Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 27
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Resistance spotwelding is the most significant joining technique utilized in various industries, like automotive, boilers, vessels, etc., that are commonly subjected to variable tensile-shear forces due to the unsuitable use of the input spot welding variables, which mainly cause the welded joints failure during the service life of the welded assembly. So, in order to avoid such failures, the welding quality of some materials like aluminum must be improved taking into consideration the performance and weight saving of the welded structure. Thus, the need for optimizing the used welding parameters becomes essential for predicting a goodwelded joint.Accordingly, this study aims at investigating the influence of the spot welding variables, including the squeeze time, welding time, and current on the tensile-shear force of the similar and dissimilar lap joints for aluminum and steel sheets. It was concluded that the use of Taguchi design can improve the welded joints strength through designing the experiments according to the used levels of the input parameters in order to obtain their optimal values that give the optimum tensile-shear force as the response. As a consequence of the present work, the optimal spot welding parameters were successfully obtained.

Go to article

Bibliography

[1] Metals Handbook. Welding, Brazing, and Soldering, volume 6. ASM International, Materials Park, OH,1993.
[2] N. Mookam. Optimization of resistance spot brazing process parameters in AHSS and AISI 304 stainless steel joint using filler metal. Defence Technology, 15(3):450–456, 2019. doi: 10.1016/j.dt.2019.03.005.
[3] J. Valera, V. Miguel, A. Martínez, J. Naranjo, and M. Cañas.. Optimization of electrical parameters in Resistance Spot Welding of dissimilar joints of micro-alloyed steels TRIP sheets. Procedia Manufacturing, 13:291–298, 2017. doi: 10.1016/j.promfg.2017.09.074.
[4] T.R. Mahmood, Q.M. Doos, and A.M. Al-Mukhtar. Failure mechanisms and modeling of spot welded joints in low carbon mild sheets steel and high strength low alloy steel. Procedia Structural Integrity, 9:71–85, 2018. doi: 10.1016/j.prostr.2018.06.013.
[5] S.K. Hussein and O.S. Barrak. Analysis and optimization of resistance spot welding parameter of dissimilar metals mild steel and aluminum using design of experiment method. Engineering and Technology Journal, 33(8):1999–2011, 2015.
[6] Y. Lu, E. Mayton, H. Song, M. Kimchi, and W. Zhang. Dissimilar metal joining of aluminum to steel by ultrasonic plus resistance spot welding – Microstructure and mechanical properties. Materials and Design, 165:107585, 2019. doi: 10.1016/j.matdes.2019.107585.
[7] A. Subrammanian, D.B. Jabaraj, and J. Jayaprakash. Multi-objective optimization of resistance spot welding of AISI 409M ferritic stainless steel. Journal of Scientific & Industrial Research, 77:271–275, 2018.
[8] B. Vijaya Sankar, I.D. Lawrence, and S. Jayabal. Prediction of spot welding parameters for dissimilar weld joints. Bonfring International Journal of Industrial Engineering and Management Science, 6(4):123–127, 2016. doi: 10.9756/bijiems.7542.
[9] M. Pradeep, N.S. Mahesh, and R.M. Hussain. Process parameter optimization in resistance spot welding of dissimilar thickness materials. International Journal of Mechanical and Mechatronics Engineering, 8(1):80–83, 2014.
[10] M.J. Zedan and Q.M. Doos. New method of resistance spot welding for dissimilar 1008 low carbon steel-5052 aluminum alloy. Procedia Structural Integrity, 9:37–46, 2018. doi: 10.1016/j.prostr.2018.06.008.
[11] T.P. Bagchi. Taguchi Methods Explained: Practical Steps to Robust Design. Prentice-Hall, New Delhi, India 1993.
[12] M. Sarikaya. Optimization of the surface roughness by applying the Taguchi technique for the turning of stainless steel under cooling conditions. Materiali in Tehnologije/Materials and Technology, 49(6):941–948, 2015. doi: 10.17222/mit.2014.282.
[13] A.K. Hussein, L.K. Abbas, and W.N. Hasan. Optimization of heat treatment parameters for the tensile properties of medium carbon steel. Engineering and Technology Journal, 36(10A):1091–1099, 2018. doi: 10.30684/etj.36.10a.10.
[14] J. Chen, X. Yuan, Z. Hu, C. Sun, Y. Zhang, and Y. Zhang. Microstructure and mechanical properties of resistance-spot-welded joints for A5052 aluminum alloy and DP 600 steel. Materials Characterization, 120:45–52, 2016. doi: 10.1016/j.matchar.2016.08.015.
[15] Q. Jia, L. Liu, W. Guo, Y. Peng, G. Zou, Z. Tian, and Y.N. Zhou. Microstructure and tensile-shear properties of resistance spot-welded medium Mn steel. Metals, 8(1):48, 2018. doi: 10.3390/met8010048.
[16] A. Subrammanian, D.B. Jabaraj, J. Jayaprakash, and V.K. Bupesh Raja. Mechanical properties and phase transformations in resistance spot welded dissimilar joints of AISI409M/AISI301 steel. Indian Journal of Science and Technology, 9(41):1–8, 2016. doi: 10.17485/ijst/2016/v9i41/101971.
Go to article

Authors and Affiliations

Najmuldeen Yousif Mahmood
1

  1. Mechanical Engineering Department, University of Technology-Iraq, Baghdad, Iraq.
Download PDF Download RIS Download Bibtex

Abstract

Natural gas is a mixture of 21 components and it is widely used in industries and homes. Knowledge of its thermodynamic properties is essential for designing appropriate processes and equipment. This paper presents simple but precise correlations of how to compute important thermodynamic properties of natural gas. As measuring natural gas composition is costly and may not be effective for real time process, the correlations are developed based on measurable real time properties. The real time properties are temperature, pressure and specific gravity of the natural gas. Calculations with these correlations are compared with measured values. The validations show that the average absolute percent deviation (AAPD) for compressibility factor calculations is 0.674%, for density is 2.55%, for Joule-Thomson coefficient is 4.16%. Furthermore, in this work, new correlations are presented for computing thermal properties of natural gas such as enthalpy, internal energy and entropy. Due to the lack of experimental data for these properties, the validation is done for pure methane. The validation shows that AAPD is 1.31%, 1.56% and 0.4% for enthalpy, internal energy and entropy respectively. The comparisons show that the correlations could predict natural gas properties with an error that is acceptable for most engineering applications.

Go to article

Authors and Affiliations

Mahmood Farzaneh-Gord
Hamid Rahbari
Download PDF Download RIS Download Bibtex

Abstract

Previous research reported about high comorbidity between asthma and neurodevelopmental disorders. Recently, asthma was associated also with executive functions poorness. The current study aimed to investigate the verbal and visual memory performances among fifteen asthmatic kindergarten children compared to the performances of other fifteen healthy kindergarten children. The results showed that the asthmatic group revealed poor performances in the immediate short term verbal memory and the verbal working memory tests but not in the verbal learning test as it was compared to the healthy group. In addition, the asthmatic group revealed poor performances in the visual memory tasks compared to the healthy group. The results were explained in light of the assumption that poor executive functions might be interfere the process of managing the attentional resources which are needed through the process of memory encoding and retrieval.

Go to article

Authors and Affiliations

Haitham Taha
Mahmood Khalil
Download PDF Download RIS Download Bibtex

Abstract

Local weather conditions have an impact on the availability of free-space optical (FSO) communication. The variation in meteorological parameters, such as temperature, humidity, and wind speed, leads to variations of the refractive index along the transmission path. These refractive index inhomogeneities produced by atmospheric turbulence induce optical turbulence which is responsible for random fluctuations in the intensity of the laser beam that carries the signal (irradiance) called scintillations that can significantly degrade the performance of FSO systems. This paper aims to investigate the feasibility of deploying FSO communication technology under scintillation effects in any urban region and atmospheric environment. To achieve that, firstly by utilizing the Hufnagel-Vally day with the Sadot and Kopeika models together, the scintillation strength for a specified region, Sulaimani City in north-eastern Iraq as an example, has been estimated through the calculation of the refractive index structure parameter (Cn2) over a period of 10 years and it was found to be at the strong turbulence level. Secondly, from the same estimated parameter, the scintillation attenuation of the signal carrying the laser beam intensity can be calculated to investigate the feasibility of FSO communication using Optysistem-7 software. The optimal link distance for north-eastern Iraq (Sulaimani City) has been found to be within the limit of about 5.5 km. Analysing the max. Q-factor, bit-error rate and signal to noise ratio for an average of 120 months between 2013–2022 assessed the best and worst seasons for FSO.
Go to article

Authors and Affiliations

Aras S. Mahmood
1

  1. Physics Department, College of Education, University of Sulaimani, Sulaimani, Kurdistan Region / Iraq
Download PDF Download RIS Download Bibtex

Abstract

In this study, the effect of six commercial biocontrol strains, Bacillus pumilus INR7, B. megaterium P2, B. subtilis GB03, B. subtilis S, B. subtilis AS and B. subtilis BS and four indigenous strains Achromobacter sp. B124, Pseudomonas geniculate B19, Serratia marcescens B29 and B. simplex B21 and two plant defense inducers, methyl salicylate (Me-SA) and methyl jasmonate (Me-JA) were assessed on suppression of wheat take-all disease. Treatments were applied either as soil drench or sprayed on shoots. In the soil drench method, the highest disease suppression was achieved in treatment with strains INR7, GB03, B19 and AS along with two chemical inducers. Bacillus subtilis S, as the worst treatment, suppressed take-all severity up to 56%. Both chemical inducers and bacterial strains AS and P2 exhibited the highest effect on suppression of take-all disease in the shoot spray method. Bacillus subtilis S suppressed the disease severity up to 49% and was again the worst strain. The efficacy of strains GB03 and B19 decreased significantly in the shoot spray method compared to the soil drench application method. Our results showed that most treatments had the same effect on take-all disease when they were applied as soil drench or sprayed on aerial parts. This means that induction of plant defense was the main mechanism in suppressing take-all disease by the given rhizobacteria. It also revealed that plant growth was reduced when it was treated with chemical inducers. In contrast, rhizobacteria not only suppressed the disease, but also increased plant growth.

