Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 103
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this article, we propose the realization of XNOR logic function by using all-optical XOR and NOT logic gates. Initially, both XOR and NOT gates are designed, simulated and optimized for high contrast outputs. T-shaped waveguides are created on the photonic crystal platform to realize these logic gates. An extra input is used to perform the inversion operation in the NOT gate. Inputs in both the gates are applied with out of phase so as to have a destructive interference between them and produce negligible intensity for logic ‘0'. The XOR and NOT gates are simulated using Finite Difference Time Domain method which results with a high contrast ratio of 55.23 dB and 54.83 dB, respectively at a response time of 0.136 ps and 0.1256 ps. Later, both the gates are cascaded by superimposing the output branch of the waveguide of XOR gate with the input branch of the waveguide of NOT gate so that it can be resulted with compact size for XNOR logic function. The resultant structure of XNOR logic came out with the contrast ratio of 12.27 dB at a response time of 0.1588 ps. Finally, it can be concluded that the proposed structures with fair output performance can suitably be applied in the design of photonic integrated circuits for high speed computing and telecommunication systems.

Go to article

Authors and Affiliations

E.H. Shaik
N. Rangaswamy
Download PDF Download RIS Download Bibtex

Abstract

The waste production is closely related with human activity. Various approaches have been applied to manage and reduce its increasing volume (Paranjpe et al. 2023). One of the possibilities that comply with the assumptions of circular economy is utilization of wastes in anaerobic digestion (AD) process. This technology is common worldwide and it is recognized as the cost-effective methods of energy generation that also allow for nutrient recovery, as well as effective waste management (Alharbi et al. 2023). The biogas generated within this process is considered as a multifunctional renewable source that might be a promising alternative to the depleting traditional fuels. It finds various applications such as heat and power generation, fuel in automobiles, and substrate in chemical industry (Shitophyta et al. 2022, Pradeshwaran 2024). Typically, biogas contains 50–70% of CH4, 30–50% of CO2, and 1–10% of other trace gases like H2, H2S, CO, N2. Its composition mainly depends on the feedstock characteristics, operational conditions, and adopted technology (Gani et al. 2023, Archana et al. 2024). Considering further application, the priority action should be increasing its volume and methane content. There are several strategies to achieve these goals, including implementing codigestion strategy, adding additional component to the main substrate, introducing trace elements essential in AD, pretreatment strategies, and introducing enzymes and microbial strains to digesters (Zhang et al. 2019). Each method has limits related to the implementation costs, changes in the adopted technology, operator training needs, and additional energy input, which might negatively influence the energy balance of wastewater treatment plants (WWTPs) (Meng et al. 2022). Therefore, recent scientific attention has focused on combining various strategies to achieve intended goals. Moreover, such combinations might allow for an effective utilization of various wastes, the earlier use of which in AD was difficult. Orange waste could be an example of such a substrate. The previous studies indicated that its application in AD resulted in poor process efficiency, mainly due to the presence of limonene, recognized as the main inhibitor of biological activity (Calabro et al. 2020, Bouaita et al. 2022). In this study, the novel concept of implementing solidified carbon dioxide (SCO2) in the anaerobic co-digestion of municipal sewage sludge (SS) and orange peel waste (OPW) has been proposed. This approach may help overcome the disadvantages of the two-component AD of these wastes. Importantly, such studies have not been conducted thus far. However, the recent studies indicated that application of SCO2 to aerobic granular sludge improved biogas and methane yields and also enhanced the kinetics of biogas production (Kazimierowicz et al. 2023 a,b). Importantly, SCO2 might be generated in biogas upgrading technologies (Yousef 2019). Such solution is consistent with the principles of the circular economy and contributes to reducing the carbon footprint of WWTPs.
Go to article

