Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a model of the capacitance and electrical properties of semiconductor lasers biased with modulated voltage. The model is based on the finite-element method (FEM), which is widely used in computer modelling and is a natural generalisation of a wellknown constant-voltage FEM electrical model. In principle, the model can be applied to any kind of device where inductance can be neglected. Here, it is applied to simulate the complex impedance and other high-frequency electrical properties of a vertical-cavity surface-emitting laser. These properties are very important for the application of such lasers in optical data transfer systems. The results show that both the diameter of the top mesa and the surface area of the top electrical contact have a strong impact on the performance of the laser. This impact is analysed as a function of the modulation frequency.
Go to article

Authors and Affiliations

Michał Wasiak
1
ORCID: ORCID
Robert P. Sarzała
1
ORCID: ORCID

  1. Institute of Physics, Lodz University of Technology, ul. Wólczańska 217/221, 93-005 Lodz, Poland
Download PDF Download RIS Download Bibtex

Abstract

The work focuses on vertical cavity surface emitting lasers (VCSELs) made of nitride materials that emit a wavelength of 445 nm. Two structures were examined: a laser with a tunnel junction and implantation (TJ VCSEL) and an ITO contact (ITO VCSEL). The analysis delves into capacitance phenomena influencing the modulation speed of these lasers. The results highlight differences in active currents between two structures, i.e., currents which contribute to the modulation of the laser emission. According to the authors’ simulations, the TJ VCSEL is more effective in modulating the number of carriers in the active region than the ITO VCSEL, assuming the same modulation amplitude of driving current.
Go to article

Authors and Affiliations

Patrycja Śpiewak
1
ORCID: ORCID
Michał Wasiak
1
ORCID: ORCID
Robert P. Sarzała
1
ORCID: ORCID

  1. Institute of Physics, Lodz University of Technology, ul. Wólczańska 217/221, 93-005 Lodz, Poland

This page uses 'cookies'. Learn more