).
  4. Beer, J. de, Cihlar, J., Hensing, I. & Zabeti, M. (2017b). Status and prospects of co- processing of waste in EU cement plants. ( (16.07.2021)).
  5. Bieniek, J., Domaradzka, M., Przybysz, K. & Woźniakowski, W. (2011). Use of alternative fuels based on selected fraction of communal and industrial waste in Gorazdze Cement, Acta Agrophysica, 17, pp. 277−288. (in Polish)
  6. Buzzi Unicem (2014–2020). Sustainability Report 2014, 2015, 2016, 2017, 2018, 2019, 2020. ( (16.07.2021)).
  7. Cao, Y. & Pawłowski, L. (2012). Lublin experience with co-incineration of muncipal solid wastes in cement industry, Annual Set the Environment Protection, 14, pp. 132−145.
  8. CEMBUREAU (2020). Cementing the European Green Deal. Reaching climate neutrality along the cement and concrete value chain by 2050. ( (16.07.2021)).
  9. Cement Ożarów (2019). (16.08.2021)). (in Polish)
  10. Cemex (2016). Alternative fuels at CEMEX Polska. ( (16.07.2021)). (in Polish))
  11. Cemex (2002–2020). Annual Report. Global Reports, Cemex, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020. ( (16.07.2021)).
  12. Cemex Polska (2017–2019). Chełm Cement Plant. Environmental Statement 2016, 2017, 2018, 2019. ( (16.07.2021)). (in Polish)
  13. Cemex Polska (2010–2016) Sustainability Report 2010, 2011–2012, 2013–2014, 2015–2016. ( (16.07.2021)). (in Polish)
  14. Change of municipal waste management system in Poland in 2012–2016, 2017. (,6,1.html (16.07.2021)). (in Polish)
  15. CRH (2018). Creating a Sustainable Built Environment. CRH Sustainbility Report 2017. ( (16.07.2021)).
  16. Czech Cement Association (2017–2019). Data 2017, 2018, 2019. Svaz výrobců cementu České republiky Czech Cement Association. ( (16.07.2021)).
  17. Ecofys (2016). Market opportunities for use of alternative fuels in cement plants across the EU Assessment of drivers and barriers for increased fossil fuel substitution in three EU member states: Greece, Poland and Germany. ( (16.07.2021)).
  18. Fyffe, J.R., Breckel, A.C., Townsend, A.K. & Webber, M.E. (2016). Use of MRF residue as alternative fuel in cement production, Waste Management, 47, pp. 276–284.
  19. Genon, G. & Brizio, E. (2008). Perspectives and limits for cement kilns as a destination for RDF, Waste Management, 28, pp. 2375–2385.
  20. Górażdże Group, 2016. Sustainable Report 2014–2015. Górażdże Group. ( (16.07.2021)). (in Polish)
  21. Hasanbeigi, A., Lu., L., Williams, Ch. & Price. L., (2012). International best practices for pre-processing and co-processing municipal solid waste and sewage sludge in the cement industry. Lawrence Berkeley Laboratory (LBL) for the U.S. Environmental Protection Agency. ( (16.08.2021)).
  22. HeidelbergCement (20042020) Sustainability Report 2004/2005, 2006, 2009/2010, 2011/2012, 2013/2014, 2015, 2016, 2017, 2018, 2019, 2020. (16.07.2021)).
  23. Holt, S.P. & Berge, N.D. (2018). Life-cycle assessment of using liquid hazardous waste as an alternative energy source during Portland cement manufacturing: A United States case study, Journal of Cleaner Production, 195, pp. 1057–1068.
  24. Husillos Rodríguez, N., Martínez-Ramírez, S., Blanco-Varela, M.T., Donatello, S., Guillem, M., Puig, J., Fos, C., Larrotcha, E. & Flores, J. (2013). The effect of using thermally dried sewage sludge as an alternative fuel on Portland cement clinker production. Journal of Cleaner Production, 52, pp. 94–102.
