Details

Title

Effect of Composition and Pouring Temperature of Cu-Sn on Fluidity and Mechanical Properties of Investment Casting

Journal title

Archives of Foundry Engineering

Yearbook

2024

Volume

vol. 24

Issue

No 3

Affiliation

Slamet, Sugeng : Mechanical Engineering, Universitas Muria Kudus, Jl. Gondang manis, Po. Box 53, Bae, Kudus, Indonesia ; Khoeron, Slamet : Mechanical Engineering, Universitas Muria Kudus, Jl. Gondang manis, Po. Box 53, Bae, Kudus, Indonesia ; Rahmawati, Ratri : Mechanical Engineering, Universitas Muria Kudus, Jl. Gondang manis, Po. Box 53, Bae, Kudus, Indonesia ; Suyitno : Mechanical Engineering, Universitas Tidar, Jl. Kapten Suparman 39, Magelang, Indonesia ; Kusumaningtyas, Indraswari : Departement of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Jl. Grafika No.2 Yogyakarta, Indonesia

Authors

Keywords

Tin bronze ; Investment casting ; Fluidity ; Pouring temperature ; Mechanical properties

Divisions of PAS

Nauki Techniczne

Coverage

50-56

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography


[1] Hou, J., Sun, J., Zhan, C., Tian, X., & Chen, X. (2007). The structural change of Cu-Sn melt. Science in China Series G: Physics, Mechanics and Astronomy. 50(4), 414-420. https://doi.org/10.1007/s11433-007-0038-6.

[2] Park, J. S., Park, C. W., & Lee, K. J. (2009). Implication of peritectic composition in historical high-tin bronze metallurgy. Materials Characterization, 60(11), 1268-1275. https://doi.org/10.1016/j.matchar.2009.05.009.

[3] Debut, V., Carvalho, M., Figueiredo, E., Antunes, J. & Silva, R. (2016). The sound of bronze: Virtual resurrection of a broken medieval bell. Journal of Cultural Heritage. 19, 544-554. https://doi.org/10.1016/j.culher.2015.09.007.

[4] Audy J. & Audy, K. (2008). Analysis of bell materials: Tin bronzes. China Foundry. 5(3), 199-204.

[5] Won, C. S., Jung, J. P., Won, K. S., & Sharma, A. (2022). Technological insights into the evolution of bronze bell metal casting on the Korean Peninsula. Metals. 12(11), 1776, 1-28. https://doi.org/10.3390/met12111776.

[6] Fletcher, N. (2012). Materials and musical instruments. Acousitics Aust. 40(2), 130-134.

[7] Sumarsam, (2002). Introduction to javanese gamelan notes for music 451 (Javanese Gamelan-Beginners). Syllabus. 451(1), 1-28.

[8] Goodway, M. (1992). Metals of music. Materials Characterization. 29(2), 177-184. https://doi.org/10.1016/1044-5803(92)90113-V.

[9] Li, D., Franke, P., Fürtauer, S., Cupid, D. & dan Flandorfer, H. (2013). The Cu-Sn phase diagram part II: New thermodynamic assessment. Intermetallics. 34, 148-158. https://doi.org/10.1016/j.intermet.2012.10.010.

[10] Kohler, F., Germond, L., Wagnière, J.D. & dan Rappaz, M. (2009). Peritectic solidification of Cu-Sn alloys: Microstructural competition at low speed. Acta Materialia. 57(1), 56-68. https://doi.org/10.1016/ j.actamat.2008.08.058.

[11] Pattnaik, S., Karunakar, D.B. & Jha, P.K. (2012). Developments in investment casting process - A review. Journal of Materials Processing Technology. 212(11), 2332-2348. https://doi.org/10.1016/j.jmatprotec.2012.06.003.

[12] Singh, J., Singh, R. & Singh, H. (2017). Dimensional accuracy and surface finish of biomedical implant fabricated as rapid investment casting for small to medium quantity production. Journal of Manufacturing Processes. 25, 201-211. https://doi.org/10.1016/j.jmapro.2016.11.012.