Go to article

Authors and Affiliations

Ali Mahmood Jasem
Rouhallah Sharifi
Saeed Abbasi
Download PDF Download RIS Download Bibtex

Abstract

We explored the use of the medicinally important plant Centella asiatica for expression of hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) strain AF2240. HN protein is the principal target for subunit vaccine development against NDV. The full-length HN gene was cloned into a plant expression construct driven by the CaMV 35S promoter and C-terminal fusion of green fluorescence protein (GFP) as reporter system. The recombinant expression construct was transformed via particle bombardment into C. asiatica callus. Transformants were screened using GFP and selected on MS medium supplemented with 15 mg/l hygromycin. The ~1.8 kb HN mRNA transcript was detected on the putative transformants using RT-PCR. The presence of HN protein expression was further confirmed through dot blot analysis using anti-NDV chicken serum. Here we report, for the first time, the use of a novel medicinal plant as a new platform for HN protein expression.

Go to article

Authors and Affiliations

Kok Song Lai
Khatijah Yusoff
Maziah Mahmood
Download PDF Download RIS Download Bibtex

Abstract

Detecting high impedance faults (HIFs) is one of the challenging issues for electrical engineers. This type of fault occurs often when one of the overhead conductors is downed and makes contact with the ground, causing a high-voltage conductor to be within the reach of personnel. As the wavelet transform (WT) technique is a powerful tool for transient analysis of fault signals and gives information both on the time domain and frequency domain, this technique has been considered for an unconventional fault like high impedance fault. This paper presents a new technique that utilizes the features of energy contents in detail coefficients (D4 and D5) from the extracted current signal using a discrete wavelet transform in the multiresolution analysis (MRA). The adaptive neurofuzzy inference system (ANFIS) is utilized as a machine learning technique to discriminate HIF from other transient phenomena such as capacitor or load switching, the new protection designed scheme is fully analyzed using MATLAB feeding practical fault data. Simulation studies reveal that the proposed protection is able to detect HIFs in a distribution network with high reliability and can successfully differentiate high impedance faults from other transients.
Go to article

Bibliography

[1] Gomes A.D.P.S., Cagil Ozansoy, Anwaar Ulhaq, High sensitivity vegetation high-impedance fault detection based on signal’s high- frequency contents, IEEE Transactions on Power Delivery, vol. 33, no. 3, pp. 1398–1407 (2018), DOI: 10.1109/TPWRD.2018.2791986.
[2] Ghaderi H.L., Ginn I., Mohammadpour H.A., High impedance fault detection: A review, Electric Power Systems Research, vol. 143, pp. 376–388 (2017), DOI: 10.3390/en13236447.
[3] Gautam S., Brahma S.M., Detection of high impedance fault in power distribution systems using mathematical morphology, IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 1226–1234 (2013), DOI: 10.1109/TPWRS.2012.2215630.
[4] Sarlak M., Shahrtash S.M., High impedance fault detection using combination of multi-layer perceptron neural networks based on multiresolution morphological gradient features of current waveform, IET Generation, Transmission Distribution, vol. 5, no. 5, pp. 588–595 (2011), DOI: 10.1049/ietgtd.2010.0702.
[5] Ling Liu, Fault detection technology for intelligent boundary switch, Archives of Electrical Engineering, vol. 68, no. 3, pp. 657–666 (2019), DOI: 10.24425/aee.2019.129348.
[6] Milioudis N., Andreou G.T., Labridis D.P., Detection and Location of High Impedance Faults in Multiconductor Overhead Distribution Lines Using Power Line Communication Devices, IEEE Transactions on Smart Grid, vol. 6, no. 2, pp. 894–902 (2015), DOI: 10.1109/TSG.2014.2365855.
[7] Chaari O., Meunier M., Brouaye F., Wavelets: A new tool for the resonant grounded power distribution systems relaying, IEEE Trans on Power System Delivery, vol. 12, no. 1, pp. 1–8 (2018), DOI: 10.1109/61.517484.
[8] Mudathir Funsho Akorede, James Katende, Wavelet Transform Based Algorithm for High- Impedance Faults Detection in Distribution Feeders, European Journal of Scientific Research, vol. 41, no. 2, pp. 237–247 (2010).
[9] Douglas G., Cagil O., Anwaar U., High-Sensitivity Vegetation High-Impedance Fault Detection Based on Signal’s High-Frequency Contents, IEEE Transactions on Power Delivery, vol. 33, no. 3, pp. 1398–1407 (2018), DOI: 10.1109/TPWRD.2018.2791986.
[10] Suliman M.Y., A Proposal Technique of High Impedance Fault Detection Using Adaptive Neuro-Fuzzy Logic Control, Engineering and Technology Journal, vol. 34A, no. 11, pp. 2086–2095 (2016).
[11] Girgis A., ChangW., Makram E.B., Analysis of high-impedance fault generated signals using a Kalman filtering approach, IEEE Transactions on Power Delivery, vol. 5, no. 4, pp. 1714–1724 (1990), DOI: 10.1109/61.103666.
[12] Suliman M.Y., Sameer Sadoon Al-Juboori, Design of Fast Real Time Controller for the Dynamic Voltage Restorer Based on Instantaneous Power Theory, International Journal of Energy and Power Engineering, vol. 5, iss. 2:1, pp. 1–6 (2016), DOI: 10.11648/j.ijepe.s.2016050201.11.
[13] Kumar R., Bhim S., Shahani D.T., Chinmay J., Method of earth fault loop impedance measurement without nuisance tripping of RCDs in 3-phase low-voltage circuits, Archives of Electrical Engineering, vol. 26 no. 2, pp. 217–227 (2019), DOI: 10.24425/mms.2019.128350.
[14] Suliman M.Y., Ghazal M., Design and Implementation of Overcurrent Protection Relay, Journal of Electrical Engineering and Technology, vol. 15, pp. 1595–1605 (2020), DOI: 10.1007/s42835-020-00447-0.
[15] Sirojan T., Lu S., Phung B.T., Zhang D., Ambikairajah E., High Impedance Fault Detection by Convolutional Deep Neural Network, IEEE International Conference on High Voltage Engineering and Application (ICHVE), Athens, Greece, pp. 1–4 (2018), DOI: 10.1109/ICHVE.2018.8642080.
[16] Suliman M.Y., Ghazal M.T., Detection of High impedance Fault in Distribution Network Using Fuzzy Logic Control, 2nd International Conference on Electrical, Communication, Computer, Power and Control Engineering (ICECCPCE), Mosul, Iraq, pp. 103–108 (2019), DOI: 10.1109/ICECCPCE46549.2019.203756.
[17] Sekar K., Mohanty N.K., Sahoo A.K., High impedance fault detection using wavelet transform, Technologies for Smart-City, Energy Security and Power, (ICSESP), Bhubaneswar, India, pp. 1–6 (2018), DOI: 10.1109/ICSESP.2018.8376740.
[18] Gabriel de Alvarenga Ferreira, Tatiana Mariano Lessa Assis, A Novel High Impedance Arcing Fault Detection Based on the Discrete Wavelet Transform for Smart Distribution Grids, IEEE PES Innovative Smart Grid Technologies Conference – ISGT, Brazil, pp. 1–6 (2019), DOI: 10.1109/ISGTLA.2019.8895264.
[19] Moloi K., Jordaan J.A., Hamam Y., High impedance fault detection technique based on Discrete Wavelet Transform and support vector machine in power distribution networks, IEEE AFRICON, Cape Town, South Africa, pp. 9–14 (2017), DOI: 10.1109/AFRCON.2017.8095447.
[20] Costa F.B., Souza B.A., Brito N.S.D., Silva J.A.C.B., Santos W.C., Real-Time Detection of Transient Induced by High-Impedance Fault Based on the Boundary Wavelet Transform, IEEE Transaction on Industrial Applications, vol. 51, no. 6, pp. 531–5323 (2015), DOI: 10.1109/TIA.2015.2434993.
[21] ElkalashyN.I., Lehtonen M., Hatem A.D.,Abdel-Maksoud I.T., Mohamed A.I.,DWT-Based Extraction of Residual Currents Throughout Unearthed MV Network For Detecting High Impedance Fault Due to Learning Trees, European Transactions on Electrical Power, ETEP, vol. 17, no. 6, pp. 597–614 (2007), DOI: 10.1002/etep.149.
[22] Yang H., Minyou C., Jinqian Z., High impedance fault identification method of the distribution network based on discrete wavelet transformation, International Conference on Electrical and Control Engineering, Yichang, China, pp. 2262–2265 (2011), DOI: 10.1109/ICECENG.2011.6057329.
[23] Jang J.-S.R., ANFIS: adaptive-network-based fuzzy inference system, IEEE Transactions on Systems, Man and Cybernetics, vol. 23, no. 3, pp. 665–685 (1993), DOI: 10.1109/21.256541.
[24] Zadeh L., Fuzzy sets, Information and Control, New York, vol. 8, pp. 338–353 (1965), DOI: 10.1016/S0019-9958(65)90241-X.
[25] Werbos P.J., Beyond regression: new tools for prediction and analysis in the behavioural sciences, Ph.D. Thesis, Harvard University, Cambridge, USA (1974).
[26] Mohammed Y. Suliman, Farrag M.E., Bashi S.M., Design of Fast Real Time Controller for the SSSC Based on Takagi-Sugeno (TS) Adaptive Neuro-Fuzzy Control System, International Conference on Renewable Energy and Power Quality, Spain, vol. 1, no. 12, pp. 1025–1030 (2014), DOI: 10.24084/repqj12.575.
[27] Suliman M.Y., Active and reactive power flow management in parallel transmission lines using static series compensation (SSC) with energy storage, International Journal of Electrical and Computer Engineering, vol. 9, no. 6, pp. 4598–4609 (2019), DOI: 10.11591/ijece.v9i6.pp4598-4609.
[28] Mohammed Y. Suliman, Mahmood T. Al-Khayyat, Power flow control in parallel transmission lines based on UPFC, Bulletin of Electrical Engineering and Informatics, vol. 9, no. 5, pp. 1755–1765 (2020), DOI: 10.11591/eei.v9i5.2290.
[29] Banu G., Suja S., Fault location technique using GA-ANFIS for UHV line, Archives of Electrical Engineering, vol. 63, no. 2, pp. 247–262 (2014), DOI: 10.2478/aee-2014-0019.
[30] Al-Khayyat M.T., Suliman M.Y., Neuro Fuzzy based SSSC for Active and Reactive Power Control in AC Lines with Reduced Oscillation, Przeglad Elektrotechniczny, vol. 97, no. 3, pp. 75–79, 2021, DOI: 10.15199/48.2021.03.14.
Go to article