  25. Kookos, I.K., Pontikes, Y., Angelopoulos, G.N. & Lyberatos, G. (2011). Classical and alternative fuel mix optimization in cement production using mathematical programming. Fuel, 90, pp. 1277–1284.
  26. LafargeHolcim (2019). Sustainability Report Lafarge in Poland 2017-2018. ( (16.07.2021)).
  27. LafargeHolcim (2017–2020). Sustainability Report 2017, 2018, 2020.( (16.07.2021)).
  28. Lechtenberg, D. (2008). Alternative fuels – history and outlook, Global Fuels Magazine, pp. 28–30.
  29. Liu, X., Yuan, Z., Xu, Y. & Jiang, S. (2017). Greening cement in China: A cost-effective roadmap, Applied Energy, 189, pp. 233–244.
  30. Mauschitz, G. (2009 - 2019). Emissionen aus Anlagen der österreichischen Zementindustrie Berichtsjahr 2009, 2011, 2014, 2017, 2018, 2019. ( (16.07.2021)). (in German)
  31. Mokrzycki, E. & Uliasz-Bocheńczyk, A. (2009). Management of primary energy carriers in Poland versus environmental protection, Annual Set the Environment Protection, 11, pp. 103–131. (in Polish)
  32. Mokrzycki, E., Uliasz-Bocheńczyk, A. & Sarna, M. (2003). Use of alternative fuels in the Polish cement industry, Applied Energy, 74, pp. 101–111.
  33. "ODRA" S.A. Cement Mill 2018. Environmental Statement "ODRA" S.A. Cement Mill 2018. ( (16.08.2021)). (in Polish)
  34. "ODRA" S.A. Cement Mill 2018. Environmental Statement "ODRA" S.A. Cement Mill 2019. ( (16.08.2021)). (in Polish)
  35. Olkuski, T. (2013). Analysis of domestic reserves of steam coal in the light of its use in power industry. Gospodarka Surowcami Mineralnymi-Mineral Resources Management, 29, pp. 25-38. (in Polish)
  36. Rahman, A., Rasul, M.G., Khan, M.M.K. & Sharma, S. (2015). Recent development on the uses of alternative fuels in cement manufacturing process, Fuel, 145, pp. 84–99.
  37. Regulation of the Minister of Economy of 16 July 2015 on the acceptance of waste to landfills. Journal of Laws, 2015, item 1277).
  38. Schakel, W., Hung, C.R., Tokheim, L.A., Strømman, A.H., Worrell, E. & Ramírez, A. (2018). Impact of fuel selection on the environmental performance of post-combustion calcium looping applied to a cement plant, Applied Energy, 210, pp. 75–87.
  39. Schorcht, F., Kourti, I., Scalet, B.M , Roudier, S., Sancho, L.D. (2013) Reference Document on Best Available Techniques in the Cement, Lime and Magnesium Oxide. Manufacturing Industries (May 2010). European Commission. European Integrated Pollution Prevention and Control Bureau. (16.08.2021)).
  40. The Plan…(2016)a. Waste Management Plan for Lublin Voivodeship 2022. ( (16.07.2021)). (in Polish)
  41. The Plan…(2016)b. Waste Management Plan for the Opole Voivodeship 2016-2022 taking into account the years 2023-2028 – project. ( (16.07.2021)). (in Polish)
  42. The Plan…(2016)c. Waste Management Plan for the Świętokrzyskie Voivodeship 2016-2022 - project. ( (16.07.2021)). (in Polish)
  43. The Polish Cement Association (2006–2021). Bulletin of The Polish Cement Association 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021. (in Polish)
  44. Uliasz-Bocheńczyk, A.& Mokrzycki, E. (2015). Biomass as a fuel in power industry. Annual Set the Environment Protection, 17, pp. 900–913. (in Polish)
  45. Verein Deutscher Zementwerke (2014–2019). Environmental Data of the German Cement Industry, 2014, 2015, 2016, 2017, 2018, 2019. ( (16.07.2021)).
Go to article