Bibliography

  1. Alharbi, M., Alseroury, F. & Alkthami, B. (2023). Biogas Production from Manure of Camel and Sheep Using Tomato and Rumen as Co-Substrate. Journal of Ecological Engineering, 24(11), pp. 54–61. DOI:10.12911/22998993/170984
  2. Archana, K., Visckram, A., Senthil Kuma, P., Manikandan, S., Saravanan, A. & Natrayan, L. (2024). A review on recent technological breakthroughs in anaerobic digestion of organic biowaste for biogas generation: Challenges towards sustainable development goals. Fuel, 358, 130298. DOI:10.1016/j.fuel.2023.130298
  3. Awasthi, M.K., Lukitawesa, L., Duan, Y., Taherzadeh, M.J. & Zhang, Z. (2022). Bacterial dynamics during the anaerobic digestion of toxic citrus fruit waste and semi-continues volatile fatty acids production in membrane bioreactors. Fuel, 319, 123812. DOI:10.1016/j.fuel.2022.123812
  4. Bouaita, R., Derbal, K., Panico, A., Iasimone, F., Pontoni, L., Fabbricino, M. & Pirozzi, F. (2022). Methane production from anaerobic co-digestion of orange peel waste and organic fraction of municipal solid waste in batch and semi-continuous reactors. Biomass and Bioenergy, 160, Volume 160, 106421. DOI:10.1016/j.biombioe.2022.106421
  5. Calabrò, P.S., Fazzino, F., Sidari, R. & Zema, D.A. (2020). Optimization of orange peel waste ensiling for sustainable anaerobic digestion. Renewable Energy, 154, pp. 849–862. DOI:10.1016/j.renene.2020.03.047
  6. Fisher, K. & Phillips, C. (2008). Potential antimicrobial uses of essential oils in food: is citrus the answer? Trends in Food Science & Technology, 19, pp. 156–164. DOI:10.1016/j.renene.2020.03.047
  7. Gani, A., Mamat, R., Sudhakar, K., Rosdi, S.M., & Husin, H. (2023). Biomass and wind energy as sources of renewable energy for a more sustainable environment in Indonesia: A review. Archives of Environmental Protection, pp. 57–69. DOI: 10.24425/aep.2022.142690
  8. González-Mas, M.C., Rambla, J.L., López-Gresa, M.P., Blázquez, M.A. & Granell, A. (2019). Volatile Compounds in Citrus Essential Oils: A Comprehensive Review. Frontiers in Plant Science, 10, 12. DOI: 10.3389/fpls.2019.00012.
  9. Grübel, K. & Machnicka, A. (2020) The Use of Hybrid Disintegration of Activated Sludge to Improve Anaerobic Stabilization Process. Ecological Engineering & Environmental Technology, 21, pp. 1–8. DOI:10.12912/23920629/119104.
  10. Hakimi, M., Manogaran, M., Shamsuddin, R.B., Mohd Johari, S.A., Abdalla, M., Hassan, M. & Soehartanto, T. (2023). Co-anaerobic digestion of sawdust and chicken manure with plant herbs: Biogas generation and kinetic study. Heliyon, 9(6), 17096. DOI:10.1016/j.heliyon.2023.e17096.
  11. Howel, G., Bennett, C.J. & Materić, D. (2019). A comparison of methods for early prediction of anaerobic biogas potential on biologically treated municipal solid waste. Journal of Environmental Management, 232, pp. 887–894. DOI:10.1016/j.jenvman.2018.11.137.
  12. Hu, K., Jiang, J., Zhao, Q., Lee, D., Wang, K. & Qiu, W. (2011). Conditioning of wastewater sludge using freezing and thawing: role of curing. Water research, 45 18, pp. 5969–5976. DOI: 10.1016/j.watres.2011.08.064.
  13. Kazimierowicz, J., Dębowski, M. & Zieliński, M. (2023a). Long-Term Pre-Treatment of Municipal Sewage Sludge with Solidified Carbon Dioxide (SCO2)—Effect on Anaerobic Digestion Efficiency. Applied Sciences, 13, 3075. DOI:10.3390/app13053075.
  14. Kazimierowicz, J., Dębowski, M., Zieliński, M., Bartkowska, I., Wasilewski, A., Łapiński, D. & Ofman, P. (2023b). The Use of Solidified Carbon Dioxide in the Aerobic Granular Sludge Pre-Treatment before Thermophilic Anaerobic Digestion. Applied Sciences, 13, 7864. DOI: 10.3390/app13137864.
  15. Meng, Y., Li, Y., Chen, L. & Han, R. (2022). Application of response surface methodology
  16. to improve methane production from jerusalem artichoke straw. Archives of Environmental Protection, 48, pp. 70–79. DOI: 10.24425/aep.2022.142691.
  17. Millati, R., Wikandari, R., Ariyanto, T., Putri, R.U. & Taherzadeh, M.J. (2020). Pretreatment technologies for anaerobic digestion of lignocelluloses and toxic feedstocks. Bioresource Technology, 122998. DOI:10.1016/j.biortech.2020.122998.
  18. Montusiewicz, A., Lebiocka, M., Rożej, A., Zacharska, E. & Pawłowski, L. (2010). Freezing/thawing effects on anaerobic digestion of mixed sewage sludge. Bioresource Technology, 101 10, pp. 3466–3473. DOI:10.1016/j.biortech.2009.12.125.
  19. Nazari, L., Yuan, Z., Santoro, D., Sarathy, S.R., Ho, D., Batstone D.J., Xu C.C. & Ray, M.B. (2017). Low-temperature thermal pre-treatment of municipal wastewater sludge: Process optimization and effects on solubilization and anaerobic degradation. Water research, 113, pp. 111–123. DOI: 10.1016/j.watres.2016.11.055.
  20. Paranjpe, A., Saxena, S. & Jain, P. (2023). A Review on Performance Improvement of Anaerobic Digestion Using Co-Digestion of Food Waste and Sewage Sludge. Journal of Environmental Management, 338, 117733. DOI:10.1016/j.jenvman.2023.117733.
  21. Phalakornkule, C., Nuchdang, S., Khemkhao, M., Mhuantong, W., Wongwilaiwalin, S., Tangphatsornruang, S., Champreda V., Kitsuwan, J. & Vatanyoopaisarn, S. (2017). Effect of freeze-thaw process on physical properties, microbial activities and population structures of anaerobic sludge. Journal of Bioscience and Bioengineering, 123 , pp. 474–481. DOI:10.1016/j.jbiosc.2016.11.005.
  22. Pradeshwaran, V., Chen, W., Saravanakumar, A., Suriyaprakash, R. & Selvarajoo, A. (2024). Biocatalyst enhanced biogas production from food and fruit waste through anaerobic digestion. Biocatalysis and Agricultural Biotechnology, 55, 102975. DOI:10.1016/j.bcab.2023.102975.
  23. Purandare, A., Verbruggen, W. & Vanapalli, S. (2023). Experimental and Theoretical Investigation of the Dry Ice Sublimation Temperature for Varying Far-Field Pressure and CO2 Concentration. International Communications in Heat and Mass Transfer, 148, 107042. DOI:10.1016/j.icheatmasstransfer.2023.107042
  24. Rokaya, B., Kerroum, D., Hayat, Z., Panico, A., Ouafa, A., & Pirozzi, F. (2019). Biogas production by an anaerobic digestion process from orange peel waste and its improvement by limonene leaching: Investigation of H2O2 pre-treatment effect. Energy Sources Part A-recovery Utilization and Environmental Effects, pp. 1–9. DOI:10.1080/15567036.2019.1692975.
  25. Ruiz, B. & Flotats, X. (2014). Citrus essential oils and their influence on the anaerobic 721 digestion process: an overview. Waste Management, 34(11), pp. 2063–2079. DOI:10.1016/j.wasman.2014.06.026.
  26. Serrano, A., Siles López, J. A., Chica, A. F., Martín, M. A., Karouach, F., Mesfioui, A. & El Bari, H. (2014). Mesophilic anaerobic co-digestion of sewage sludge and orange peel waste. Environmental Technology, 35(5-8), pp. 898–906. DOI:10.1080/09593330.2013.855822.
  27. Shitophyta, L. M., Padya, S. A., Zufar, A. F. & Rahmawati, N. (2022). The Impact of Alkali Pretreatment and Organic Solvent Pretreatment on Biogas Production from Anaerobic Digestion of Food Waste. Journal of Ecological Engineering, 23(12), pp. 179–188. DOI:10.12911/22998993/155022.
  28. Szaja, A, Golianek, P. & Kamiński, M. (2022a). Process Performance of Thermophilic Anaerobic Co-Digestion of Municipal Sewage Sludge and Orange Peel. Journal of Ecological Engineering, 23(8), pp. 66–76. DOI:10.12911/22998993/150613
  29. Szaja, A., Montusiewicz, A., Pasieczna-Patkowska, S. & Lebiocka, M. (2022b.) Technological and Energetic Aspects of Multi-Component Co-Digestion of the Beverage Industry Wastes and Municipal Sewage Sludge. Energies, 15, 5395. DOI:10.3390/en15155395.
  30. Wu, D., Li, L., Peng, Y., Yang, P., Peng, X., Sun, Y. & Wang, X. (2021). State indicators of anaerobic digestion: A critical review on process monitoring and diagnosis. Renewable & Sustainable Energy Reviews, 148, 111260. DOI:10.1016/J.RSER.2021.111260.
  31. Yousef, A.M., El-Maghlany, W.M., Eldrainy, Y.A. & Attia, A. (2019). Upgrading Biogas to Biomethane and Liquid CO2: A Novel Cryogenic Process. Fuel, 251, pp. 611–628. DOI:10.1016/J.FUEL.2019.03.127.
  32. Zawieja, I.E. (2019). The Course of the Methane Fermentation Process of Dry Ice Modified Excess Sludge. Archives of Environmental Protection, 45, pp. 50–58. DOI:10.24425/aep.2019.126421.
  33. Zhang, L., Loh, K.C. & Zhang, J. (2019). Enhanced biogas production from anaerobic digestion of solid organic wastes: Current status and prospects. Bioresource Technology Reports, 5, pp. 280–296. DOI:10.1016/j.biteb.2018.07.005.
Go to article

Authors and Affiliations

Aleksandra Szaja
1
ORCID: ORCID
Izabela Bartkowska
2

  1. Lublin University of Technology, Faculty of Environmental Engineering, Lublin, Poland
  2. Bialystok University of Technology, Department of Water Supply and Sewage Systems,Faculty of Civil Engineering and Environmental Sciences, Poland
Download PDF Download RIS Download Bibtex

Abstract

Given the whole spectrum of doubts and controversies that arise in discussions about laws affecting historical memory (and their subcategory of memory laws), the question of assessing them in the context of international standards of human rights protection – and in particular the European system of human rights protection – is often overlooked. Thus this article focuses on the implications and conditions for introducing memory laws in light of international human rights standards using selected examples of various types of recently-adopted Polish memory laws as case studies. The authors begin with a brief description of the phenomenon of memory laws and the most significant threats that they pose to the protection of international human rights standards. The following sections analyse selected Polish laws affecting historical memory vis-à-vis these standards. The analysis covers non-binding declaratory laws affecting historical memory, and acts that include criminal law sanctions. The article attempts to sketch the circumstances linking laws affecting historical memory with the human rights protection standards, including those entailed both in binding treaties and other instruments of international law.

Go to article

Authors and Affiliations

Aleksandra Gliszczyńska-Grabias
ORCID: ORCID
Grażyna Baranowska
ORCID: ORCID
Anna Wójcik
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of modeling and analysis of hybrid generation system (HSW). The system contains municipal waste gasification installation, photovoltaic (PV) system and wind farm. The system cooperates with the power system to provide electrical energy to the communal consumer. The consumer is characterized by a maximum power demand equal to 10 MW and an annual energy demand of 42.351 GWh. Generation with renewable sources was modelled using meteorological data. Moreover, in order to cover the demand with the level of generation, gas storage was used. Next, the three-stage gasification model is presented. It was validated, using the literature data, and its efficiency and gas composition have been calculated and are presented. Furthermore, energetic and economic analysis have been conducted. Installed power usage factor and efficiency of energy sources were calculated. Gross and net energy generation of hybrid generation systems have been computed and are presented. In this analysis, energy consumption by gas compressing was included. The analyzed HSW covered 54.5% of the demand. Most of this (30.2%) was covered by the gasification system. However, the system was characterized by a low net efficiency equal to 16.7%. Diagrams of power generation in each source and storage fill chart are presented. In the economic part of the analysis, results of calculations of net present value and payback period are published in order to examine the profitability of the system.
The cost of electricity was 490–1050 PLN/MWh. The results show that municipal waste gasification can be used as a part of HSW to adjust the generation with the demand. Moreover, it can be economically advantageous. However, it is characterized by high CO 2 emission and low efficiency of the waste processing system.
Go to article

Authors and Affiliations

Jacek Roman
1
ORCID: ORCID

  1. Institute of Electrical Power Engineering, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

When conducting geodetic and gravimetric measurements, there is a problem of projecting them to the reference surface. Since the gravitational field is inhomogeneous under the real conditions, the problem arises of determining the corrections to the measured values of gravitational acceleration in order to use the obtained data for the subsequent solutions of projection problems. Currently, the solution to this problem is performed using a Bouguer reduction, which requires information about the internal structure of the upper layer of the earth’s surface, topography, etc. The purpose of this study is to develop a methodological approach that would allow to determine the reduction (projection) corrections for gravitational acceleration on technogenic and geodynamic polygons without using data about the distribution of surface layer density and topography. The research process is based on the use of mathematical analysis methods and a wide range of experimental geodetic and gravimetric measurements. In the course of the performed researches, an algorithm was obtained and a practical implementation of the determination of the corrections in the measured values of gravitational acceleration on the basis of geodetic and gravimetric measurements was carried out at the certain geodynamic polygon in order to bring all corrections to one level surface.

