Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The composition and pouring temperature are important parameters in metal casting. Many cast product failures are caused by ignorance of the influence of both. This research aims to determine the effect of adding tin composition and pouring temperature on fluidity, microstructure and mechanical properties including tensile strength and hardness of tin bronze (Cu-Sn). The Cu-Sn is widely used as employed in the research is Cu (20, 22 and 24) wt.%Sn alloy using the investment casting method. Variations in pouring temperature treatment TS1 = 1000°C and TS2 = 1100°C. The mold for the fluidity test is made with a wax pattern then coated in clay. The mold dimensions are 400 mm long with mold cavity variations of 1.5, 2, 3, 4, 5 mm. Several parameters: increasing the pouring temperature, adding tin composition, decreasing the temperature gradient between the molten metal and the mold walls result in a decrease in the solidification rate which can increase fluidity. The α + δ phase transition to β and γ intermetallic phases decreases fluidity at >22wt.%Sn. The columnar dendrite microstructure increases with the addition of tin composition and pouring temperature. The mechanical properties of tensile strength decrease, hardness increases and the alloy becomes more brittle with increasing tin composition.
Go to article

Bibliography


[1] Hou, J., Sun, J., Zhan, C., Tian, X., & Chen, X. (2007). The structural change of Cu-Sn melt. Science in China Series G: Physics, Mechanics and Astronomy. 50(4), 414-420. https://doi.org/10.1007/s11433-007-0038-6.

[2] Park, J. S., Park, C. W., & Lee, K. J. (2009). Implication of peritectic composition in historical high-tin bronze metallurgy. Materials Characterization, 60(11), 1268-1275. https://doi.org/10.1016/j.matchar.2009.05.009.

[3] Debut, V., Carvalho, M., Figueiredo, E., Antunes, J. & Silva, R. (2016). The sound of bronze: Virtual resurrection of a broken medieval bell. Journal of Cultural Heritage. 19, 544-554. https://doi.org/10.1016/j.culher.2015.09.007.

[4] Audy J. & Audy, K. (2008). Analysis of bell materials: Tin bronzes. China Foundry. 5(3), 199-204.

[5] Won, C. S., Jung, J. P., Won, K. S., & Sharma, A. (2022). Technological insights into the evolution of bronze bell metal casting on the Korean Peninsula. Metals. 12(11), 1776, 1-28. https://doi.org/10.3390/met12111776.

[6] Fletcher, N. (2012). Materials and musical instruments. Acousitics Aust. 40(2), 130-134.

[7] Sumarsam, (2002). Introduction to javanese gamelan notes for music 451 (Javanese Gamelan-Beginners). Syllabus. 451(1), 1-28.

[8] Goodway, M. (1992). Metals of music. Materials Characterization. 29(2), 177-184. https://doi.org/10.1016/1044-5803(92)90113-V.

[9] Li, D., Franke, P., Fürtauer, S., Cupid, D. & dan Flandorfer, H. (2013). The Cu-Sn phase diagram part II: New thermodynamic assessment. Intermetallics. 34, 148-158. https://doi.org/10.1016/j.intermet.2012.10.010.

[10] Kohler, F., Germond, L., Wagnière, J.D. & dan Rappaz, M. (2009). Peritectic solidification of Cu-Sn alloys: Microstructural competition at low speed. Acta Materialia. 57(1), 56-68. https://doi.org/10.1016/ j.actamat.2008.08.058.

[11] Pattnaik, S., Karunakar, D.B. & Jha, P.K. (2012). Developments in investment casting process - A review. Journal of Materials Processing Technology. 212(11), 2332-2348. https://doi.org/10.1016/j.jmatprotec.2012.06.003.

[12] Singh, J., Singh, R. & Singh, H. (2017). Dimensional accuracy and surface finish of biomedical implant fabricated as rapid investment casting for small to medium quantity production. Journal of Manufacturing Processes. 25, 201-211. https://doi.org/10.1016/j.jmapro.2016.11.012.

[13] Cheah, C. M., Chua, C. K., Lee, C. W., Feng, C., & Totong, K. (2005). Rapid prototyping and tooling techniques : a review of applications for rapid. The International Journal of Advanced Manufacturing Technology. 25, 308-320. https://doi.org/10.1007/s00170-003-1840-6.