Authors and Affiliations

Mohammed Yahya Suliman
1
Mahmood Taha Alkhayyat
1

  1. Northern Technical University, Iraq
Download PDF Download RIS Download Bibtex

Abstract

The materials mining from rivers have a variety of negative and positive effects. Currently, one of the most important issues in river engineering is the proper management of materials mining. In this research, global experiences and interna-tional standards for managing sand and gravel mining have been applied to evaluate the mining area in the Zohreh River in Khuzestan province (Iran). One of the evaluation methods in this field is the river matrix method. In this method, which is defined on the basis of river pattern, river characteristics such as river size, site location of materials, associated channel and type of deposit are being considered. In this research, a segment of the Zohreh River between Sardasht Zeydun bridge and Mohseniyeh village in which has good potential for gravel mining was selected and evaluated for river characteristics, mining potential and application of river matrix method. The study indicates that the Zohreh River has a braided pattern in the range. The volume of sediment materials in the target area is about 10 000 m3, the length and width of the mining area are 125 and 80 m respectively, and surface extraction with a maximum depth of 1 m was recommended for extraction of materials. At the end of the research, management solutions and solutions for mining of river materials were presented using various standards.

Go to article

Authors and Affiliations

Farhang Azarang
Mahmood Shafaei Bejestan
Ghazal Jafari
Maryam Karami
Download PDF Download RIS Download Bibtex

Abstract

The perovskites XBiO3 (X = Al, Ga, In) have been studied in terms of mechanical, optical and thermoelectric behavior for energy harvesting application. Density functional theory is applied to study electronic, optical and thermoelectric properties of the studied materials. Structural, mechanical and thermodynamic stabilities are confirmed from the tolerance factor, Born mechanical stability and formation energy/specific heat capacity. Poisson and Plough ratios show the studied materials are ductile and have ability to withstand pressure. Band structure analysis shows the indirect band gap 3.0/2.1/1.0 eV for ABO/GBO/IBO. A complete set of optical spectra is reported by dielectric constants, refractive index, optical conduction, absorption of light and optical loss energy. Shifting of maximum absorption band to visible region increases the potential of perovskites XBiO3. Transport characteristics are also investigated by electrical conductivity, Seebeck coefficient and figure of merit.

Go to article

Authors and Affiliations

Q. Mahmood
S. A. Rouf
E. Algrafy
G. Murtaza
S. M. Ramay
A. Mahmood
Download PDF Download RIS Download Bibtex

Abstract

O b j e c t i v e s: The aim of study was to investigate the association between anxiety, depression, stress and determinants of quality of life among Iranian students.

M e t h o d s: The questionnaires were completed by 275 students. The random sampling was conducted in two phases, the stratified sampling which some classes were selected among different classes of faculty of health and at the second phase, in each class the number of students who had the requirements to enter in the study were selected randomly. the logistic regression to find out the association between demographic characteristics with the quality of life was run and according to the normality status of the distribution of data the parametric or non-parametric tests were used.

R e s u l t s: In the univariable model, the students that were living in their own homes had the odds of 2.18 times more than the others to have a higher quality of life level (95% CI: 1.07–4.45). In the multi variable model the anxiety and stress were significantly related to the quality of life and for increasing each 1 unit in the amount of anxiety and stress the odds of a better quality of life decreases 0.19 and 0.03 respectively. Even after adjusting for other covariates – in the multivariable model – both anxiety and stress were associated with the quality of life.

C o n c l u s i o n: It is useful for the universities to understand different aspects of the students’ lives which are under the influence of stress, anxiety and depression, and also determining the resources from which they are originated.

Go to article

Authors and Affiliations

Bahram Armoon
Yaser Mokhayeri
Javad Haroni
Mahmood Karimy
Mehdi Noroozi
Download PDF Download RIS Download Bibtex

Abstract

Buffalopox (BPX) is a highly contagious disease that causes high morbidity and production losses in buffaloes. During this study, seroprevalence, effect of various associated risk factors, and pathological studies of BPX were recorded in the Punjab province. A total of 97 blood samples and 63 scabs were collected from clinically pox suspected buffaloes. Serum was harvested to perform single radial hemolysis to assess the seroprevalence, and scabs were subjected to PCR for BPX virus confirmation. Results revealed that, animal demographics and environmental associated factors showed significant effect (p<0.05,1<R2>0) on BPX occurrence. The overall BPX seroprevalence was recorded 4.18% in the Punjab province. The BPX was recorded 5.48% in Nili Ravi breed during winter (7.42%), aged 5-7 years (7.46%) under loose housing (5.51%) in the Faisalabad region (8.03%). Further, BPX was 5.37% in pregnant, 6.86% pregnant milking buffaloes during the 3rd lactation period (7.28%) in dairy herds (5.20%). The BPX was 5.22% in non-vaccinated buffaloes where multiple animals were reared together (4.99%) in the herds having 21-30 total number of animals. A total of 49 scab samples were found positive for the BPX virus via PCR with C18L gene amplification. Grossly, inflammatory lesions with pits in the center and wart-like nodules were seen on teats and udder of buffaloes. Increased leukocytes, especially neutrophils and lymphocytes, were seen in the blood of the infected animals. These results provide a broader window to understand the effect of associated risk factors, strengthen the diagnostic aid, and to contain the current spread of BPX in Pakistan to safeguard large ruminant-based livelihood.
Go to article