Go to article

Authors and Affiliations

Lev Perovych
Igor Perovych
Valeriy Gorlachuk
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a force-dynamics analysis of the meaning of English periphrastic causative verbs. It challenges the traditional categorization of causative semantics into direct and indirect causation and highlights the role of lexico-semantic elements such as (i) the balance of forces, (ii) the desirability of the causal effect, and (iii) the animacy of the causative entities in interaction. Combined together, these elements help define causative semantics and offer a new causative typology built on the categories of factitivity, manipulation and permission.

Go to article

Authors and Affiliations

Sami Chatti
Download PDF Download RIS Download Bibtex

Abstract

This article explores the experiences of lesbian, gay, bisexual and transgender (LGBT) migrants from Central and Eastern Europe and the Former Soviet Union in Scotland. Drawing on interviews with 50 migrants, the article focuses on the experiences and aspirations which they articulate as being part of ‘a normal life’, and analyses them within broader conceptual understandings of security and ‘normal-ity’. We first examine how normality is equated with an improved economic position in Scotland, and look at the ways in which this engenders feelings of emotional security and well-being. We then explore how more positive experiences around sexuality and gender identity are key to a sense of emotional security – i.e. of feeling accepted as ‘normal’, being visible as an LGBT person but ‘blending in’ rather than standing out because of it. Finally we look at the ways in which the institutional framework in Scotland, in particular the presence of LGBT-affirmative legislation, is seen by participants to have a normalising effect within society, leading to a broader sense of inclusion and equality – found, again, to directly impact upon participants’ own feelings of security and emotional well-being. The article engages with literatures on migration and sexuality and provides an original contribution to both: through its focus upon sexuality, which remains unexplored in debates on ‘normality’ and migration in the UK; and by bringing a migration perspective to the debates in sexuality studies around the normal-ising effect of the law across Europe. By bringing these two perspectives together, we reveal the inter-rela-tionship between sexuality and other key spheres of our participants’ lives in order to better understand their experiences of migration and settlement.

Go to article

Authors and Affiliations

Francesca Stella
Moya Flynn
Anna Gawlewicz
Download PDF Download RIS Download Bibtex

Abstract

Polycyclic aromatic hydrocarbons (PAI-ls) are persistent organic pollutants, ubiquitous in the whole environment. They are relatively well known and are still of interest due to their well documented carcinogenic and mutagenie properties. In ambient air of urban regions they mostly occur as adsorbed to particles of suspended dust. The richest in these compounds and therefore most hazardous to humans, fraction of dust is the fraction of the finest particles. The paper presents results of investigations of dust sampled with use of an impactor Dekati PM10 in Zabrze, a site typical of Upper Silesian conditions. While sampling, the impactor segregates sampled particles into four fractions by their aerodynamic diameters. Sixteen PAHs were determined in each fraction chromatographically. PAH content in the fraction of the finest particles, i.e. in PM1, was of particular interest.
Go to article

Authors and Affiliations

Krzysztof Klejnowski
Barbara Kozielska
Andrzej Krasa
Wioletta Rogula-Kozłowska
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Exploited lubricants are dangerous contaminants because of their toxicity and low biodegradability. In this study, microbial culture active in exploited lubricant oil Mobil I was isolated and inoculated to sandy soil containing 0.5 g of contaminant per 100 g of dry soil. Microorganisms were used as free cells and immobilizate on wood chips, soil was also properly supplied with water and nutrients. The bioaugumantation seems to enhance biodegradation process. After 5 months, 93% of non-polar compounds were eliminated from soil containing immobilized biomass. Comparatively, in non-treated soil (control system) the contaminant elimination was at the level of 47%. Bacterial number in treated and non-treated soil was similar for about 3 months; however enzymatic activity (dehydrogenascs and hydrolascs) in control soil was much lower. Finally, after 5 months of treatment the content of bacteria active in contaminant decomposition in inoculated soil was 100-fold higher than in control system. Presumably, the main reason of low remediation results in non-treated soil seems to be low enzymatic activity of the biomass.
Go to article

Authors and Affiliations

Ewa Zborowska
Jeremi Naumczyk
Ewelina Bugryn
Renata Wojciechowska
Download PDF Download RIS Download Bibtex

Abstract

Wind power integration through the voltage source converter-based high-voltage direct current (VSC-HVDC) system will be a potential solution for delivering large-scale wind power to the “Three-North Regions” of China. However, the interaction between the doubly-fed induction generator (DFIG) and VSC-HVDC system may cause the risk of subsynchronous oscillation (SSO). This paper establishes a small-signal model of the VSC based multi-terminal direct current (VSC-MTDC) system with new energy access for the problem, and the influencing factors causing SSO are analyzed based on the eigenvalue analysis method. The theoretical analysis results show that the SSO in the system is related to the wind farm operating conditions, the rotor-side controller (RSC) of the DFIG and the interaction of the controller in the VSC-MTDC system. Then, the phase lag characteristic is obtained based on the signal test method, and a multi-channel variable-parameter subsynchronous damping controller (SSDC) is designed via selecting reasonable parameters. Finally, the correctness of the theoretical analysis and the effectiveness of the multi-channel variable-parameter SSDC are verified based on time-domain simulation.
Go to article