Authors and Affiliations

Alicja Uliasz-Bocheńczyk
Jan Deja
Eugeniusz Mokrzycki

  1. AGH University of Science and Technology, Faculty of Civil Engineering and Resource Management, Poland
  2. AGH University of Science and Technology, Faculty of Materials Science, and Ceramics, Poland
  3. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Poland

Instructions for authors

Archives of Environmental Protection
Instructions for Authors

Archives of Environmental Protection is a quarterly published jointly by the Institute of Environmental Engineering of the Polish Academy of Sciences and the Committee of Environmental Engineering of the Polish Academy of Sciences. Thanks to the cooperation with outstanding scientists from all over the world we are able to provide our readers with carefully selected, most interesting and most valuable texts, presenting the latest state of research in the field of engineering and environmental protection.

The Journal principally accepts for publication original research papers covering such topics as:
– Air quality, air pollution prevention and treatment;
– Wastewater treatment and utilization;
– Waste management;
– Hydrology and water quality, water treatment;
– Soil protection and remediation;
– Transformations and transport of organic/inorganic pollutants in the environment;
– Measurement techniques used in environmental engineering and monitoring;
– Other topics directly related to environmental engineering and environment protection.

The Journal accepts also authoritative and critical reviews of the current state of knowledge in the topic directly relating to the environment protection.

If unsure whether the article is within the scope of the Journal, please send an abstract via e-mail to:

Preparation of the manuscript
The following are the requirements for manuscripts submitted for publication:
• The manuscript (with illustrations, tables, abstract and references) should not exceed 20 pages. In case the manuscript exceeds the required number of pages, we suggest contacting the Editor.
• The manuscript should be written in good English.
• The manuscript ought to be submitted in doc or docx format in three files:
– text.doc – file containing the entire text, without title, keywords, authors names and affiliations, and without tables and figures;
– figures.doc – file containing illustrations with legends;
– tables.doc – file containing tables with legends;
• The text should be prepared in A4 format, 2.5 cm margins, 1.5 spaced, preferably using Time New Roman font, 12 point. Thetext should be divided into sections and subsections according to general rules of manuscript editing. The proposed place of tables and figures insertion should be marked in the text.
• Legends in the figures should be concise and legible, using a proper font size so as to maintain their legibility after decreasing the font size. Please avoid using descriptions in figures, these should be used in legends or in the text of the article. Figures should be placed without the box. Legends should be placed under the figure and also without box.
• Tables should always be divided into columns. When there are many results presented in the table it should also be divided into lines.
• References should be cited in the text of an article by providing the name and publication year in brackets, e.g. (Nowak 2019). When a cited paper has two authors, both surnames connected with the word “and” should be provided, e.g. (Nowak and Kowalski 2019). When a cited paper has more than two author, surname of its first author, abbreviation ‘et al.’ and publication year should be provided, e.g. (Kowalski et al. 2019). When there are more than two publications cited in one place they should be divided with a coma, e.g. (Kowalski et al. 2019, Nowak 2019, Nowak and Kowalski 2019). Internet sources should be cited like other texts – providing the name and publication year in brackets.
• The Authors should avoid extensive citations. The number of literature references must not exceed 30 including a maximum of 6 own papers. Only in review articles the number of literature references can exceed 30.
• References should be listed at the end of the article ordered alphabetically by surname of the first author. References should be made according to the following rules:

1. Journal:
Surnames and initials. (publication year). Title of the article, Journal Name, volume, number, pages, DOI.
For example:

Nowak, S.W., Smith, A.J. & Taylor, K.T. (2019). Title of the article, Archives of Environmental Protection, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330

If the article has been assigned DOI, it should be provided and linked with the website on which it is made available.

2. Book:
Surnames and initials. (publication year). Title, Publisher, Place and publishing year.
For example:

Kraszewski, J. & Kinecki, K. (2019). Title of book, Work & Studies, Zabrze 2019.

