Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Battery modeling and state of charge (SoC) estimation are critical functions in the effective battery management system (BMS) operation. Temperature directly affects the battery's performance and changes the battery's model accuracy. Most studies have focused on estimating the internal temperature of the battery from the surface temperature of the battery with the help of sensors. However, due to the high number of cells in battery packs, the increase in sensor costs and the number of parameters have been ignored. Therefore, this article presents a new framework for the temperature effect using the electrical circuit model. The terminal voltage of the battery includes the effect under different operating conditions. This effect was associated with internal resistance in the battery model. The developed temperature-effective battery model was tested at different temperatures and operating currents. The model was validated with a maximum average root mean square error of 0.05% from the test results. The SoC of the LTO battery was estimated with the Sigma Point Kalman (SPK) filter incorporating the developed model. The maximum average root mean square error in the estimation results is 0.11%. It is suitable for practical applications due to its low cost, simplicity, and reliability.
Go to article

Authors and Affiliations

Yusuf Muratoğlu
Alkan Alkaya
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Energy storage systems (ESS) are indispensable in daily life and have two types that can offer high energy and high power density. Hybrid energy storage systems (HESS) are obtained by combining two or more energy storage units to benefit both types. Energy management systems (EMS) are essential in ensuring the reliability, high performance, and efficiency of HESS. One of the most critical parameters for EMS is the battery state of health (SoH). Continuous monitoring of the SoH provides essential information regarding the system status, detects unusual performance degradations and enables planned maintenance, prevents system failures, helps keep efficiency at a consistently high level, and helps ensure energy security by reducing downtime. The SoH parameter depends on parameters such as depth of discharge (DoD), charge and discharge rate (C-rate), and temperature. Optimal values of these parameters directly affect the lifetime and operating performance of the battery. The proposed adaptive energy management system (AEMS) uses the SoH parameter of the battery as the control input. It provides optimal control by dynamically updating the C-rate and DoD parameters. In addition, the supercapacitor integrated into the system with filter-based power separation prevents deep discharge of the batteries. Under the proposed AEMS control, HESS has been observed to generate 6.31% more energy than a system relying solely on batteries. This beneficial relationship between supercapacitors and batteries efficiently managed by AEMS opens new possibilities for advanced energy management in applications ranging from electric vehicles to renewable energy storage systems.
Go to article

Authors and Affiliations

Gökhan Yüksek
1
ORCID: ORCID
Alkan Alkaya
1
ORCID: ORCID

  1. Department of Electrical and Electronics Engineering, Faculty of Engineering, Mersin University, Ciftlikkoy 33100, Mersin, Turkey

This page uses 'cookies'. Learn more