Bibliography

[1] Tang G.F., HVDC based on voltage source converter, China Electric Power Press (2010).
[2] Li C.S., Li Y.K., Guo J., He P., Research on emergency DC power support coordinated control for hybrid multi-infeed HVDC system, Archives of Electrical Engineering, vol. 61, no. 1, pp. 5–21(2020).
[3] Liu T.Q., Tao Y., Li B.H., Critical problems of wind farm integration via MMC-MTDC system, Power System Technology, vol. 41, no. 10, pp. 3251–3260 (2017).
[4] Wu J.H., Ai Q., Research on multi-terminal VSC-HVDC system for wind-farms, Power System Technology, vol. 33, no. 4, pp. 22–27 (2009).
[5] Chen C., Du W.J., Wang H.F., Review on mechanism of sub-synchronous oscillations caused by gridconnected wind farms in power systems, Southern Power System Technology, vol. 12, no. 1, pp. 84–93 (2018).
[6] Amin M., Molinas M., Understanding the origin of oscillatory phenomena observed between wind farms and HVDC systems, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 1, pp. 378–392 (2017).
[7] Wang W.S., Zhang C., He G.Q., Li G.H., Zhang J.Y., Wang H.J., Overview of research on subsynchronous oscillations in large-scale wind farm integrated system, Power System Technology, vol. 41, no. 4, pp. 1050–1060 (2017).
[8] Jiang Q.R., Wang L., Xie X.R., Study on oscillations of power-electronized power system and their mitigation schemes, High Voltage Engineering, vol. 43, no. 4, pp. 1057–1066 (2017).
[9] Xie X.R., Liu H.K., He J.B., Liu H., Liu W., On new oscillation issues of power system, Proceedings of the CSEE, vol. 38, no. 10, pp. 2821–2828+3133 (2018).
[10] Wang L., Yang Z.H., Lu X.Y., Prokhorow A.V., Stability analysis of a hybrid multi-infeed HVDC system connected between two offshore wind farms and two power grids, IEEE Transactions on Industry Applications, vol. 53, no. 3, pp. 1824–1833 (2017).
[11] Kunjumuhammed L.P., Pal B.C., Oates C., Dyke K.J., Electrical oscillations in wind farm systems: analysis and insight based on detailed modeling, IEEE Transactions on Sustainable Energy, vol. 7, no. 1, pp. 51–61 (2016).
[12] Sun K., Yao W., Wen J.Y., Mechanism and characteristics analysis of subsynchronous oscillation caused by DFIG-based wind farm integrated into grid through VSC-HVDC system, Proceedings of the CSEE, vol. 38, no. 22, pp. 6520–6533 (2018).
[13] Song S.H., Zhao S.Q., Analysis of sub-synchronous oscillation of DFIG-based Wind Farm integrated to grid through VSC-HVDC system based on torque method, Power System Technology, vol. 44, no. 2, pp. 630–636 (2020).
[14] Bian X.Y., Ding Y., Mai K., Zhou Q., Zhao Y., Tang L., Sub-Synchronous oscillation caused by grid-connection of offshore wind farm through VSC-HVDC and its mitigation, Automation of Electric Power Systems, vol. 42, no. 17, pp. 25–39 (2018).
[15] Lyu J., Dong P., Shi G., Cai X., Li X.L., Subsynchronous oscillation and its mitigation of MMC-based HVDC with large doubly-fed induction generator-based wind farm integration, Proceedings of the CSEE, vol. 35, no. 19, pp. 4852–4860 (2015).
[16] Lyu J., Cai X., Amin M., Molinas M., Sub-synchronous oscillation mechanism and its suppression in MMC-based HVDC connected wind farms, IET Generation, Transmission and Distribution, vol. 12, no. 4, pp. 1021–1029 (2018).
[17] Shao B.B., Zhao S.Q., Pei J.K., Li R., Subsynchronous oscillation characteristics analysis of gridconnected direct-drive wind farms via VSC-HVDC system, Power System Technology, vol. 43, no. 9, pp. 3344–3355 (2019).
[18] Chen B.P., Study on characteristics and suppression of sub/super-synchronous oscillation caused by power system with D-PMSG and VSC-HVDC, Wuhan University (2018).
[19] Guo X.S., Li Y.F., Xie X.T., Hou Y.L., Zhang D., Sub-synchronous oscillation characteristics caused by PMSG-based wind plant farm integrated via flexible HVDC system, Proceedings of the CSEE, vol. 40, no. 4, pp. 1149–1160+1407 (2020).
[20] Sun K., Mechanism and characteristics analysis of subsynchronous oscillation caused by DFIG-based wind farm integrated into grid through VSC-HVDC system, Huazhong University of Science and Technology (2018).
[21] He J., Li Q., Qin S.Y., Wang R.M., DFIG wind turbine modeling and validation for LVRT behavior, IEEE PES Innovative Smart Grid Technologies, Tianjin, pp. 1–5 (2012).
[22] Lu X.J., Lin W.X., Wen J.Y., Li Y.F., Wu Y.L., An T., Modularized small signal modeling method for DC grid, Proceedings of the CSEE, vol. 36, no. 11, pp. 2880–2889 (2016).
[23] Kalcon G.O., Adam G.P., Anaya-Lara O., Lo S., Uhlen K., Small-signal stability analysis of multiterminal VSC-based DC transmission systems, IEEE Transactions on Power Systems, vol. 27, no. 4, pp. 1818–1830 (2012).
[24] Zhou G.L., Shi X.C., Fu Ch.,Wei X.G., Zhu X.R., VSC-HVDC discrete model and its control strategy under unbalanced input voltage, Transactions of China Electrotechnical Society, vol. 23, no. 12, pp. 137–143+159 (2008).
[25] Gao B.F., Zhao C.Y., Xiao X.N., Yin W.Y., Guo C.L., Li Y.N., Design and implementation of SSDC for HVDC, High Voltage Engineering, vol. 36, no. 2, pp. 501–506 (2010).
[26] Jiang P., Hu T., Wu X., VSC-HVDC multi-channel additional damping control suppresses subsynchronous oscillation, Electric Power Automation Equipment, vol. 31, no. 9, pp. 27–31 (2011).
Go to article

Authors and Affiliations

Miaohong Su
1
ORCID: ORCID
Haiying Dong
1 2
Kaiqi Liu
1
Weiwei Zou
1

  1. School of Automatic and Electrical Engineering, Lanzhou Jiaotong University, China
  2. School of New Energy and Power Engineering, Lanzhou Jiaotong University, China
Download PDF Download RIS Download Bibtex

Abstract

Previous researchers have been widely studied the equation for calculating the energy dissipation in USBR Type IV, applied in the stilling basin structure as an energy dissipator. However, inefficient energy dissipating basins are commonly found in the field due to the large discharge and high water head, potentially damaging the bottom of the energy dissipating basin and its downstream river. Therefore, an energy dissipator plan fulfilling the safe specifications for the flow behaviour that occurred is required. This study aimed to determine the variation of the energy dissipators and evaluate their effect on the hydraulic jump and energy dissipation. For this purpose, a physical model was undertaken on the USBR Type IV spillway system. The novelty of this experiment showed that combination and modification dissipation features, such as floor elevation, end threshold and riprap lengthening, could effectively dissipate the impact of energy downstream. The final series exhibited a significantly higher Lj/y1 ratio, a favourable condition due to the compaction of the hydraulic jump. There was also a significant increase in the downstream tailwater depth (y2) during the jump formation. Therefore, the final series energy dissipator was better in the stilling basin design for hydraulic jump stability and compaction. The increase in energy dissipation for the final series type was the highest (98.4%) in Q2 and the lowest (84.8%) in Q10 compared to the original series. Therefore, this type can better reduce the cavitation risk damaging to the structure and downstream of the river.
Go to article

Authors and Affiliations

Alfiansyah Yulianur Bantacut
1
ORCID: ORCID
Azmeri Azmeri
1
ORCID: ORCID
Faris Zahran Jemi
2
ORCID: ORCID
Ziana Ziana
1
ORCID: ORCID
Muslem Muslem
1

  1. Universitas Syiah Kuala, Faculty of Engineering, Civil Engineering Department, Syech Abdur-Rauf No 7, Darussalam, 23111, Banda Aceh, Indonesia
  2. Universitas Syiah Kuala, Faculty of Engineering, Electrical Engineering Department, Banda Aceh, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The presence of natural organic matter (NOM) in water has a significant influence on water treatment processes. Water industries around the world consider coagulation/flocculation to be one of the main water treatment methods. The chief objective of conventional coagulation-based processes is to reduce the turbidity of the water and to remove natural organic matter (NOM) present in solutions. The aim of this paper is to present some developments in terms of improved coagulation for the drinking water of Sidi Yacoub treatment plant located in the Northwest of Algeria.
The experiments involved studying the effects of the application of two coagulants (ferric chloride and aluminium sulphate) on the removal of turbidity and natural organic matter from water by measuring the chemical oxygen demand ( COD) and the UV absorbance at 254 nm. The results showed that the rate of turbidity removal increased from 81.3% to 88% when ferric chloride was applied and from 89.91% to 94% when aluminium sulphate was applied. For NOM removal, the maximum removal rates of COD and UV254 were 48% and 52%, respectively, in the case of ferric chloride. These rates increased to 59% and 65% after optimised coagulation. When aluminium sulphate was used, the rate of removal in water increased from 43% to 55% for COD and from 47% to 59% for UV254 after optimised coagulation. The combination of the two coagulants at equal dosage shows a slight improvement in the values obtained after optimisation, both in terms of turbidity and the NOM.
Go to article

Authors and Affiliations

Taieb Hadbi
1
ORCID: ORCID
Saaed Hamoudi Abdelamir
2

  1. University of Science and Technology Mohamed Boudiaf of Oran, Faculty of Architecture and Civil Engineering, El Mnaouar, BP 1505, Bir El Djir 31000, Oran, Algeria
  2. Hassiba Benbouali University of Chlef, Faculty of Civil Engineering and Architecture, Chlef, Algeria
Download PDF Download RIS Download Bibtex