3. Edited book:

Surnames and initials of text authors. (publishing year). Title of cited chapter, in: Title of the book, Surnames and
initials of editor(s). (Ed.)/(Eds.). Publisher, Place, pages.
For example:

Reynor, J. & Taylor, K.T. (2019). Title of chapter, in: Title of the cited book, Kaźmierski, I. & Jasiński, C. (Eds.). Work & Studies, Zabrze, pp. 145–189.

4. Internet sources:
Surnames and initials or the name of the institution which published the text. (publication year). Title, (website address (accessed on)).
For example:

Kowalski, M. (2018). Title, ( (03.12.2018)).

5. Patents:

Orszulik, E. (2009). Palenisko fluidalne, Patent polski: nr PL20070383311 20070910 z 16 marca 2009.
Smith, I.M. (1988). U.S. Patent No. 123,445. Washington, D.C.: U.S. Patent and Trademark Office.

6. Materials published in language other than English:
Titles of cited materials should be translated into English. Information of the language the materials were published in should be provided at the end.
For example:

Nowak, S.W. & Taylor, K.T. (2019). Title of article, Journal Name, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330. (in Polish)

Not more than 30 references should be cited in the original research paper.

Submission of the manuscript
By submitting the manuscript Author(s) warrant(s) that the article has not been previously published and is not under consideration by another journal. Authors claim responsibility and liability for the submitted article.
The article is freely available and distributed under the terms of Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0,, which permits use, distribution and reproduction in any medium provided the article is properly cited, is not used for commercial purposes and no modification or adaptation are made.

© 2021. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0,, which permits use, distribution, and reproduction in any medium, provided that the article is properly cited, the use is non-commercial, and no modifications or adaptations are made

The manuscripts should be submitted on-line using the Editorial System available at Authors are asked to propose at least 4 potential reviewers, including 2 from Poland, together with their e-mail addresses. The journal does not have article processing charges (APCs) nor article submission charges.

Review Process
All the submitted articles are assessed by the Editorial Board. If positively assessed by at least two editors, Editor in Chief, along with department editors selects two independent reviewers from recognized authorities in the discipline.
Review process usually lasts from 1 to 4 months.
Reviewers have access to PUBLONS platform which integrates into Bentus Editorial System and enables adding reviews to their personal profile.
After completion of the review process Authors are informed of the results and – if both reviews are positive – asked to correct the text according to reviewers’ comments. Next, the revised work is verified by the editorial staff for factual and editorial content.

Acceptance of the manuscript

The manuscript is accepted for publication on grounds of the opinions of independent reviewers and approval of Editorial Board. Authors are informed about the decision and also asked to pay processing charges and to send completed declaration of the transfer of copyright to the editorial office.

Proofreading and Author Correction
All articles published in the Archives of Environmental Protection go through professional proofreading process. If there are too many language errors that prevent understanding of the text, the article is sent back to Authors with a request to correct the indicated fragments or – in extreme cases – to re-translate the text.
After proofreading the manuscript is prepared for publishing. The final stage of the publishing process is Author correction. Authors receive a page proof copy of the article with a request to make final corrections.

Article publication charges
The publication fee of an article in the Journal is:
25 EUR/100 zł per page (black and white or in gray scale),
35 EUR/130 zł per page (color).

Payments in Polish zlotys
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001

Payments in Euros
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001
IBAN: PL 20 1130 1091 0003 9111 7820 0001

Authors are kindly requested to inform the editorial office of making payment for the publication, as well as to send all necessary data for issuing an invoice.

Additional info

Abstracting & Indexing

Archives of Environmental Protection is covered by the following services:

AGRICOLA (National Agricultural Library)



Baidu Scholar


CABI (over 50 subsections)

Chemical Abstracts Service (CAS) - CAplus

Chemical Abstracts Service (CAS) - SciFinder

CNKI Scholar (China National Knowledge Infrastructure)



DOAJ (Directory of Open Access Journals)

EBSCO (relevant databases)

EBSCO Discovery Service

Engineering Village

FSTA - Food Science & Technology Abstracts

Genamics JournalSeek



Google Scholar

Index Copernicus


Japan Science and Technology Agency (JST)