[14] Lee, K., Blackburn, S. & Welch, S.T. (2017). A more representative mechanical testing of green state investment casting shell. Ceramics International. 43(1), 268-274. https://doi.org/10.1016/j.ceramint.2016.09.149.

[15] Campbell J. & Harding, R.A. (1994). The fluidity of molten metals 3205 the fluidity of molten metals. TALAT Lect. 3205. 1-19.

[16] Siavashi, K. (2012). The effect of casting parameters on the fluidity and porosity of aluminium alloys in the lost foam casting process. Thesis, University of Birmingham, United Kingdom.

[17] Caliari, D., Timelli, G., Bonollo, F., Amalberto, P. & Giordano, P. (2015). Fluidity of aluminium foundry alloys: Development of a testing procedure. La Metallurgia Italiana. 107(6), 11-18.

[18] Tan, M., Xiufang, B., Xianying, X., Yanning, Z., Jing, G. & Baoan, S. (2007). Correlation between viscosity of molten Cu – Sn alloys and phase diagram. Physica B: Condensed Matter, 387(1-2), 1-5. https://doi.org/10.1016/j.physb.2005.10.140.

[19] Hou, J., Guo, H., Zhan, C., Tian, X. & Chen, X. (2006). Viscous and magnetic properties of liquid Cu – 25 wt .% Sn alloy. Materials Letters. 60(16), 2038-2041. https://doi.org/10.1016/j.matlet.2005.12.108.

[20] Mudry, S., Korolyshyn, A., Vus, V. & Yakymovych, A. (2013). Viscosity and structure of liquid Cu – In alloys. Journal of Molecular Liquids. 179, 94-97. https://doi.org/10.1016/j.molliq.2012.12.019.

[21] Rzychoń, T., Kiełbus, A. & Serba, M. (2010). The influence of pouring temperature on the microstructure and fluidity of elektron 21 and WE54 magnesium alloys. Archives of Metallurgy and Materials. 55(1), 7-13.

[22] Sulaiman S. & Hamouda, A.M.S. (2001). Modeling of the thermal history of the sand casting process. Journal of Materials Processing Technology. 113(1-3), 245-250. https://doi.org/10.1016/S0924-0136(01)00592-1.

[23] Slamet, S., Suyitno, & Kusumaningtyas, I. (2021). Effect of post cast heat treatment on Cu20wt.%Sn on Microstructure and mechanical properties. Archive of Foundry Engineering. 21(4) 87-92. DOI: 10.24425/afe.2021.138684.

[24] Nadolski, M. (2017). The evaluation of mechanical properties of high-tin bronzes. Archive of Foundry Engineering. 17(1), 127-130. DOI: 10.1515/afe-2017-0023.

[25] Bartocha D. & Baron, C. (2016). Influence of Tin Bronze Melting and Pouring Parameters on Its Properties and Bells ’ Tone. Archives of Foundry Engineering. 16(4), 17-22. ISSN (1897-3310).

[26] Shmakova, K., Chikova, O. & Tsepelev, V. (2016). Viscosity of liquid Cu – Sn alloys viscosity of liquid Cu – Sn alloys. Physics and Chemistry of Liquids. 56(1), 1-8. https://doi.org/10.1080/00319104.2016.1233184.

[27] Zeynep Taslicukur, E.T., Gözde S. Altug, Şeyda Polat, Hakan Atapek, Ş. (2012). A microstructural study on CuSn10 bronze produced by sand and investment casting techniques. In 21st International Conference on Metallurgy and Materials METAL, 23 -25 May 2012 (pp. 23-25). Brno, Czech Republic.

Go to article

Authors and Affiliations

Sugeng Slamet
1
Slamet Khoeron
1
Ratri Rahmawati
1
Suyitno
2
Indraswari Kusumaningtyas
3

  1. Mechanical Engineering, Universitas Muria Kudus, Jl. Gondang manis, Po. Box 53, Bae, Kudus, Indonesia
  2. Mechanical Engineering, Universitas Tidar, Jl. Kapten Suparman 39, Magelang, Indonesia
  3. Departement of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Jl. Grafika No.2 Yogyakarta, Indonesia

This page uses 'cookies'. Learn more