Abstract

Zeolites, minerals with the formula Mx/n[AlO2]x(SiO2)y] zH2O, are environmentally friendly materials used as water treatment adsorbents, gas adsorbents, and petrochemical catalysts. This study used a mixture of aluminum black dross and waste glass to synthesize zeolites via a hydrothermal synthesis and analyzed the effects of varying reaction time on phase changes under different synthesis conditions. With increased reaction times, a phase change from zeolite Na-P1 to analcime was observed; on employing hydrothermal synthesis at 150°C for 96 h, the majority of the crystalline structures changed into analcime. Heavy metal cation adsorption was tested to assess the applicability of the synthesized analcime to water treatment. Zeolite adsorption of at least 95% was observed for both Pd and Cd ions. Although a higher level of adsorption was observed for Pb ion than Cd ion, Cd ion was demonstrated to undergo relatively faster adsorption when tested under optimal pulp density at the same level of adsorption (95%).
Go to article

Authors and Affiliations

Yubin Kang
1
ORCID: ORCID
Byoungyong Im
1
ORCID: ORCID
Jin-Ju Choi
1
ORCID: ORCID
Jin-Ho Yoon
1
ORCID: ORCID
Dae-Guen Kim
1
ORCID: ORCID

  1. Institute For Advanced Engineering, 17180, Goan-ro, 51 Beon-gil, Baegam-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea
Download PDF Download RIS Download Bibtex

Abstract

The paper aims was assessing risks of mandible fractures consequent to impacts or sport accidents. The role of the structural stiffness of mandible, related to disocclusion state, was evaluated using the finite element method. It has been assumed, that the quasi-static stress field, due to distributed forces developed during accidents, could explain the common types of mandibular fractures. Mandibular condyles were supposed jammed in the maxillary fossae. The force of 700 N, simulating an impact on mandible, has been sequentially applied in three distinct areas: centrally, at canine zone and at the mandibular angle. Clinically most frequent fractures of mandible were recognized through the analysis of maximal principal stress/strain fields. It has been shown that mandibular fracture during accidents can be analyzed at satisfactory level using linear quasi-static models for designing protections.

Go to article

Authors and Affiliations

J. Żmudzki
G. Chladek
K. Panek
P. Lipiński
Download PDF Download RIS Download Bibtex

Abstract

The results of investigations of humidity migration in near surface layers of sand mould during processes of penetration and drying of protective coatings are presented in the hereby paper. The process of the humidity exchanging between surroundings and moulding sands as porous materials, is widely described in the introduction. In addition, the humidity flow through porous materials, with dividing this process into stages in dependence of the humidity movement mechanism, is presented. Next the desorption process, it means the humidity removal from porous materials, was described. Elements of the drying process intensity as well as the water transport mechanisms at natural and artificial drying were explained. The innovative research stands for measuring resistance changes of porous media due to humidity migrations was applied in investigations. Aqueous zirconium coatings of two apparent viscosities 10s and 30s were used. Viscosity was determined by means of the Ford cup of a mesh clearance of 4mm. Coatings were deposited on cores made of the moulding sand containing sand matrix, of a mean grain size dL = 0.25 mm, and phenol-formaldehyde resin. Pairs of electrodes were placed in the core at depths: 2, 3, 4, 5, 8, 12 and 16 mm. Resistance measurements were performed in a continuous way. The course of the humidity migration process in the core surface layer after covering it by protective coating was determined during investigations. Investigations were performed in the room where the air temperature was: T = 22˚C but the air humidity was not controlled, as well as in the climatic chamber where the air temperature was: T = 35˚C and humidity: H = 45%. During the research, it was shown that the process of penetration (sorption) of moisture into the moulding sand is a gradual process and that the moisture penetrates at least 16 mm into the sand. In the case of the drying (desorption) process, moisture from the near-surface layers of the moulding sand dries out much faster than moisture that has penetrated deeper into the sand. Keywords: Core, Sand mould, Porous medium, Humidity migration, Protective coatings, Resistance measurement
Go to article

Bibliography

[1] Pigoń, K., Ruziewicz, Z. (2005). Physical chemistry. Phenomenological foundations. Warszawa: PWN, (in Polish) [2] Zarzycki, R. (2005). Heat transfer and mass movement in environmental engineering. Warszawa: Wydawnictwo Naukowo-Techniczne. (in Polish) [3] Płoński, W., Pogorzelski, J. (1979). Building physics. Warszawa: Arkady. (in Polish) [4] Świrska-Perkowska, J. (2012). Adsorption and movement of moisture in porous building materials under isothermal conditions. Warszawa: Komitet Inżynierii Lądowej i Wodnej PAN. (in Polish) [5] Kubik, J. (2000). Moisture flows in building materials. Opole: Oficyna Wydawnicza Politechniki Opolskiej. (in Polish) [6] Gawin, D. (2000). Modeling of coupled hygrothermal phenomena in building materials and elements. Łódź: Politechnika Łódzka. (in Polish) [7] Rose, D. (1963). Water movement in porous materials. Part 1: isothermal vapour transfer. British Journal of Applied Physics. (14), 256-262. DOI:10.1088/0508-3443/14/5/308. [8] Rose, D. (1963): Water movement in porous materials. part 2: the separation of the components of water movement. British Journal of Applied Physics. (14), 491-496. DOI: 10.1088/0508-3443/14/8/310. [9] Marynowicz, A., Wyrwał, J. (2005). Testing the moisture properties of selected building materials under isothermal conditions. Warszawa: INB ZTUREK. (in Polish) [10] Kiessl, K. (1983) Kapillarer und dampffoermiger Fauchtetransport in mahrschichtigen Bauteilen. Essen: Dissertation. University Essen. [11] Politechnika Gdańska. The process of drying food substances - laboratory exercises. Retrieved January, 2022, from https://mech.pg.edu.pl/documents/4555684/4565480/suszenie.pdf (in Polish). [12] Baranowski, J., Melech, S., Adamski, P. (2002). Temperature and humidity control systems in the processes of drying food products. Zielona Góra: VI Sympozjum Pomiary i Sterowanie w Procesach Przemysłowych. (in Polish) [13] Ważny, J., Karyś, J. (2001). Protection of buildings against biological corrosion. Warszawa: Arkady. (in Polish) [14] Brooker, D., Bakker-Arkema, F., Hall, C. (1992). Drying and Storage of Grains and Oilseeds. New York: Van Nostrand Reinhold. [15] Reeds, J. (1991). Drying. ASM International Handbook Committee. 131-134. [16] Pel, L., Sawdy, A. & Voronina, V. (2010). Physical principles and efficiency of salt extraction by poulticing. Journal of Cultural Heritage. 11(1), 59-67. DOI:10.1016/j.culher. 2009.03.007. [17] Hii, C., Law, C. & Cloke, M. (2008). Modelling of thin layer drying kinetics of cocoa beans during artificial and natural drying. Journal of Engineering Science and Technology. 3(1), 1-10. [18] Zych, J. & Kolczyk, J. (2013). Kinetics of hardening and drying of ceramic moulds with the new generation binder – colloidal silica. Archives of Foundry Engineering. 13(4), 112-116. DOI: 10.2478/afe-2013-0093. [19] Kolczyk J. & Zych J. (2014). The kinetics of hardening and drying of ceramic molds with a new generation binder - colloidal silica. Przegląd Odlewnictwa. 64(3-4), 84-92. (in Polish) [20] Zych, J., Kolczyk, J. & Jamrozowicz, Ł. (2015). The influence of the shape of wax pattern on the kinetics of drying of ceramic moulds. Metalurgija. 54(1), 15-18. ISSN 0543-5846. [21] Jamrozowicz, Ł., Zych, J. & Kolczyk, J. (2015). The drying kinetics of protective coatings used on sand molds. Metalurgija. 54(1), 23-26. ISSN 0543-5846. [22] Jamrozowicz, Ł. & Siatko, A. (2020). The assessment of the permeability of selected protective coatings used for sand moulds and cores. Archives of Foundry Engineering. 20(1), 17-22. DOI: 10.24425/afe.2020.131276. [23] Jamrozowicz, Ł., Kolczyk-Tylka, J. & Siatko, A. (2018) Investigations of the thickness of protective coatings deposited on moulds and cores. Archives of Foundry Engineering. 18(4), 131-136. DOI: 10.24425/afe.2018. 125182. [24] Zych, J. & Snopkiewicz, T. (2010). Drying and hardening of ceramic moulds used in a modern investemnt casting technique – investigations of the process kinetics. Foundry Journal of the Polish Foundrymen's Association. 9-10, 506-512. [25] Zych, J., Snopkiewicz, T. (2018). Method for study the drying process self-hardening molding sand or core compound. Patent PL 228373 B1.
Go to article