Journal Citation Reports/Science Edition


KESLI-NDSL (Korean National Discovery for Science Leaders)

Microsoft Academic

Naviga (Softweco)

Primo Central (ExLibris)

ProQuest (relevant databases)






Summon (Serials Solutions/ProQuest)


TEMA Technik und Management

Ulrich's Periodicals Directory/ulrichsweb

WanFang Data

Web of Science - Biological Abstracts

Web of Science - BIOSIS Previews

Web of Science - Science Citation Index Expanded

WorldCat (OCLC)

Peer-review Procedure

The reviewing procedure for papers published in Archives of Environmental Protection

1) After accepting the paper as matching to the scope of the Journal Editor-in-Chief with Section Editors choose two independent Reviewers (authorities in the domain/discipline). The chosen Reviewers (from professors and senior academic staff members) have to guarantee:

  • autonomous opinion,
  • the lack of interests conflict – especially the lack of personal and business relations with the Authors of the paper,
  • the preservation of confidentiality about the paper content and the Reviewer opinion about the paper.

2) After the Reviewers selection, Assistant Editor send them (via e-mail) requests to review the paper. Reviewers receive the full text of the paper (without Author personal data) qualified for the reviewing process and referee form, sometimes supplemented with the additional questions connected with the article. In the e-mail Assistant Editor also determine the extent of the review and the deadline (usually a month).

3) The personal data of Reviewers are not open (double-blind review). It can be declassify only on Author’s special request and after the Reviewer agreement. It sometimes happen when the review outcome is: manuscript rejection or when the paper contain controversial issues.

4) The reviewer send the review to the Editorial Office via e-mail. After receiving the review the Assistant Editor:

  • inform Authors about it (in the case of the review without corrections or when there are only small, editorial changes needed),
  • send the reviews to Authors. Authors have to correct the paper according to Reviewers comment and prepare the reply to Reviewers,
  • send the paper corrected by Authors to Reviewers again – when Reviewer wanted to review it again.

5) The final decision about manuscript is made by the Editorial Board on the basis of the analysis of remarks contained in the review and the final version of the paper send by Authors. 6) The final version of the paper, after typesetting and text makeup is being sent to Authors, who make an author’s corrections. Afterwards the paper is ready to be printed in the specific issue.