Bibliography

Babiuk S, Wallace DB, Smith SJ, Bowden TR, Dalman B, Parkyn G, Copps J, Boyle DB (2009) Detection of antibodies against capripoxviruses using an inactivated sheeppox virus ELISA. Transbound Emerg Dis 56: 132-141.
Bera BC, Shanmugasundaram K, Barua S, Anand T, Riyesh T, Vaid RK, Virmani N, Bansal M, Shukla BN, Malik P, Singh RK (2012) Sequence and phylogenetic analysis of host-range (E3L, K3L, and C7L) and structural protein (B5R) genes of buffalopox virus isolates from buffalo, cattle, and human in India. Virus Genes 45: 488-498.
Bhanuprakash V, Venkatesan G, Balamurugan V, Hosamani M, Yogisharadhya R, Chauhan RS, Pande A, Mondal R, Singh RK (2010) Pox outbreaks in sheep and goats at Makhdoom (Uttar Pradesh), India: evidence of sheeppox virus infection in goats. Transbound Emerg Dis 57: 375-382.
Bhanuprakash V, Venkatesan G, Balamurugan V, Hosamani M, Yogisharadhya R, Gandhale P, Reddy KV, Damle AS, Kher HN, Chandel BS, Chauhan HC, Singh RK (2010) Zoonotic infections of buffalopox in India. Zoonoses Public Health 57: 149-155.
Chandranaik BM, Singh RK, Hosamani M, Krishnappa G, Harish BR, Chethana CS, Renukaprasad C (2011) Comparative sequence analysis of B5R gene of zoonotic buffalo pox virus isolates with other orthopoxviruses. Trop Anim Health Prod 43: 287-290.
Damaso CR, Esposito JJ, Condit RC, Moussatché N (2000) An emergent poxvirus from humans and cattle in Rio de Janeiro state: Cantagalo virus may derive from brazilian smallpox vaccine. Virology 277: 439-449.
Das A, Deng MY, Babiuk S, McIntosh MT (2017) Modification of two capripoxvirus quantitative real-time PCR assays to improve diagnostic sensitivity and include beta-actin as an internal positive control. J Vet Diagn Invest 29: 351-356.
Eltom KH, Samy AM, El-Wahed AA, Czerny CP (2020) Buffalopox virus: An emerging virus in livestock and humans. Pathogens 9: 676-685.
Essbauer S, Pfeffer M, Meyer H (2010) Zoonotic poxviruses. Vet Microbiol 140: 229-236.
Fentie T, Fenta N, Leta S, Molla W, Ayele B, Teshome Y, Nigatu S, Assefa A (2017) Sero-prevalence, risk factors and distribution of sheep and goat pox in Amhara Region, Ethiopia. BMC Vet Res 13: 385-393.
Goraya MU, Qureshi ZA, Abbas M, Ashraf M, Munir M (2015) Isolation of buffalo poxvirus from clinical case and variations in the genetics of the B5R gene over fifty passages. Virus Genes 51: 45-50.
Goyal T, Varshney A, Bakshi SK, Barua S, Bera BC, Singh RK (2013) Buffalo pox outbreak with atypical features: A word of caution and need for early intervention. Int J Dermatol 52: 1224-1230.
Gujarati R, Siva RK, Babu T, Janardhan B (2019) A case report of buffalopox: A zoonosis of concern. Indian J Dermatol Venereol Leprol 85: 348-348.
Gurav YK, Raut CG, Yadav PD, Tandale BV, Sivaram A, Pore MD, Basu A, Mourya DT, Mishra AC (2011) Buffalopox outbreak in humans and animals in Western Maharashtra, India. Prev Vet Med 100: 242-247.
Haller SL, Peng C, McFadden G, Rothenburg S (2014) Poxviruses and the evolution of host range and virulence. Infect Genet Evol 21: 15-40.
Kasem S, Saleh M, Qasim I, Hashim O, Alkarar A, Abu- -Obeida A, Gaafer A, Hussien R, AL-Sahaf A, Al-Doweriej A, Bayoumi F, Hodhood A, Abdelatif M (2018) Outbreak investigation and molecular diagnosis of Lumpy skin disease among livestock in Saudi Arabia 2016. Transbound Emerg Dis 65: e494-e500.
Khan FM (2010) Participatory appraisal and scanning surveillance based contagious diseases risk profile of district Rahim Yar Khan (Pakistan). Pak Vet J 30: 198-202.
Kumar A, Yogisharadhya R, Venkatesan G, Bhanuprakash V, Shivachandra SB (2016) Immunogenicity and protective efficacy of recombinant major envelope protein (rH3L) of buffalopox virus in animal models. Antiviral Res 126: 108-116.
Lobato ZI, Trindade GS, Frois MI, Ribeiro EB, Dias GR, Teixeira BM, Lima FA, Kroon EG (2005) Outbreak of cowpox caused by Vaccinia virus in the zona da mata mineira region. Arq Bras Med Vet Zootec 57: 423-429.
Marinaik CB, Venkatesha MD, Gomes AR, Reddy P, Nandini P, Byregowda SM (2018) Isolation and molecular characterization of zoonotic Buffalopox virus from skin lesions of humans in India. Int J Dermatol 57: 590-592.
McFadden G (2005) Poxvirus tropism. Nat Rev Microbiol 3: 201-213.
Numan M, Rizvi F, Javed MT, Muhammad G (2016) Establishment of hematological reference values in buffalo pox virus infected buffaloes for quick diagnosis of the disease in local laboratory settings. J Anim Plant Sci 26: 93-102.
Rehfeld IS, Guedes MI, Matos AC, de-Oliveira TM, Junior AV, Moura AC, Paes PR, do-Lago LA, Kroon EG, Lobato ZI (2013) Clinical, hematological, and biochemical parameters of dairy cows experimentally infected with Vaccinia virus. Res Vet Sci 95: 752-757.
Riyesh T, Karuppusamy S, Bera BC, Barua S, Virmani N, Yadav S, Vaid RK, Anand T, Bansal M, Malik P, Pahuja I, Singh RK (2014) Laboratory-acquired buffalopox virus infection, India. Emerg Infect Dis 20: 325-327.
Şevik M, Doğan M (2017) Epidemiological and Molecular Studies on Lumpy Skin Disease Outbreaks in Turkey during 2014-2015. Transbound Emerg Dis 64: 1268-1279.
Singh RK, Balamurugan V, Hosamani M, Kallesh DJ, Bhanuprakash V (2008) Sequence analysis of C18L gene of buffalopox virus: PCR strategy for specific detection and differentiation of buffalopox from orthopoxviruses. J Virol Methods 154: 146-153.
Singh RK, Balamurugan V, Hosamani M, Satheesh CC, Rasool TJ, Yadav MP (2006) Comparative polypeptide profiling: isolation, propagation and purification of Indian isolates of buffalo poxvirus. J Anim Vet Adv 5: 260-265.
Singh RK, Hosamani M, Balamurugan V, Bhanuprakash V, Rasool TJ, Yadav MP (2007) Buffalopox: an emerging and re-emerging zoonosis. Anim Health Res Rev 8: 105-114.
Yadav PD, Mauldin MR, Nyayanit DA, Albariño CG, Sarkale P, Shete A, Guerrero LW, Nakazawa Y, Nichol ST, Mourya DT (2020) Isolation and phylogenomic analysis of buffalopox virus from human and buffaloes in India. Virus Res 277: 836-840.
Yadav S, Hosamani M, Balamurugan V, Bhanuprakash V, Singh RK (2010) Partial genetic characterization of viruses isolated from pox-like infection in cattle and buffaloes: Evidence of buffalo pox virus circulation in Indian cows. Arch Virol 155: 255-261.
Go to article

Authors and Affiliations

M.W. Usmani
1
F. Rizvi
1
A. Khatoon
1
M.S. Mahmood
2

  1. Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan, 38000
  2. Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan, 38000
Download PDF Download RIS Download Bibtex

Abstract

Priority wise channelization of resources is the key to successful environmental management, especially when funds are limited. The study in hand has successfully developed an algorithmic criterion to compare hazardous effects of Municipal Solid Waste (MSW) dumping sites quantitatively. It is a Multi Criteria Analysis (MCA) that has made use of the scaling function to normalize the data values, Analytical Hierarchy Process (AHP) for assigning weights to input parameters showing their relevant importance, and Weighted Linear Combination (WLC) for aggregating the normalized scores. Input parameters have been divided into three classes namely Resident’s Concerns, Groundwater Vulnerability and Surface Facilities. Remote Sensing data and GIS analysis were used to prepare most of the input data. To elaborate the idea, four dumpsites have been chosen as case study, namely Old-FSD, New-FSD, Saggian and Mahmood Booti. The comparison has been made first at class levels and then class scores have been aggregated into environmental normalized index for environmental impact ranking. The hierarchy of goodness found for the selected sites is New-FSD > Old-FSD > Mahmood Booti > Saggian with comparative scores of goodness to environment as 36.67, 28.43, 21.26 and 13.63 respectively. Flexibility of proposed model to adjust any number of classes and parameters in one class will be very helpful for developing world where availability of data is the biggest hurdle in research based environmental sustainability planning. The model can be run even without purchasing satellite data and GIS software, with little inaccuracy, using imagery and measurement tools provided by Google Earth.

Go to article

Authors and Affiliations

Khalid Mahmood
Syeda Adila Batool
Muhammad Nawaz Chaudhary
Zia Ul-Haq
Download PDF Download RIS Download Bibtex

Abstract

This study presents the behavior of a single wall carbon nanotube (SWCNT)/water nanofluid for convective laminar flow inside a straight circular pipe heated by a constant heat flux. Five volume fractions of SWCNT were used to investigate their effect on the heat transfer coefficient, Nusselt number, temperature distribution and velocity field in comparison with pure water flow. One model for each property was tested to calculate the effective thermal conductivity, effective dynamic viscosity, and effective specific heat of the SWCNT/water mixture. The models were extracted from experimental data of a previous work. The outcomes indicate that the rheological behavior of SWCNT introduces a special effect on the SWCNT/water properties, which vary with SWCNT volume fraction. The results show an improvement in the heat transfer coefficient with increasing volume fraction of nanoparticles. The velocity of SWCNT/water nanofluid increased by adding SWCNT nanoparticles, and the maximum increase was registered at 0.05% SWCNT volume fraction. The mixture temperature is increased with the axial distance of the pipe but a reduction in temperature distribution is observed with the increasing SWCNT volume fraction, which reflects the effect of thermophysical properties of the mixture.
Go to article

Authors and Affiliations

Farqad Rasheed Saeed
1
Marwah A. Jasim
2
Natheer B. Mahmood
3
Zahraa M. Jaffar
4

  1. Ministry of Science Technology, Directorate of Materials Research, 55509 Al-Jadriya, Iraq
  2. University of Baghdad, College of Engineering, Al-Jadriya,10074 Al-Jadriya, Iraq
  3. Ministry of Education, General Directorate of Baghdad Education, Karkh 2, 10072 Al-Jadriya, Iraq
  4. Al Nahrain University, College of Science, 10072 Al-Jadriya, Iraq
Download PDF Download RIS Download Bibtex

Abstract

Due to its unique features, the metal foam is considered as one of the newest acoustic absorbents. It is a navel approach determining the structural properties of sound absorbent to predict its acoustical behavior. Unfortunately, direct measurements of these parameters are often difficult. Currently, there have been acoustic models showing the relationship between absorbent morphology and sound absorption coefficient (SAC). By optimizing the effective parameters on the SAC, the maximum SAC at each frequency can be obtained. In this study, using the Benchmarking method, the model presented by Lu was validated in MATLAB coding software. Then, the local search algorithm (LSA) method was used to optimize the metal foam morphology parameters. The optimized parameters had three factors, including porosity, pore size, and metal foam pore opening size. The optimization was applied to a broad band of frequency ranging from 500 to 8000 Hz. The predicted values were in accordance with benchmark data resulted from Lu model. The optimal range of the parameters including porosity of 50 to 95%, pore size of 0.09 to 4.55 mm, and pore opening size of 0.06 to 0.4 mm were applied to obtain the highest SAC for the frequency range of 500 to 800 Hz. The optimal amount of pore opening size was 0.1 mm in most frequencies to have the highest SAC. It was concluded that the proposed method of the LSA could optimize the parameters affecting the SAC according to the Lu model. The presented method can be a reliable guide for optimizing microstructure parameters of metal foam to increase the SAC at any frequency and can be used to make optimized metal foam.