Authors and Affiliations

Ł. Jamrozowicz
1
ORCID: ORCID
J. Zych
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Department of Moulding Materials, Mould Technology and Cast Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper identifies and describes the parameters of a numerical model generating the microstructure in the integrated heating-remelting-cooling process of steel specimens. The numerical model allows the heating-remelting-cooling process to be simulated comprehensively. The model is based on the Monte Carlo (MC) method and the finite element method (FEM), and works within the entire volume of the steel sample, contrary to previous studies, in which calculations were carried out for selected, relatively small areas. Experimental studies constituting the basis for the identification and description of model parameters such as: probability function, initial number of orientations, number of cells and number of MC steps were carried out using the Gleeble 3800 thermo-mechanical simulator. The use of GPU capabilities improved the performance of the numerical model and significantly reduced the simulation time. Thanks to the significant acceleration of simulation times, it became possible to comprehensively implement a numerical model of the heating-transformation-cooling process in the entire volume of the test sample. The paper is supplemented by results of performance tests of the numerical model and results of simulation tests.
Go to article

Authors and Affiliations

Marcin Hojny
Przemysław Marynowski
ORCID: ORCID
Tomasz Dębiński
ORCID: ORCID
D. Cedzidło
1
ORCID: ORCID

  1. AGH University of Science and Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of preliminary research on the application of olivine moulding sands with hydrated sodium silicate containing 1.5 % wt. of binder to perform ecological casting cores in hot-box technology using a semi-automatic core shooter. The following parameters were used in the process of core shooting: initial shot pressure of 6 bar, shot time 3 s, the temperature of the corebox: 200, 250 and 300 °C and the core curing time: 30, 60, 90, 120 and 150 s. The matrix of the moulding mixture was olivine sand, and the binder of the sandmix was commercial, unmodified hydrated sodium silicate with molar module SiO2/Na2O of 2.5. In one shot of the automatic core-shooter were formed three longitudinal specimens (cores) with a dimensions 22.2×22.2×180 mm. The samples obtained in this way were subjected to the assessment of the influence of the shooting parameters, i.e. shooting time, temperature and curing time in core-box, using the following criteria: core box fill rate, mechanical strength to bending Rg U, apparent density, compaction degree and susceptibility to friability of sand grains after hardening. The results of trials on the use of olivine moulding sands with hydrated sodium silicate (olivine SSBS) in the process of core shooting made it possible to determine the conditions for further research on the improvement of inorganic hot-box process technology aimed at: reduction of the heating temperature and the curing time. It was found that correlation between the parameters of the shooting process and the bending strength of olivine moulding sands with sodium silicate is observed.

Go to article

Authors and Affiliations

M. Stachowicz
ORCID: ORCID
Ł. Pałyga
D. Kępowicz
Download PDF Download RIS Download Bibtex

Abstract

During mold filling and casting solidification, melt flow caused by gravity is present. Otherwise, forced flow may be a method applied for casting properties improvement. The flow effect generated by an electromagnetic field on the growing phases and a whole microstructure in Al-Si-Mn alloys was studied by slow solidification conditions. The hypereutectic and eutectic alloys were chosen to allow independent growth or joint growth of forming: Si crystals, Mn-rich α-Al15Si2Mn4 phases and Al-Si eutectics. In eutectic alloys, where Mn-phases precipitate as first and only one till solidus temperature, flow decreased number density of pre-eutectic α-Al15Si2Mn4. In the hypereutectic alloys, where Mn-phases grow in common with Si crystals, forced convection increased the overall dimension, decreased number density of pre-eutectic Mn phases and strengthened the tendency to growth in the outside of the sample. In the alloys, where Si crystals grow as first, stirring reduce number density of Si and moved them into thin layer outside cylindrical sample. Also by joint growth of Si crystals and Mn-phases, in hypereutectic Mn/Si alloy, flow moved Si crystals outside, reduced number density and increased the dimension of crystals. Stirring changed also AlSi eutectic spacing, specific surface Sv of α-Al and secondary dendrite arm spacing λ2. The results gave insight of what transformation under stirring take place in simple Al-Si-Mn alloys, and helps to understand what modifications in technical alloys may occur, that finally lead to changes in castings microstructure and properties. The possibility to control dimension, number density and position of Mn-phases and Si crystals is completely new and may help by metallurgical processes, continuous casting of billets and in the production of Si for the solar photovoltaic industry.
Go to article