All Reviews in 2021

Adamkiewicz Łukasz, Aksoy Özlem, Alwaeli Mohamed, Aneta Luczkiewicz, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Babbar Deepakshi, Badura Marek, Bajda Tomasz, Biedka Paweł, Błaszczak Barbara, Bodzek Michał, Bogacki Jan, Burszta-Adamiak Ewa, Cheng Gan, Chojecka Agnieszka, Chrzanowski Łukasz, Chwojnowski Andrzej, Ciesielczuk Tomasz, Cimochowicz-Rybicka Małgorzata, Curren Emily, Cydzik-Kwiatkowska Agnieszka, Czajka Agnieszka, Danielewicz Jan, Dannowski Ralf, Daoud Mounir, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Demirbaş Ahmet, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Franus Wojciech, G. Uchrin Christopher, Generowicz Agnieszka, Gębicki Jacek, Giergiczny Zbigniew, Gierszewski Piotr, Glińska-Lewczuk Katarzyna, Godłowska Jolanta, Gokalp Fulya, Gospodarek Janina, Górecki Tadeusz, Grabińska-Sota Elżbieta, Grifoni M., Gromiec Marek, Guo Xuetao, Gusiatin Zygmunt, Hartmann Peter, He Jianzhong, He Yong, Heese Tomasz, Hybská Helena, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Janowski Mirosław, Jordanov Igor, Jóżwiakowski Krzysztof, Juśkiewicz Włodzimierz, Kabsch-Korbutowicz Małgorzata, Kalinowski Radosław, Kalka Joanna, Kapusta Paweł, Karczewska Anna, Karczmarczyk Agnieszka, Kicińska Alicja, Kiciński Jan, Kijowska-Strugała Małgorzata, Klejnowski Krzysztof, Kłosok-Bazan Iwona, Kolada Agnieszka, Konieczny Krystyna, Kostecki Maciej, Kowalczewska-Madura Katarzyna, Kowalczuk Marek, Kozielska Barbara, Kozłowski Kamil, Krzemień Alicja, Kulig Andrzej, Kwaśny Justyna, Kyzioł-Komosińska Joanna, Ledakowicz Stanislaw, Leites Luchese Claudia, Leszczyńska-Sejda Katarzyna, Li Mingyang, Liu Chao, Mahmood Khalid, Majewska-Nowak Katarzyna, Makisha Nikolay, Malina Grzegorz, Markowska-Szczupak Agata, Mocek Andrzej, Mokrzycki Eugeniusz, Molenda Tadeusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Myrta Anna, Narayanasamy Selvaraju, Nzila Alexis, OIkuski Tadeusz, Oleniacz Robert, Pacyna Jozef, Pająk Tadeusz, Pal Subodh Chandra, Panagopoulos Argyris, Paruch Adam, Paszkowski Waldemar, Pawęska Katarzyna, Paz-Ferreiro Jorge, Paździor Katarzyna, Pempkowiak Janusz, Piątkiewicz Wojciech, Piechowicz Janusz, Piotrowska-Seget Zofia, Pisoni E., Piwowar Arkadiusz, Pleban Dariusz, Policht-Latawiec Agnieszka, Polkowska Żaneta, Poluszyńska Joanna, Rajca Mariola, Reizer Magdalena, Riesgo Fernández Pedro, Rith Monorom, Rybicki Stanisław, Rydzkowski Tomasz, Rzepa Grzegorz, Rzeźnik Wojciech, Rzętała Mariusz, Sabovljevic Marko, Scudiero Rosaria, Sekret Robert, Sheng Yanqing, Sławomir Stelmach, Słowik Leszek, Sočo Eleonora, Sojka Mariusz, Sophonrat Nanta, Sówka Izabela, Spiak Zofia, Stachowski Piotr, Stańczyk-Mazanek Ewa, Stebel Adam, Sulieman Magboul, Surmacz-Górska Joanna, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szopińska Kinga, Szymański Kazimierz, Ślipko Katarzyna, Tepe Yalçin, Tórz Agnieszka, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Urošević Mira, Uzarowicz Łukasz, Vakili Mohammadtaghi, Van Harreveld A.P., Voutchkova Denitza, Wang Gang, Wang X.K., Werbińska-Wojciechowska Sylwia, Wiatkowski Mirosław, Wielgosiński Grzegorz, Wilk Pawel, Willner Joanna, Wisniewski Jacek, Wiśniowska Ewa, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojnowska-Baryła Irena, Wolska Małgorzata, Wszołek Tadeusz, Wu Yonghua, Yusuf Mohammad, Zuberi Amina, Zuwała Jarosław, Zwoździak Jerzy.