Go to article

Authors and Affiliations

Mohammad Javad Jafari
Ali Khavanin
Touraj Ebadzadeh
Mahmood Fazlali
Mohsen Niknam Sharak
Rohollah Fallah Madvari
Download PDF Download RIS Download Bibtex

Abstract

Umbilical hernia is one of the most common problems in young calves. This problem occurs in dairy sector as well as in the local farmers. Present study was conducted to compare outcomes of four different techniques of herniorrhaphy. Twenty four young calves (n=24) were divided in 4 groups (A, B, C, and D) which underwent four different surgical techniques. Group A underwent vicryl plus suture material and pants-over-west technique, Group B underwent mesh application with Dexon suture material by using simple interrupted suture pattern, Group C underwent closed method with Nylon No. 3 suture material by using vertical mattress suture pattern and Group D underwent clamp application method with Silk No. 2 suture material by using simple interrupted suture pattern. The result showed that mesh application method was comparatively better with respect to feed intake, body weight gain and healing time. There was no reoccurrence with non-significant hematological changes (p≤0.05). It is concluded that mesh application method is safer than other three techniques and there are no systemic effects of this surgical intervention on calves’ health.
Go to article

Bibliography


Alibhai SM, Duong-Hua M, Sutradhar R, Fleshner NE, Warde P, Cheung AM, Paszat LF (2009) Impact of androgen deprivation therapy on cardiovascular disease and diabetes. J clin Oncol. 27: 3452.
Amaya D, Christoffersen P, Jacobs K, Vasquez A (2015) Does realized skewness predict the cross-section of equity returns? J Fin Eco 118: 135-167.
Anjum NA, Singh N, Singh MK, Sayeed I, Duarte AC, Pereira E, Ahmad I (2014) Single-bilayer graphene oxide sheet impacts and underly-ing potential mechanism assessment in germinating faba bean (Vicia faba L.). Sci Total En 472: 834-841.
Bellavance A, Bonneville-Hébert A, Desrochers A, Fecteau G (2010) Surgical correction of a diaphragmatic hernia in a newborn calf. Canad Vet J 51: 767.
Crane R, Dickinson M, Popescu IC, Scott T(2011) Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water. Water Res 45: 2931-2942.
Doijode V (2019). Umbilical hernia in ruminant calves: A review. Pharma Innovation 8: 164-167.
Ergul Z, Akinci M, Ugurlu C, Kulacoglu H, Yilmaz K (2012) Prophylactic antibiotic use in elective inguinal hernioplasty in a trauma center. Hernia 16: 145-151.
Fazili M, Buchoo B, Bhattacharyya H, Khan I (2013) Uncomplicated (simple) umbilical hernia in crossbred dairy calves: management with or without surgery. Indian J Vet Surg 34: 111-114.
Gonzalez R, Mason E, Duncan T, Wilson R, Ramshaw BJ (2003) Laparoscopic versus open umbilical hernia repair. JSLS 7: 323.
Hermann DM, Kilic E, Kügler S, Isenmann S, Bähr M (2001) Adenovirus-mediated glial cell line-derived neurotrophic factor (GDNF) ex-pression protects against subsequent cortical cold injury in rats. Neurobiol Dis 8: 964-973.
Jaman MM, Mishra P, Rahman M, Alam MM (2018) Clinical and laboratory investigation on the recurrence of the umbilical hernia after herniorrhaphy in bovine calves. J Bangladesh Agri Uni 16: 464-470.
Kool M, Jones DT, Jäger N, Northcott PA, Pugh TJ, Hovestadt V, Piro RM, Esparza LA, Markant SL, Remke M, Milde T (2014) Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell 25: 393-405.
Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, Nagata K, Harding HP, Ron D (2004) CHOP induces death by pro-moting protein synthesis and oxidation in the stressed endoplasmic reticulum. Gene Dev 18(24): 3066-3077.
Muschaweck U (2003) Umbilical and epigastric hernia repair. Surg Clin 83: 1207-1221.
Riley CB, Cruz AM, Bailey JV, Barber SM, Fretz PB (1996) Comparison of herniorrhaphy versus clamping of umbilical hernias in horses: a retrospective study of 93 cases (1982-1994). Canad Vet J 37: 295.
Steenholdt C, Hernandez J (2004) Risk factors for umbilical hernia in Holstein heifers during the first two months after birth. J Am Vet Med Assoc 224: 1487-1490.
Udegbunam JE, Fjelde KK, Evje S, Nygaard G (2015) On the advection-upstream-splitting-method hybrid scheme: a simple transient-flow model for managed-pressure- -drilling and underbalanced-drilling applications. SPE Dril Comp 30: 98-109.
Wilhelm M, Hölzer J, Dobler L, Rauchfuss K, Midasch O, Kraft M, Angerer J, Wiesmüller G (2009) Preliminary observations on perfluori-nated compounds in plasma samples (1977–2004) of young German adults from an area with perfluorooctanoate-contaminated drinking water. Int J Hyg En Health 212: 142-145.
Go to article

Authors and Affiliations

A. Fatima
1
M. Arif Khan
1
S. Aslam
1
K. Ashraf
2
A. Khalid Mahmood
1
M. Asif
1
S. Shah
1
N. Hussain
1

  1. Department of Veterinary Surgery and Pet Sciences, University of Veterinary and Animal Sciences, Out fall road 54000, Lahore-Pakistan
  2. Department of Parasitology, University of Veterinary and Animal Sciences, Out fall road 54000, Lahore-Pakistan
Download PDF Download RIS Download Bibtex

Abstract

The electronic, optical and thermoelectric properties of zirconia-based MgZrO3 oxide have been studied theoretically at a variant pressure up to 25 GPa. Calculations for the formation energy and tolerance factor reveal the thermodynamic and structural stability of MgZrO3. To tune the indirect band gap from to a direct band gap, the optimized structure of MgZrO3 has been subjected to external pressure up to 25 GPa. The optical properties have been discussed in the form of dielectric constant and refraction that brief us about the dispersion, polarization, absorption, and transparency of the MgZrO3. In the end, the thermoelectric parameters have been analyzed at variant pressure against the chemical potential and temperature. The narrow band gap and high absorption in the ultraviolet region increase the demand of the studied oxide for energy harvesting device applications.

Go to article

Authors and Affiliations

N.A. Noor
M. Rashid
Q. Mahmood
B. Ul Haq
M.A. Naeem
A. Laref
Download PDF Download RIS Download Bibtex

Abstract

The current study was aimed to evaluate the industrial effl uents biodegradation potential of an indigenous microorganism which reduced water pollution caused by these effl uents. In the present study biodegradation of three textile industrial effl uents was performed with locally isolated brown rot fungi named Coniophora puteana IEBL-1. Response Surface Methodology (RSM) was employed under Box Bhenken Design (BBD) for the optimization of physical and nutritional parameters for maximum biodegradation. Quality of treated effl uents was checked by study of BOD, COD and analysis through HPLC. Three ligninolytic enzymes named lignin peroxidase, manganese peroxidase and laccase were also studied during the biodegradation process. The results showed that there was more than 85% biodegradation achieved for all three effl uents with decrease in Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) below the recommended values for industrial effl uent i.e. 80 mg/L for BOD and 220 mg/L for COD after optimization of nutritional parameters in the second stage. Analysis of samples through HPLC revealed the formation of less toxic diphenylamine, 3-methyldiphenylamine and N-methylaniline after treatment. The ligninolytic enzymes assays confi rmed the role of lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase in biodegradation process. Lignin peroxidase with higher activity has more contribution in biodegradation of effl uents under study. It can be concluded through the results that Coniophora buteana IEBL-1 is a potential fungus for the treatment of industrial effluents.

Go to article

Authors and Affiliations

Raja T. Mahmood
Muhammad J. Asad
Muhammad Asgher
Tayyaba Zainab
Mudassar Zafar
Saqib H. Hadri
Imran Ali
Nasib Zaman
Feroza H. Wattoo
Download PDF Download RIS Download Bibtex

Abstract

Dumping sites or landfills are considered as foremost common option of waste management worldwide. Dumping sites, often not lined, represent a potential environmental issue causing a long-term risk to the environment and health. A number of computers model-based studies have described the solid waste collection and its management, but provide little information about the relative contributions regarding environmental impacts of landfilling especially in the context of developing world. The aim of study was to estimate environmental impacts from dumping site by using EASEWASTE model. A case study was carried out at an old and closed dumping site filled with mixed waste without bottom liner, no leachate collection and gas collection. On the basis of the existing dumping site investigation, a Mahmood Booti Dumping Site Scenario was developed, and related data of waste generation & composition was collected and added to assess environmental impacts. The results show that human toxicity via soil (9.14E+09 m3 soil) had the highest potential impact, followed by global warming (8.83E+11 Kg CO2-eq), eco-toxicity in water (6.25E+11 m3 water), and eco-toxicity in soil (6.54E+10 m3 soil). This is mostly caused by leaching of heavy metals from ashes (e.g. residues from roads cleaning and vacuum cleaning bags), batteries, paper and metals. The adopted risk analysis approach uses easily accessible computer aided models, for open dumping sites, appears to be a key tool to assist decision makers in establishing priorities for remediation action.
Go to article