Bibliography

[1] Mondolfo, L.F. Aluminium Alloys: Structure and Properties. London: Butterworths & Co.: UK, 1976.
[2] Nong, G. (Ed.). Aluminum Alloys. MDPI. Switzerland, 2018.
[3] Mikolajczak, P. & Ratke, L. (2014). Three Dimensional Morphology of Mn Rich Intermetallics in AlSi Alloys Investigated with X-Ray Tomography. Materials Science Forum - Solidification and Gravity SolGrav VI., Miskolc. 790-791, 335-340. https://doi.org/10.4028/ www.scientific.net/MSF.790-791.335.
[4] Das, A., Ji, S., Fan, Z. (2002). Solidification microstructures obtained by a novel twin screw liquidus casting method. In Proceedings of the 7th International Conference on Demi-Solid Processing of Alloys and Composites,25–27 September 2002 (pp. 689-694). Tsukuba, Japan.
[5] Zhang, Y., Patel, J.B., Lazaro-Nebreda, J. & Fan, Z. (2018). Improved defect control and mechanical property variation in high-pressure die casting of A380 alloy by high shear melt conditioning. JOM. 70, 2726-2730. https://doi.org/10.1007/s11837-018-3005-y.
[6] Sree Manu, K.M., Barekar, N.S., Lazaro-Nebreda, Patel, J.B. & Fan, Z. (2021). In-situ microstructural control of A6082 alloy to modify second phase particles by melt conditioned direct chill (MC-DC) casting process – A novel approach. Journal of Materials Processing Technology. 295, 117170. https://doi.org/10.1016/j.jmatprotec.2021.117170.
[7] Brollo, G.L., Proni, C.T.W. & Zoqui, E.J. (2018). Thixoforming of an Fe-Rich Al-Si-Cu Alloy—thermodynamic characterization, microstructural evolution, and rheological behavior. Metals. 8, 332. https://doi.org/10.3390/met8050332.
[8] Haga T. & Suziki, S. (2001). Casting of aluminum alloy ingots for thixoforming using a cooling slope. Journal of Materials Processing Technology. 118(1-2), 169-172. https://doi.org/10.1016/S0924-0136(01)00888-3.
[9] Wang, H., Davidson, C.J. & St. John, D.H. (2004). Semisolid microstructural evolution of AlSi7Mg during partial remelting. Materials Science and Engineering: A. 368(1-2), 159-167. https://doi.org/10.1016/j.msea.2003.10.305.
[10] Eslami, M., Payandeh, M., Deflorian, F. & Jarfors, A.E.W., Zanella, C. (2018). Effect of segregation and surface condition on corrosion of Rheo-HPDC Al–Si alloys. Metals. 8, 209. https://doi.org/10.3390/met8040209.
[11] Mohammed, M.N., Omar, M.Z., Al-Zubaidi, S., Alhawari, K.S. & Abdelgnei, M.A. (2018). Microstructure and mechanical properties of thixowelded AISI D2 tool steel. Metals. 8, 316. https://doi.org/10.3390/met8050316.
[12] Flemings, M. (1991). Behavior of metal alloys in the semisolid state. Metallurgical Transactions B. 22B, 269-293. https://doi.org/10.1007/BF02651227.
[13] Modigell, M., Pola, A. & Tocci, M. (2018). Rheological characterization of semi-solid metals: a review. Metals. 8, 245. https://doi.org/10.3390/met8040245.
[14] Li, Y., Zhou, R., Li, L., Xiao, H. & Jiang, Y. (2018). Microstructure and properties of semi-solid ZCuSn10P1 alloy processed with an enclosed cooling slope channel. Metals. 8, 275. https://doi.org/10.3390/met8040275.
[15] Jiang, J., Xiao, G., Che, C. & Wang, Y. (2018). Microstructure, mechanical properties and wear behavior of the rheoformed 2024 aluminum matrix composite component reinforced by Al2O nanoparticles. Metals. 8, 460. https://doi.org/10.3390/met8060460.
[16] He, M., Zhang, Z., Mao, W., Li, B., Bai, Y. & Xu, J. (2019). Numerical and experimental study on melt treatment for large-volume 7075 alloy by a modified annular electromagnetic stirring. Materials. 12, 820. https://doi.org/10.3390/ma12050820.
[17] Nakato, H., Oka, M., Itoyama, S., Urata, M., Kawasaki, T., Hashiguchi, K. & Okano, S. (2002). Continuous semi-solid casting process for aluminum alloy billets. Materials Transactions. 43, 24-29. https://doi.org/10.2320/matertrans.43.24.
[18] Mikolajczak, P., Janiszewski, J. & Jackowski, J. (2019). Construction of the facility for aluminium alloys electromagnetic stirring during casting. In Gapiński B., Szostak M., Ivanov V. (Eds.), Advances in manufacturing II. Vol. 4. Mechanical Engineering (pp. 164-175). Cham, Switzerland, Springer. https://doi.org/10.1007/978-3-030-16943-5_15.
[19] Mikolajczak, P. (2023). Distribution and Morphology of α-Al, Si and Fe-Rich Phases in Al–Si–Fe Alloys under an Electromagnetic Field. Materials. 16, 3304. https://doi.org/10.3390/ma16093304.
[20] Mikolajczak, P. (2017). Microstructural evolution in AlMgSi alloys during solidification under electromagnetic stirring. Metals. 7, 89. https://doi.org/10.3390/met7030089.
[21] Mikolajczak, P. (2021). Effect of rotating magnetic field on microstructure in AlCuSi alloys. Metals. 11, 1804. https://doi.org/10.3390/met11111804.
[22] Mikolajczak, P. & Ratke, L. (2015). Thermodynamic assessment of mushy zone in directional solidification. Archives of Foundry Enginering. 15(4), 101-109. DOI: 10.1515/afe-2015-0088.
[23] Belov, N.A., Aksenov, A.A., Eskin, D.G. (2002). Iron in Aluminium Alloys—Impurity and Alloying Element. 1st ed. London, UK: Taylor and Francis Group. https://doi.org/10.1201/9781482265019.
[24] Shabestari, S.G. (2004). The effect of iron and manganese on the formation of intermetallic compounds in aluminum-silicon alloys. Materials Science and Engineering: A. 383(2), 289-298. https://doi.org/10.1016/j.msea.2004.06.022.
[25] Thermo-Calc 4.1—Software package from Thermo-Calc Software AB. Stockholm. Sweden. Retrieved June 10, 2023, from www.thermocalc.se.
[26] Fang, X., Shao, G., Liu, Y.Q. & Fan. Z. (2007). Effects of intensive forced melt convection on the mechanical properties of Fe containing Al-Si based alloys. Materials Science and Engineering: A. 445-446, 65-72. https://doi.org/10.1016/j.msea.2006.09.038.
[27] Nafisi, S., Emad, D., Shehata, T. & Ghomashchi, R. (2006). Effects of electromagnetic stirring and superheat on the microstructural characteristics of Al-Si-Fe alloy. Materials Science and Engineering: A. 432(1-2), 71-83. https://doi.org/10.1016/j.msea.2006.05.076.
[28] Steinbach, S., Euskirchen, N., Witusiewicz, V., Sturz, L. & Ratke, L. (2007). Fluid flow effects on intermetallic phases in Al-cast alloys. Transactions of Indian Institute of Metals. 60(2), 137-141. https://doi.org/10.4028/www.scientific.net/ MSF.519-521.1795.
[29] Mikolajczak, P. & Ratke, L. (2013). Effect of stirring induced by rotating magnetic field on β-Al5FeSi intermetallic phases during directional solidification in AlSi alloys. International Journal of Cast Metals Research. 26, 339-353. https://doi.org/10.1179/1743133613Y.0000000069.
[30] Jie, J.C., Zou, Q.C., Wang, H.W., Sun, J.L. & Lu, Y.P., Wang, T.M., Li, T.J. (2014). Separation and purification of Si from solidification of hypereutectic Al-Si melt under rotating magnetic field. Journal of Crystal Growth. 399, 43-48. http://dx.doi.org/10.1016/j.jcrysgro.2014.04.003.
[31] Wenzhou, Y., Wenhui, M., Guoqiang, L., Haiyang, X., Li, S. & Dai, Y. (2014). Efect of electromagnetic stirring on the enrichment of primary silicon from Al-Si melt. Journal of Crystal Growth. 405, 23-28. http://dx.doi.org/ 10.1016/j.jcrysgro.2014.07.035.
[32] Ma, X., Lei, Y., Yoshikawa, T., Zhao, B. & Morita, K. (2015). Effect of solidification conditions on the silicon growth and refining using Si-Sn melt. Journal of Crystal Growth. 430, 98-102. http://dx.doi.org/10.1016/ j.jcrysgro.2015.08.001.
[33] Zhu, K., Hu, J., Ma, W., Wei, K., Lv, T. & Dai, Y.(2019). Effect of solidification parameters and magnetic field on separation of primary silicon from hypereutectic Ti-85 wt.% Si melt. Journal of Crystal Growth. 522, 78-85. https://doi.org/10.1016/j.jcrysgro.2019.05.012. [34] Li, Y., Liu, L. & Chen, J. (2021). Effect of mechanical stirring on silicon purification during Al-Si solvent refining. Journal of Crystal Growth. 553, 125943. https://doi.org/10.1016/j.jcrysgro.2020.125943
[35] Ban, B., Li, Y., Zou, Q., Zhang, T., Chen, J. & Dai, S. (2015). Refining of metallurgical grade Si by solidification of Al-Si melt under electromagnetic stirring. Journal of Materials Processing Technology. 222, 142-147. http://dx.doi.org/10.1016/j.jmatprotec.2015.03.012.
[36] Zhang, Y., Miao, X., Shen, Z., Han, Q., Song, C. & Zhai, Q. (2015). Macro segregation formation of the primary silicon phase in directionally solidified Al-Si hypereutectic alloys under the impact of electric currents. Acta Materialia. 97, 357-366. http://dx.doi.org/10.1016/j.actamat.2015.07.002. [37] Li, J., Ni, P., Wang, L. & Tan, Y. (2017). Influence of direct electric current on solidification process of Al-Si alloy. Materials Science Semiconductor Processing. 61, 79-84. http://dx.doi.org/10.1016/j.mssp.2016.12.034.
[38] Lv, G., Bao, Y., Zhang, Y., He, Y., Ma, W. & Leu, Y. (2018). Effects of electromagnetic directional solidification conditions on the separation of primary silicon from Al-Si alloy with high Si content. Materials Science Semiconductor Processing. 81, 139-148. https://doi.org/10.1016/ j.mssp.2018.03.006.
[39] Yoshikawa, T. & Morita, K. (2005). Refining of Si by the solidification of Si-Al melt with electromagnetic force. ISIJ International. 45, 7, 967-971. https://doi.org/10.2355/ isijinternational.45.967.
[40] Huang, F., Zhao, L., Liu, L., Hu, Z., Chen, R. & Dong, Z. (2019). Separation and purification of Si from Sn-30Si alloy by electromagnetic semi-continuous directional solidification. Materials Science in Semiconductor Processing. 99, 54-61. https://doi.org/10.1016/ j.mssp.2019.04.015.
[41] He, Y., Yang, X., Duan, L., Li, S., Chen, Z., Ma, W., Lv, G. & Xing, A. (2021). Silicon separation and purification process from hypereutectic aluminum-silicon for organosilicon use. Materials Science in Semiconductor Processing. 121, 105333. https://doi.org/10.1016/ j.mssp.2020.105333.
[42] Jiang, W., Yu, W., Li, J., You, Z., Li, C. & Lv, X. (2018). Segregation and morphological evolution of Si phases during electromagnetic directional solidification of hypereutectic Al-Si alloys. Materials. 12(1), 10. https://doi.org/10.3390/ma12010010.
[43] Xue, H., Lv, G., Ma, W., Chen, D. & Yu, J. (2015). Separation mechanism of primary silicon from hypereutectic Al-Si melts under alternating electromagnetic fields. Metallurgical and Materials Transactions A. 46, 2922-2932. DOI: 10.1007/s11661-015-2889-1.
[44] Li, X., Ren, Z. & Fautrelle, Y. (2009). Effect of a high magnetic field on the distribution of the solute Si and the morphology of the primary Si phase. Materials Letters. 63, 1235-1238. doi:10.1016/j.matlet.2009.02.030.
[45] Sun, Jl., Zou, Qc., Jie, Jc. & Li, T. (2016). Separation of primary Si and impurity boron removal from Al-30%Si-10%Sn melt under a traveling magnetic field. China Foundry. 13, 4, 284-288. https://doi.org/10.1007/s41230-016-6036-4.
[46] Zou, Q., Tian, H., Zhang, Z., Sun, C., Jie, J., Han, N. & An, X. (2020). Controlling segregation behaviour of primary Si in hypereutectic Al-Si alloy by electromagnetic stirring. Metals. 10, 1129. https://doi.org/10.3390/met10091129.
[47] Zou, Q., Han, N., Zhang, Z., Jie, J., Xu, F. & An, X. (2020). Enhancing segregation behaviour of impurity by electromagnetic stirring in the solidification process of Al-30Si alloy. Metals. 10, 155. doi:10.3390/met10010155.
[48] Zou, Q., Jie, J., Wang, T. & Li, T. (2016). An efficient method to purify metallurgical grade Si by electromagnetic semi-continuous casting of Al-30Si melt. Materials Letters. 185, 59-62. http://dx.doi.org/10.1016/j.matlet.2016.08.103.
[49] Kurz, W., Fisher, D.J. Fundamentals of Solidification. Switzerland: Trans Tech Publications.
[50] Dantzig, J.A., Rappaz, M. (2009). Solidification. Lausanne, Switzerland: EPFL Press.
[51] Stefanescu, D. (2009). Science and Engineering of Casting and Solidification. Boston, MA, USA: Springer. https://doi.org/10.1007/b135947.
[52] Steinbach, S. & Ratke, L. (2007). The influence of fluid flow on the microstructure of directionally solidified AlSi-base alloys. Metallurgical and Materials Transactions A. 38, 1388-1394. https://doi.org/10.1007/s11661-007-9162-1.
[53] Martinez, R.A. & Flemings, M.C. (2005). Evolution of particle morphology in semisolid processing. Metallurgical and Materials Transactions A. 36, 2205-2210. https://doi.org/10.1007/s11661-005-0339-1.
[54] Niroumand, B. & Xia, K. (2000). 3D study of the structure of primary crystals in a rheocast Al-Cu alloy. Materials Science and Engineering A. 283(1-2), 70-75. https://doi.org/10.1016/S0921-5093(00)00619-5.
[55] Birol, Y. (2007). A357 thixoforming feedstock produced by cooling slope casting. Journal of Materials Processing Technology. 186(1-3), 94-101. https://doi.org/10.1016/ j.jmatprotec.2006.12.021.
[56] Das, A., Ji, S. & Fan, Z. (2002). Morphological development of solidification structures under forced fluid flow: A Monte Carlo simulation. Acta Materialia. 50(18), 4571-4585. https://doi.org/10.1016/S1359-6454(02)00305-1.
[57] Li, T., Lin, X. & Huang, W. (2006). Morphological evolution during solidification under stirring. Acta Materialia. 54, 4815-4824. https://doi.org/10.1016/ j.actamat.2006.06.013.
[58] Mullis, A. (1999). Growth induced dendritic bending and rosette formation during solidification in a shearing flow. Acta Materialia. 47, 1783-1789. https://doi.org/10.1016/ S1359-6454(99)00052-X.
[59] Marsh, S.P. & Glicksman, M.E. (1996). Overview of geometric effects on coarsening of mushy zones. Metallurgical and Materials Transactions A. 27, 557-567. https://doi.org/10.1007/BF02648946.
[60] Loué, W.R. & Suéry, M. (1995). Microstructural evolution during partial remelting of AlSi7Mg alloys. Materials Science and EngineeringA A. 203(1-2), 1-13. https://doi.org/10.1016/0921-5093(95)09861-5.
[61] Mikolajczak, P. & Ratke, L. (2011). Intermetallic phases and microstructure in AlSi alloys influenced by fluid flow. The Minerals, Metals & Materials Society. TMS. 10, 9781118062173. https://doi.org/10.1002/9781118062173.ch104.
Go to article