All Reviews in 2020

Adamiec Ewa, Adamkiewicz Łukasz, Ahammed M. Mansoor, Akcicek Ekrem, Ameur Houari, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Badura Marek, Barabasz Wiesław, Barthakur Manoj, Battegazzore Daniele, Biedka Paweł, Bilek Maciej, Bisschop Lieselot, Błaszczak Barbara, Błażejewski Ryszard, Bochoidze Inga, Bodzek Michał, Bogacki Jan, Borella Paola, Borowiak Klaudia, Borralho Teresa, Boyacioglu Hülya, Bunjongsiri Kultida, Burszta-Adamiak Ewa, Calderon Raul, Chatveera Burachat Chatveera, Cheng Gan, Chiwa Masaaki, Chojnicki Józef, Chrzanowski Łukasz, Ciesielczuk Tomasz, Czajka Agnieszka, Czaplicka Marianna, Daoud Mounir, Dąbek Lidia, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Dereszewska Alina, Dębowski Marcin, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Dymaczewski Zbysław, El-Maradny Amr, Farfan-Cabrera Leonardo, Filizok Işık, Franus Wojciech, García-Ávila Fernando, Gariglio N.F., Gaya M.S, Gebicki Jacek, Giergiczny Zbigniew, Glińska-Lewczuk Katarzyna, Gnida Anna, Gospodarek Janina, Grabińska-Sota Elżbieta, Gusiatin Zygmunt, Harnisz Monika, Hartmann Peter, Hawrot-Paw Małgorzata, He Jianzhong, Hirabayashi Satoshi, Hulisz Piotr, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Jacukowicz-Sobala Irena, Jeż-Walkowiak Joanna, Jordanov Igor, Jóżwiakowski Krzysztof, Kabsch-Korbutowicz Małgorzata, Kajda-Szcześniak Małgorzata, Kalinowski Radosław, Kalka Joanna, Karczewska Anna, Karwowska Ewa, Kim Ki-Hyun, Klejnowski Krzysztof, Klojzy-Karczmarczyk Beata, Korniłłowicz-Kowalska Teresa, Korus Irena, Kostecki Maciej, Koszelnik Piotr, Koter Stanisław, Kowalska Beata, Kowalski Zygmunt, Kozielska Barbara, Krzyżyńska Renata, Kulig Andrzej, Kwarciak-Kozłowska Anna, Kyzioł-Komosińska Joanna, Lagzdins Ainis, Ledakowicz Stanislaw, Ligęza Sławomir, Liu Xingpo, Loga Małgorzata, Łebkowska Maria, Macherzyński Mariusz, Makisha Nikolay, Makowska Małgorzata, Masłoń Adam, Mazur Zbigniew, Michel Monika, Miechówka Anna, Miksch Korneliusz, Mnuchin Nathan, Mokrzycki Eugeniusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Muntean Edward, Myrta Anna, Nahorski Zbigniew, Narayanasamy Selvaraju, Naumczyk Jeremi, Nawalany Marek, Noubactep C., Nowakowski Piotr, Obarska-Pempkowiak Hanna, Orge C.A., Paul Lothar, Pawęska Katarzyna, Paździor Katarzyna, Pempkowiak Janusz, Peña A., Pietr Stanisław, Piotrowska-Seget Zofia, Pisoni E., Płaza Grażyna, Polkowska Żaneta, Reizer Magdalena, Renman Gunno, Rith Monorom, Romanovski Valentin, Rybicki Stanisław, Rydzkowski Tomasz, Rzętała Mariusz, Sadeghi Mahdi, Sakakibara Yutaka, Scudiero Rosaria, Semaan Mary, Seredyński Franciszek, Sergienko Ruslan, Shen Yujun, Sheng Yanqing, Sidełko Robert, Sočo Eleonora, Sojka Mariusz, Sówka Izabela, Spiak Zofia, Stegenta-Dąbrowska Sylwia, Steliga Teresa, Sulieman Magboul, Surmacz-Górska Joanna, Suryadevara Nagaraja, Suska-Malawska Małgorzata, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szpyrka Ewa, Szulczyński Bartosz, Szwast Maciej, Szyszlak-Bargłowicz Joanna, Ślipko Katarzyna, Świetlik Ryszard, Tabernacka Agnieszka, Tepe Yalçin, Tobiszewski Marek, Treichel Wiktor, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Uzarowicz Łukasz, Van Harreveld A.P., Wang X. K., Wasielewski Ryszard, Wiatkowski Mirosław, Wielgosiński Grzegorz, Willner Joanna, Wisniewski Jacek, Witczak Joanna, Witkiewicz Zygfryd, Włodarczyk Małgorzata, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojtkowska Małgorzata, Xinhui Duan, Yang Chunping, Yaqian Zhao Yaqian, Załęska-Radziwiłł Monika, Zamorska Justyna, Zasina Damian, Zawadzki Jarosław, Zdeb Monika M., Zheng Guodi, Zhu Ivan X., Ziułkiewicz Maciej, Zuberi Amina, Zwoździak Jerzy, Żabczyński Sebastian, Żukowski Witold, Żygadło Maria.

This page uses 'cookies'. Learn more