[13] Cheah, C. M., Chua, C. K., Lee, C. W., Feng, C., & Totong, K. (2005). Rapid prototyping and tooling techniques : a review of applications for rapid. The International Journal of Advanced Manufacturing Technology. 25, 308-320. https://doi.org/10.1007/s00170-003-1840-6.

[14] Lee, K., Blackburn, S. & Welch, S.T. (2017). A more representative mechanical testing of green state investment casting shell. Ceramics International. 43(1), 268-274. https://doi.org/10.1016/j.ceramint.2016.09.149.

[15] Campbell J. & Harding, R.A. (1994). The fluidity of molten metals 3205 the fluidity of molten metals. TALAT Lect. 3205. 1-19.

[16] Siavashi, K. (2012). The effect of casting parameters on the fluidity and porosity of aluminium alloys in the lost foam casting process. Thesis, University of Birmingham, United Kingdom.

[17] Caliari, D., Timelli, G., Bonollo, F., Amalberto, P. & Giordano, P. (2015). Fluidity of aluminium foundry alloys: Development of a testing procedure. La Metallurgia Italiana. 107(6), 11-18.

[18] Tan, M., Xiufang, B., Xianying, X., Yanning, Z., Jing, G. & Baoan, S. (2007). Correlation between viscosity of molten Cu – Sn alloys and phase diagram. Physica B: Condensed Matter, 387(1-2), 1-5. https://doi.org/10.1016/j.physb.2005.10.140.

[19] Hou, J., Guo, H., Zhan, C., Tian, X. & Chen, X. (2006). Viscous and magnetic properties of liquid Cu – 25 wt .% Sn alloy. Materials Letters. 60(16), 2038-2041. https://doi.org/10.1016/j.matlet.2005.12.108.

[20] Mudry, S., Korolyshyn, A., Vus, V. & Yakymovych, A. (2013). Viscosity and structure of liquid Cu – In alloys. Journal of Molecular Liquids. 179, 94-97. https://doi.org/10.1016/j.molliq.2012.12.019.

[21] Rzychoń, T., Kiełbus, A. & Serba, M. (2010). The influence of pouring temperature on the microstructure and fluidity of elektron 21 and WE54 magnesium alloys. Archives of Metallurgy and Materials. 55(1), 7-13.

[22] Sulaiman S. & Hamouda, A.M.S. (2001). Modeling of the thermal history of the sand casting process. Journal of Materials Processing Technology. 113(1-3), 245-250. https://doi.org/10.1016/S0924-0136(01)00592-1.

[23] Slamet, S., Suyitno, & Kusumaningtyas, I. (2021). Effect of post cast heat treatment on Cu20wt.%Sn on Microstructure and mechanical properties. Archive of Foundry Engineering. 21(4) 87-92. DOI: 10.24425/afe.2021.138684.

[24] Nadolski, M. (2017). The evaluation of mechanical properties of high-tin bronzes. Archive of Foundry Engineering. 17(1), 127-130. DOI: 10.1515/afe-2017-0023.

[25] Bartocha D. & Baron, C. (2016). Influence of Tin Bronze Melting and Pouring Parameters on Its Properties and Bells ’ Tone. Archives of Foundry Engineering. 16(4), 17-22. ISSN (1897-3310).

[26] Shmakova, K., Chikova, O. & Tsepelev, V. (2016). Viscosity of liquid Cu – Sn alloys viscosity of liquid Cu – Sn alloys. Physics and Chemistry of Liquids. 56(1), 1-8. https://doi.org/10.1080/00319104.2016.1233184.

[27] Zeynep Taslicukur, E.T., Gözde S. Altug, Şeyda Polat, Hakan Atapek, Ş. (2012). A microstructural study on CuSn10 bronze produced by sand and investment casting techniques. In 21st International Conference on Metallurgy and Materials METAL, 23 -25 May 2012 (pp. 23-25). Brno, Czech Republic.

Date

22.07.2024

Type

Article

Identifier

DOI: 10.24425/afe.2024.151290
×