Authors and Affiliations

Piotr Mikołajczak
1
ORCID: ORCID

  1. Poznan University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

In order to find the defects in ferromagnetic materials, a non-contact harmonic detection method is proposed. According to the principle of frequency modulated carrier wave, a tunnel magneto resistance harmonic focusing vector array detector was designed which radiates lower and higher frequency electromagnetic waves through the coil array to the detection targets. We use bistable stochastic resonance to enhance the energy of collected weak target signal and apply quantum computation and a Sobol low deviation sequence to improve genetic algorithm performance. Then we use the orthogonal phase-locked loop to eliminate the intrinsic background excitation field and tensor calculations to fuse the vector array signal. The finite element model of array detector and the magnetic dipole harmonic numerical model were also established. The simulation results show that the target signal can be identified effectively, its focusing performance is improved by 2 times, and the average signal-to-noise ratio is improved by 9.6 times after the algorithm processing. For the experiments, we take Q235 steel pipeline as the object to realize the recognition of three defects. Compared with the traditional methods, the proposed method is more effective for ferromagnetic materials defects detection.
Go to article

Authors and Affiliations

Yizhen Zhao
1
Xinhua Wang
1
Yingchun Chen
1
Haiyang Ju
1
Yi Shuai
1

  1. Beijing University of Technology, College of Mechanical Engineering and Applied Electronics Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
Download PDF Download RIS Download Bibtex

Abstract

A right theropod pedal ungual phalanx II-3 from the Campanian Williams Fork Formation of northwestern Colorado is described, and a combination of features, including the large size, tapering distal tip, robust and stout overall form, triangular cross-section, and a relatively flat ventral surface allows a confident referral to Tyrannosauridae Osborn, 1906. Although this specimen was found in a relatively southern state, the proximal articular surface of this ungual is similar to that of Gorgosaurus libratus Lambe, 1914, a taxon found in the northern state, Alberta. Although based on limited evidence, this may suggest that the range of tyrannosaurids considered endemic to the north of Laramidia extended farther south than previously thought.
Go to article

Authors and Affiliations

Chan-Gyu Yun
1

  1. Biological Sciences, Inha University, Incheon 22212, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

The article is focused on the synergic effect of constant content of Zr and higher content of Ti on mechanical properties Al-Si alloy. The Ti additions were in proportions of 0.1, 0.2 and 0.3 wt.% Ti. The casting process was carried out in ceramic molds, created for the investment casting technology. Half of the experimental samples were processed by precipitation curing T6. The measured results were compared with primary alloy AlSi7Mg0,3 and experimental alloy AlSi7Mg0.3Cu0.5Zr0.15. In variant with addition 0.1 wt. %, the tensile strength Rm increased by 1,5% but the elongation AM decreased to 40%. Variants with 0.2 and 0.3 wt. % addition of Ti achieved similar Rm but approximately 40% decrease in AM. However, it is interesting that yield strength Rp0.2 increased for all variants by approximately 14 to 20%. The results point out the possibility of developing a more sophisticated alloy for automotive industry.

Go to article

Authors and Affiliations

D. Bolibruchová
ORCID: ORCID
M. Kuriš
M. Matejka
ORCID: ORCID
K. Major-Gabryś
ORCID: ORCID
M. Vicen
Download PDF Download RIS Download Bibtex

Abstract

Value stream mapping (VSM) is a well-known lean analytical tool in identifying wastes, value, value stream, and flow of materials and information. However, process variability is a waste that traditional VSM cannot define or measure since it is considered as a static tool. For that, a new model named Variable Value Stream Mapping (V-VSM) was developed in this study to integrate VSM with risk management (RM) using Monte Carlo simulation. This model is capable of generating performance statistics to define, analyze, and show the impact of variability within VSM. The platform of this integration is under Deming’s Plan-Do-Check-Act (PDCA) cycle to systematically implement and conduct V-VSM model. The model has been developed and designed through literature investigation and reports that lead in defining the main four concepts named as; Continuous Improvement, Data Variability, Decision-Making, and Data Estimation. These concepts can be considered as connecting points between VSM, RM and PDCA.
Go to article

Authors and Affiliations

Alaa Salahuddin Araibi
1
Mohamad Shaiful Ashrul Ishak
2
ORCID: ORCID
Muhanad Hatem Shadhar
1

  1. Civil Engineering Department, Dijlah University College, Iraq
  2. Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis, Malaysia

This page uses 'cookies'. Learn more