Bibliography

  1. Alam, A., Tabinda, A.B., Qadir, A., Butt, T.E., Siddique, S. & Mahmood A. (2017). Ecological Risk Assessment of an Open Dumping Site at Mehmood Booti Lahore, Pakistan. Environmental Science and Pollution Research, 24(21), pp. 17889–99. DOI:10.1007/s11356-017-9215-y
  2. Alam, A., Chaudhry, M.N., Mahmood, A., Ahmad, S.R., & Butt,T.E. (2021). Development & application of Conceptual Framework Model (CFM) for environmental risk assessment of contaminated lands. Saudi Journal of Biological Sciences, 28(11),pp. 6167–6177. DOI: 10.1016/j.sjbs.2021.06.069 Buratti, C., Barbanera, M., Testarmata, F. & Fantozzi, F. (2015). Life Cycle Assessment of Organic Waste Management Strategies: An Italian Case Study. Journal of Cleaner Production, 89, pp.125–36. DOI:10.1016/j.jclepro.2014.11.012
  3. Diaz, R. & Warith, M. (2006). Life-Cycle Assessment of Municipal Solid Wastes: Development of the WASTED Model. Waste Management, 26(8), pp. 886–901. DOI:10.1016/j.wasman.2005.05.007
  4. Fatima, S.A., Chaudhry, M. N. & Batool, S.A. (2019). Environmental Impacts of the Existing Solid Waste Management System of Northern Lahore. Chinese Journal of Urban and Environmental Studies, 07(03), pp. 1950013. DOI:10.1142/S2345748119500131
  5. Gentil, E. C., Damgaard, A., Hauschild, M., Finnveden, G., Eriksson, O., Thorneloe, S. & Christensen, T. H. (2010). Models for waste life cycle assessment: Review of technical assumptions. Waste Management, 30(12), pp. 2636–2648. DOI:0.1016/j.wasman.2010.06.004
  6. Grzesik, K. (2017). Comparative environmental impact assessment of the landfilling and incineration of residual waste in Krakow. Environment Protection Engineering, 43(4), pp. 135–148. DOI:10.5277/epel70411
  7. Guleria, A. & Chakma, S. (2019). Probabilistic human health risk assessment of groundwater contamination due to metal leaching: A case study of Indian dumping sites. Human and Ecological Risk Assessment: An International Journal, pp. 1–33. DOI:10.1080/10807039.2019.1695193
  8. Jagoda G.S (2018). Municipal waste thermal treatment installations in Poland – a source of energy of environmental importance. Archives of Environmental Protection, 105, pp. 147–156. DOI:10.24425/124370
  9. Laurent, A., Bakas, I., Clavreul, J., Bernstad, A., Niero, M., Gentil, E. & Christensen, T. H. (2014). Review of LCA studies of solid waste management systems – Part I: Lessons learned and perspectives. Waste Management, 34(3), pp. 573–588. DOI:10.1016/j.wasman.2013.10.045
  10. Liu, Y., Sun, W. & Liu, J. (2017). Greenhouse gas emissions from different municipal solid waste management scenarios in China: Based on carbon and energy flow analysis. Waste Management, 68, pp. 653–661. DOI:10.1016/j.wasman.2017.06.020
  11. Maalouf, A. & El-Fadel, M. (2019). Life cycle assessment for solid waste management in Lebanon: Economic implications of carbon credit. Waste Management and Research, 37(1), pp. 14–26. DOI:10.1177/0734242X18815951
  12. Mahmood, A. & Malik, R. N. (2014). Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arabian Journal of Chemistry, 7(1), pp. 91–99. DOI:10.1016/j.arabjc.2013.07.002
  13. Mahmood, K., Batool, S. A., Chaudhary, M. N. & Ul-Haq, Z. (2017). Ranking criteria for assessment of municipal solid waste dumping sites. Archives of Environmental Protection, 43(1), pp. 95–105. DOI:10.1515/aep-2017-0009
  14. Maiti, S. K., De, S., Hazra, T., Debsarkar, A. & Dutta, A. (2016). Characterization of Leachate and Its Impact on Surface and Groundwater Quality of a Closed Dumpsite – A Case Study at Dhapa, Kolkata, India. Procedia Environmental Sciences, 35, pp. 391–399. DOI:10.1016/j.proenv.2016.07.019
  15. Majeed, A., Batool, S. & Chaudhry, M. (2018). Environmental Quantification of the Existing Waste Management System in a Developing World Municipality Using EaseTech: The Case of Bahawalpur, Pakistan. Sustainability, 10(7), pp. 2424. DOI:10.3390/su10072424
  16. Mali, S. T. & Patil, S. S. (2016). Life-cycle assessment of municipal solid waste management. Proceedings of Institution of Civil Engineers: Waste and Resource Management, 169(4), pp. 181–190. DOI:10.1680/jwarm.16.00013
  17. Malinauskaite, J., Jouhara, H., Czajczyńska, D., Stanchev, P., Katsou, E., Rostkowski, P. & Spencer, N. (2017). Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. Energy, 141, pp. 2013–2044. DOI:10.1016/j.energy.2017.11.128
  18. Maria, C., Góis, J. & Leitão, A. (2020). Challenges and perspectives of greenhouse gases emissions from municipal solid waste management in Angola. Energy Reports, 6 (Supplement 1), pp. 364–369. DOI:10.1016/j.egyr.2019.08.074
  19. Marshall, R. E. & Farahbakhsh, K. (2013). Systems approaches to integrated solid waste management in developing countries. Waste Management, 33(4), pp. 988–1003. DOI:10.1016/j.wasman.2012.12.023
  20. Noya, I., Inglezakis, V., González-García, S., Katsou, E., Feijoo, G. & Moreira, M. (2018). Comparative environmental assessment of alternative waste management strategies in developing regions: A case study in Kazakhstan. Waste Management & Research, 36(8), pp. 689–697. DOI:10.1177/0734242X18786388
  21. Parkes, O., Lettieri, P. & Bogle, I. D. L. (2015). Life cycle assessment of integrated waste management systems for alternative legacy scenarios of the London Olympic Park. Waste Management, 40, pp. 157–166. DOI:10.1016/j.wasman.2015.03.017
  22. Popiţa, G. E., Baciu, C., Rédey, Á., Frunzeti, N., Ionescu, A., Yuzhakova, T. & Popovici, A. (2017). Life cycle assessment (LCA) of municipal solid waste management systems in Cluj county, Romania. Environmental Engineering and Management Journal, 16(1), pp. 47–58. DOI:10.30638/eemj.2017.006
  23. Rajaeifar, M. A., Tabatabaei, M., Ghanavati, H., Khoshnevisan, B. & Rafiee, S. (2015). Comparative life cycle assessment of different municipal solid waste management scenarios in Iran. Renewable and Sustainable Energy Reviews, 51, pp. 886-898 DOI:10.1016/j.rser.2015.06.037
  24. Ramachandra, T. V., Bharath, H. A., Kulkarni, G. & Han, S. S. (2018). Municipal solid waste: Generation, composition and GHG emissions in Bangalore, India. Renewable and Sustainable Energy Reviews, 82, pp. 1122–1136. DOI:10.1016/j.rser.2017.09.085
  25. Rana, R., Ganguly, R. & Gupta, A. K. (2019). Life-cycle assessment of municipal solid-waste management strategies in Tricity region of India. Journal of Material Cycles and Waste Management, 21(3), pp. 606–623. DOI:10.1007/s10163-018-00822-0
  26. Sharma, B. K. & Chandel, M. K. (2017). Life cycle assessment of potential municipal solid waste management strategies for Mumbai, India. Waste Management and Research, 35(1), pp. 79–91. DOI:10.1177/0734242X16675683
  27. Singh, A. & Raj, P. (2018). Segregation of waste at source reduces the environmental hazards of municipal solid waste in Patna, India. Archives of Environmental Protection, 44(4), pp. 96–110. DOI:10.24425/aep.2018.122306
  28. Smol, M., Kulczycka, J., Lelek, Ł., Gorazda, K. & Wzorek, Z. (2020). Life Cycle Assessment (LCA) of the integrated technology for the phosphorus recovery from sewage sludge ash (SSA) and fertilizers production. Archives of Environmental Protection, 46(2), pp. 42–52. DOI:10.24425/aep.2020.133473
  29. Szymański, K. & Janowska, B. (2016). Migration of pollutants in porous soil environment. Archives of Environmental Protection, 42(3), pp. 87–95. DOI:10.1515/aep-2016-0026
  30. Thomsen, M., Seghetta, M., Mikkelsen, M. H., Gyldenkærne, S., Becker, T., Caro, D. & Frederiksen, P. (2017). Comparative life cycle assessment of biowaste to resource management systems – A Danish case study. Journal of Cleaner Production, 142, pp. 4050–4058. DOI:10.1016/j.jclepro.2016.10.034
  31. Vimpolšek, B., Jereb, B., Lerher, T., Kutnar, A. & Lisec, A. (2019). Models for life cycle assessment: Review of technical assumptions in collection and transportation processes. Tehnicki Vjesnik, 26(6), pp. 1861–1868. DOI:10.17559/TV-20181209160911
  32. Winkler, J. & Bilitewski, B. (2007). Comparative evaluation of life cycle assessment models for solid waste management. Waste Management, 27(8), pp. 1021–1031. DOI:10.1016/j.wasman.2007.02.023
Go to article

Authors and Affiliations

Asifa Alam
1
Muhammad Nawaz Chaudhry
2
Sajid Rashid Ahmad
3
Aadila Batool
3
Adeel Mahmood
4
Huda Ahmad Al-Ghamdi
5

  1. College of Earth and Environmental Sciences, University of the Punjab, Pakistan
  2. Department of Environmental Science and Policy, Lahore School of Economics, Pakistan
  3. Remote Sensing, GIS and Climatic Research Lab, Department of Space Sciences, University of the Punjab, Pakistan
  4. Department of Environmental Sciences, Government College Women University, Sialkot, Pakistan
  5. Department of Biology, College of Sciences, King Khalid University, Abha, Saudi Arabia
Download PDF Download RIS Download Bibtex

