Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This work reports on the investigation of homogeneity of the inside of indium micro-bumps/ columns placed on Ti/Pt/Au under bump metallisation. This is very important for connection resistivity, long-time durability, and subsequent hybridisation process (e.g., die-bonding). Gold reacts with indium to form intermetallic alloys with different chemo-physical parameters than pure indium. The geometrical and structural parameters of intermetallic alloys were analysed based on transmission electron microscope images. Distribution of elements in the investigated samples was determined using the transmission electron micro-scope with energy dispersive spectroscopy method. A thickness of intermetallic alloy was 1.02 μm and 1.67 μm in non-annealed (A) and annealed (B) indium columns, respectively. The layered and column-like interior structure of alloys was observed for both samples, respectively, with twice bigger grains in sample B. The graded chemical composition of Au-In intermetallic alloy was detected for the non-annealed In columns in contrast to the constant composition of 40% of Au and 60% of In for the annealed sample B. The atomic distribution has a minor impact on the In column mechanical stability. A yield above 99% of an In column with a 25 µm diameter and a 11 µm height is possible for a uniform columnar structure of intermetallic alloy with a thickness of 1.67 μm.
Go to article

Authors and Affiliations

Paweł Kozłowski
1
ORCID: ORCID
Agata Jasik
1
ORCID: ORCID
Adam Łaszcz
1
ORCID: ORCID
Krzysztof Czuba
1
ORCID: ORCID
Krzysztof Chmielewski
1
ORCID: ORCID
Krzysztof Zdunek
2
ORCID: ORCID

  1.  Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02-668 Warsaw, Poland
  2. Warsaw University of Technology, Faculty of Materials Science and Engineering, ul. Wołoska 141, 02-507 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents results of the characterisation of type I GaSb/AlSb superlattices (SLs) with a thin GaSb layer and varying thicknesses of an AlSb layer. Nextnano software was utilized to obtain spectral dependence of absorption and energy band structure. A superlattice (SL) with an energy bandgap of ~ 1.0 eV and reduced mismatch value was selected for experimental investigation. SLs with single (sample A) and double (sample B) AlSb barriers and a single AlSb layer (sample C) were fabricated using molecular beam epitaxy (MBE). Optical microscopy, high-resolution X-ray diffractometry, and photoluminescence were utilized for structural and optical characterisation. The presence of satellite and interference peaks in diffraction curves confirms the high crystal quality of superlattices. Photoluminescence signal associated with the superlattice was observed only for sample B and contained three low-intensity peaks: 1.03, 1.18, and 1.25 eV. The first peak was identified as the value of the energy bandgap of the SL. Other two peaks are related to optical transitions between defect states located at the interface between the SL and the top AlSb barrier. The time-dependent changes observed in the spectral characteristics are due to a modification of the SL/AlSb interface caused by the oxidation and hydroxylation of the AlSb layer.
Go to article

Authors and Affiliations

Maciej Fokt
1 2
ORCID: ORCID
Agata Jasik 
1
ORCID: ORCID
Iwona Sankowska 
1
ORCID: ORCID
Herbert S. Mączko 
3
ORCID: ORCID
Karolina M. Paradowska 
1
ORCID: ORCID
Krzysztof Czuba
1 2
ORCID: ORCID

  1. Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Aleja Lotników 32/46, 02-668 Warsaw, Poland
  2. Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
  3. nextnano GmbH, Konrad-Zuse-Platz 8, 81829 München, Germany

This page uses 'cookies'. Learn more