Abstract

Ligninolytic enzymes are employed for the production of second-generation biofuel to minimize fuel crisis. Additionally, they play a crucial role in global carbon cycle and a variety of applications in food, agriculture, paper and textile industries. On a large scale production of ligninolytic enzymes, microorganisms can be cultured on lignocellulosic wastes. In the present study, proximate analysis including acid detergent lignin (ADL), acid detergent cellulose (ADC), acid detergent fi ber (ADF) and acid insoluble ash (AIA) were performed for Platanus orientalis (chinar), Bauhinia variegata (orchid tree), Pinus roxburghii (chir pine), wheat straw and wheat husk. Platanus orientalis was selected as substrate because of higher lignin contents for the production of ligninolytic enzymes by Aspergillus flavus. Solid State Fermentation was used and Response Surface Methodology was employed for optimizing various parameters and enzymes production. Maximum production was achieved at temperature 32°C, fermentation period 120 hours, pH 4.5, inoculums size 3.5 mL, substrate mesh size 80 mm, substrate size 7 g. Maximum purifi cation of laccase, manganese peroxidase (MnP) and lignin peroxidase (LiP) was achieved with 50%, 60% and 40% ammonium sulfate respectively and it was enhanced by gel filtration chromatography. Characterization of enzymes shows that Laccase has 35°C optimum temperature, 4.5 pH, 0.289 mM Km and 227.27 μM/ml Vmax. Manganese peroxidase has 30°C optimum temperature, 5.5 pH, 0.538 mM Km and 203.08 μM/ml Vmax. Lignin peroxidase has 30°C optimum temperature, 3 pH, 2 mM Km and 2000 µM/ml Vmax. Protein concentrations found in crude extracts and partially purified enzymes are respectively: laccase 1.78 and 0.71 mg/ml, MnP 1.59 and 0.68 mg/ml. LiP, 1.70 and 0.69 mg/ml.
Go to article

Authors and Affiliations

Jehangir Khan
1 3
Muahammad Javaid Asad
1
Raja Tahir Mahmood
2
Feeroza Hamid Wattoo
1
Tayyaba Zainab
1
Sidrah Nazir
1
Muhammad Basir Shah
4
Dawood Ahmed
5

  1. University Institute of Biochemistry and Biotechnology, PMAS-Arid Agriculture University Rawalpindi, Pakistan
  2. Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur-10250 (AJK), Pakistan
  3. Department of Biosciences, University of WAH, WAH Pakistan
  4. Department of Plant Breeding & Genetics, Balochistan Agriculture College Quetta, Pakistan
  5. Department of Medical Laboratory Technology, Haripur University, Haripur, KPK, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

Arsenic is one of the most harmful pollutants in groundwater. In this paper, the Nepali bio sand filter (BSF) was modi-fied with different bio-adsorbents, and proved to be an efficient method for arsenic removal from groundwater. Three dif-ferent bio-adsorbents were used to modify the Nepali BSF. Iron nails and biochar BSF, ~96% and ~93% arsenic removal was achieved, within the range of WHO guidelines. In iron nails, BSF and biochar BSF ~15 dm3∙h–1 arsenic content water was treated. In the other two BSFs, rice-husk and banana peel were used, the arsenic removal efficiency was ~83% of both BSFs. Furthermore, the efficiency of rice-husk and banana peel BSFs can be increased by increasing the surface area of the adsorbent or by reducing the flow rate.

Go to article

Bibliography

AGRAFIOTI E., KALDERIS D., DIAMADOPOULOS E. 2014. Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. Journal of Environmental Management. Vol. 133 p. 309–314. DOI 10.1016/j.jenvman.2013.12.007.
AMIN M.N., KANECO S., KITAGAWA T., BEGUM A., KATSUMATA H., SUZUKI T., OHTA K. 2006. Removal of arsenic in aqueous solutions by adsorption onto waste rice husk. Industrial & Engineering Chemistry Research. Vol. 45(24) p. 8105–8110.
ARAIN G.M., ASLAM M., MAJIDANO S.A., KHUHAWAR M.Y. 2007. A preliminary study on the arsenic contamination of underground water of Matiari and Khairpur Districts, Sindh, Pakistan. Journal – Chemical Society of Pakistan. Vol. 29(5) p. 463–467.
ARUNAKUMARA K., WALPOLA B.C., YOON M.-H. 2013. Banana peel: A green solution for metal removal from contaminated waters. Korean Journal of Environmental Agriculture. Vol. 32(2) p. 108–116. DOI 10.5338/KJEA.2013.32.2.108.
ASGHAR U., PERVEEN F., ALVI S., KHAN F., SIDDQUI I., USMANI T. 2006. Contamination of arsenic in public water supply schemes of Larkana and Mirpurkhas Districts of Sind. Journal – Chemical Society of Pakistan. Vol. 28(2) p. 130–135.
BAKSHI S., BANIK C., RATHKE S.J., LAIRD D.A. 2018. Arsenic sorption on zero-valent iron-biochar complexes. Water Research. Vol. 137 p. 153–163. DOI 10.1016/j.watres.2018. 03.021.
HUANG Y., GAO M., DENG Y., KHAN Z.H., LIU X., SONG Z., QIU W. 2020. Efficient oxidation and adsorption of As(III) and As(V) in water using a Fenton-like reagent, (ferrihydrite)-loaded biochar. Science of the Total Environment. Vol. 715, 136957. DOI 10.1016/j.scitotenv.2020.136957.
ISLAM-UL-HAQ M., DEEDAR N., WAJID H. 2007. Groundwater arsenic contamination – A multi directional emerging threat to water scarce areas of Pakistan [online]. 6th International IAHS Groundwater Quality Conference, held in Fremantle, Western Australia, 2–7 December 2007. [Access 15.12.2019]. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.508.2478&rep=rep1&type=pdf
LATA S., SAMADDER S. 2014. Removal of heavy metals using rice husk: A review. International Journal of Environmental Research and Development. Vol. 4(2) p. 165–170.
LAWRINENKO M., LAIRD D.A. 2015. Anion exchange capacity of biochar. Green Chemistry. Vol. 17(9) p. 4628–4636. DOI 10.1039/C5GC00828J.
LEE C.-K., LOW K., LIEW S., CHOO C. 1999. Removal of arsenic(V) from aqueous solution by quaternized rice husk. Environmental Technology. Vol. 20(9) p. 971–978.
LIEN H.-L., WILKIN R.T. 2005. High-level arsenite removal from groundwater by zero-valent iron. Chemosphere. Vol. 59(3) p. 377–386. DOI. 10.1016/j.chemosphere.2004.10.055.
MOHAN D., PITTMAN Jr C.U. 2007. Arsenic removal from water/wastewater using adsorbents – A critical review. Journal of Hazardous Materials. Vol. 142(1–2) p. 1–53. DOI 10.1016/j.jhazmat.2007.01.006. MURTAZA G. M., ALI A. S., YAR M. 2007. A preliminary study on the arsenic contamination of underground water of Matiari and Khairpur Districts, Sindh, Pakistan. Journal of Chemical Society of Pakistan. Vol. 29 p. 463–467.
NGAI T.K., SHRESTHA R.R., DANGOL B., MAHARJAN M., MURCOTT S.E. 2007. Design for sustainable development – Household drinking water filter for arsenic and pathogen treatment in Nepal. Journal of Environmental Science and Health. Part A 42(12) p. 1879–1888.
PEHLIVAN E., TRAN T., OUÉDRAOGO W., SCHMIDT C., ZACHMANN D., BAHADIR M. 2013. Removal of As(V) from aqueous solutions by iron coated rice husk. Fuel Processing Technology. Vol. 106 p. 511–517. DOI 10.1016/j.fuproc.2012.09.021.
TABASSUM R.A., SHAHID M., NIAZI N.K., DUMAT C., ZHANG Y., IMRAN M., BAKHAT H.F., HUSSAIN I., KHALID S. 2019. Arsenic removal from aqueous solutions and groundwater using agricultural biowastes-derived biosorbents and biochar: a column-scale investigation. International Journal of Phytoremediation. Vol. 21(6) p. 509–518.
WHO 2006. Guidelines for drinking-water quality [electronic resource]: incorporating first addendum. Vol. 1, Recommendations. [Access 15.12.2019]. Available at: https://apps.who.int/iris/bitstream/handle/10665/43428/9241546964_eng.pdf
ZHANG W., TAN X., GU Y., LIU S., LIU Y., HU X., LI J., ZHOU Y., LIU S., HE Y. 2020. Rice waste biochars produced at different pyrolysis temperatures for arsenic and cadmium abatement and detoxification in sediment. Chemosphere. Vol. 250, 126268. DOI 10.1016/j.chemosphere.2020.126268.
ZHOU L., HUANG Y., QIU W., SUN Z., LIU Z., SONG Z. 2017. Adsorption properties of nano-MnO2 – biochar composites for copper in aqueous solution. Molecules. Vol. 22(1), 173. DOI 10.3390/molecules22010173.

Go to article

Authors and Affiliations

Ghulam S. Keerio
1
Hareef A. Keerio
2
ORCID: ORCID
Khalil A. Ibuphoto
3
Mahmood Laghari
1
Sallahuddin Panhwar
4
Mashooque A. Talpur
5

  1. Sindh Agriculture University, Department of Energy and Environment, Tandojam, Pakistan
  2. Hanyang University, Department of Civil and Environmental Engineering, Seoul, South Korea
  3. Sindh Agriculture University, Department of Farm Structures, Tandojam, Pakistan
  4. Mehran University of Engineering and Technology, US-Pakistan Centers for Advanced Studies in Water, Jamshoro, Pakistan
  5. Sindh Agriculture University, Department of Irrigation and Drainage, Tandojam, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

Environmental risk assessment is one of the key tools in environmental engineering. This risk assessment can be qualitative or quantitative and it is based on preliminary studies i.e., baseline study for waste disposal sites. Even though the literature exists on baseline study in general, still there is a lack of guidance regarding development of a site-specific baseline study model for a waste disposal site. This study has two-fold aim, firstly, how to develop site-specific baseline study model for a selected dumping site, and secondly, how this site-specific baseline study can support the environmental engineering via mathematical risk estimation. Mahmood Booti Open Dumping Site (MBODS) is selected to demonstrate the development and application of site-specific baseline study model. This is followed by building a framework that shows how the output of the baseline study can lead to environmental engineering via mathematical risk estimation. The paper provides a mechanism of how to construct a bespoke baseline-study model that is readily useable, avoiding procurement of expensive computer software and yet smoothly connecting with the follow-on stages of the risk assessment. The work presented in this paper can be reproduced repeatedly to create site-specific baseline study models for risk assessment of other waste disposal sites in a cost-effective, consistent and cohesive manner.
Go to article

Bibliography

  1. Ahmad, S.R., M.S. Khan, A.Q. Khan, S. Ghazi & Ali S. (2012). Sewage Water Intrusion in the Groundwater of Lahore, its Causes and Protections. Pakistan Journal of Nutrition, 11(5), pp. 484-488.
  2. Alam, A., Tabinda, A. B., Qadir, A., Butt, T. E., Siddique, S., & Mahmood, A. (2017). Ecological Risk Assessment of an Open Dumping Site at Mehmood Booti Lahore, Pakistan. Environmental Science and Pollution Research, 24(21), pp. 17889–17899. DOI:10.1007/s11356-017-9215-y
  3. Alam A., Chaudhry M.N., Ahmad S.R., Batool S.A., Mahmood A., & Al-Ghamdi H.A. (2021a). Application of Easewaste Model for Assessing Environmental Impacts from Solid Waste Landfilling. Archives of Environmental Protection, 47(4), pp. 84 ̶92. DOI:10.24425/Aep.2021.139504
  4. Alam A., Chaudhry M.N., Mahmood A., Ahmad S.R., & Butt T.E. (2021b). Development and Application of Conceptual Framework Model (CFM) for Environmental Risk Assessment of Contaminated Lands. Saudi Journal of Biological Sciences, 28(11), pp. 6167–6177. DOI:10.1016/J.Sjbs.2021.06.069
  5. Alam, A., Chaudhry, M. N., Ahmad, S. R., Ullah, R., Batool, S. A., Butt, T. E., & Mahmood, A. (2022). Application of Landgem Mathematical Model for the Estimation of Gas Emissions From Contaminated Sites. a Case Study of a Dumping Site in Lahore, Pakistan. Environment Protection Engineering, 48(1), pp. 69–81. DOI:10.37190/epe220105
  6. Butt, T. E., Alam, A., Gouda, H. M., Paul, P., & Mair, N. (2017). Baseline Study and Risk Analysis of Landfill Leachate – Current State-of-the-Science of Computer aided approaches. Science of the Total Environment, 580, pp.130–135. DOI:10.1016/j.scitotenv.2016.10.035
  7. Butt, T. E. Entwistle, J. A. Sagoo, A. S. Akram, H. & Massacci, G. (2019). Combined Risk Assessment for Landfill Gas and Leachate – Informing contaminated land reclamation for appropriate construction projects, The 17th International Waste Management and Landfill Symposium, 30 September - 04 October, Sardinia, Italy
  8. Butt, T. E., Javadi, A. A., Nunns, M. A., & Beal, C. D. (2016). Development of a Conceptual Framework of Holistic risk assessment — Landfill as a Particular Type of Contaminated Land. Science of the Total Environment, 569, pp 815–829. DOI:10.1016/j.scitotenv.2016.04.152
  9. Butt, T.E., Gouda, H.M., Baloch, M.I., Paul, P., Javadi, A.A., & Alam, A. (2014). Literature review of baseline study for risk analysis. Environmental International, 63, pp.149–162.
  10. Environment Agency. (2011). Waste and Resources Assessment Tool for the Environment (WRATE), Environment Agency. http://www.environment-agency.gov.uk/research/commercial/102922.aspx,
  11. EPA (Environment Protection Agency) US. (2004 November). EPA’s Multimedia, Multipathway, and Multireceptor Risk Assessment (3MRA) Modelling System – A review by the 3MRA review panel of the EPA science advisory board, EPA-SAB-05-003, EPA.
  12. Environment Agency. (2003). LandSim 2.5 – groundwater risk assessment tool for landfill design. Bristol: Environment Agency.
  13. Gołek-Schild, J. (2018). Municipal Waste Thermal Treatment Installations in Poland – a Source of Energy of Environmental Importance. Zeszyty Naukowe IGSMiE PAN, 105, pp. 147–156. DOI: 10.24425/124370 (in Polish)
  14. Haydar, S., Haider, H., Bari, A. J., & Faragh, A. (2012). Effect of Mehmood Booti Dumping Site in Lahore on Ground Water Quality. Pakistan Journal of Engineering and Applied Sciences, 10, pp 51–56.
  15. Mahmood, Khalid, Batool, S. A., Chaudhry, M. N., & Daud, A. (2015). Evaluating Municipal Solid Waste Dumps using Geographic Information System. Polish Journal of Environmental Studies, 24(2), pp. 879–886.
  16. Mahmood, K., Batool, S. A., & Chaudhry, M. N. (2016). Studying bio-thermal effects at and around MSW dumps using Satellite Remote Sensing and GIS. Waste Management, 55, pp 118–128. DOI:10.1016/j.wasman.2016.04.020
  17. Mahmood, A., Eqan, M., Pervez, S., Tabinda, A.B., Yasar, A., Brindhadevi, K. & Pugazhendhi, A. (2020). COVID-19 and frequent use of hand sanitizers; human health and environmental hazards by exposure pathways. Science of the Total Environment, 742, 140561. DOI:10.1016/j.scitotenv.2020.140561.
  18. Mahmood, A., Malik, R.N., Syed, J.H., Li, J., Zhang, G. (2015a). Dietary exposure and screening-level risk assessment of Polybrominated diphenyl ethers (PBDEs) and Dechloran plus (DP) in wheat, rice, soil and air along two tributaries of the River Chenab, Pakistan. Chemosphere.118, pp. 57–64.
  19. Mahmood, A., Malik, R.N., Li, J., Zhang, G. (2015b). Distribution, congener profile, and risk of polybrominated diphenyl ethers (PBDEs) and dechloran plus (DP) in water and sediment from two tributaries of the Chenab River, Pakistan. Archives of Environmental Contaminations. 68(1), pp. 83-91.
  20. Mahmood, A., Malik, R. N., Li, J., & Zhang, G. (2014a). Levels, distribution pattern and ecological risk assessment of organochlorines pesticides (OCPs) in water and sediments from two tributaries of the Chenab River, Pakistan. Ecotoxicology, 23(9), pp. 1713–1721. DOI:10.1007/s10646-014-1332-5
  21. Mahmood, A., Malik, R.N., Li, J. & Zhang, G. (2014b). Levels, distribution profile and risk assessment of polychlorinated biphenyls (PCBs) in water and sediment from two tributaries of River Chenab, Pakistan. Environmental Science and Pollution Research. 21, pp. 7847–7855.
  22. Muhammad, A. M., & Zhonghua, T. (2014). Municipal Solid Waste and its Relation with Groundwater Contamination in. Resrearch Journal of Applied Sciences, Engineering and Technology, 7(8), pp 1551–1560. DOI:10.19026/rjaset.7.431
  23. Policy and Regulations on SWM– Pakistan (2010). Extract from the report "Converting Waste Agricultural Biomass into Energy Source - Legal Framework and Financing Mechanisms for Waste Agricultural Biomass (WAB)/Solid Waste in District Sanghar, Pakistan”
  24. Scientific Software Group. (2012). HELP model, landfill design – risk assessment models and modelling/modelling software. http://www.geology-software.com/help.html, (Viewed January).
  25. Singh, A. & Raj, P. (2018). Segregation of waste at source reduces the environmental hazards of municipal solid waste in Patna, India. Archives of Environmental Protection, 44(4), pp. 96–110. DOI:10.24425/aep.2018.122306
  26. Smol, M., Kulczycka, J., Lelek, Ł., Gorazda, K. & Wzorek, Z. (2020). Life Cycle Assessment (LCA) of the integrated technology for the phosphorus recovery from sewage sludge ash (SSA) and fertilizers production. Archives of Environmental Protection, 46(2), pp. 42–52. DOI:10.24425/aep.2020.133473
  27. Szymański, K. & Janowska, B. (2016). Migration of pollutants in porous soil environment. Archives of Environmental Protection, 42(3), pp. 87–95. DOI:10.1515/aep-2016-0026
  28. Golder Associates. (2016). GasSim 2.5, Golder Associates, Website: http://www.gassim.co.uk/Technical_Information.html, (Viewed: 16 August)
  29. Landcare Research (Manaaki Whenua Land care Research – a New Zealand Crown Research Institute). (2003). Risk Assessment Model Reviews, http://www.contamsites.landcarere search.co.nz/risk_assessment_models_reviews.htm
  30. RockWare, 2016. RockWorks 17. Rock Ware Inc. (2004–2016), Website: https//www.rockware.com, (Viewed: 16 August).
  31. Robinson, P. (1997). Geo-technical Engineer. Environment Agency, Pers. Commu.
  32. Vrabel, R., Abas, M., Tanuska, P., Vazan, P., Kebisek, M., Elias, M. & Pavliak, D. (2015). Mathematical Approach to Security Risk Assessment. Mathematical Problems in Engineering, 1, pp 1–11. DOI:10.1155/2015/417597
  33. Zhang, Z., Li, K., & Zhang, L. (2016). Research on a Risk Assessment Method considering Risk Association. Mathematical Problems in Engineering, ID 9191360, pp. 1-7. DOI:10.1155/2016/9191360
Go to article

Authors and Affiliations

Asifa Alam
1
Adeel Mahmood
2
M. Nawaz Chaudhry
3
Sajid Rashid Ahmad
1
Noor Ul Safa
2
Huda Ahmed Alghamdi
4
Heba Waheeb Alhamdi
4
Rizwan Ullah
5

  1. College of Earth and Environmental Sciences, University of the Punjab Lahore, Pakistan
  2. Department of Environmental Sciences, GC Women University Sialkot, Pakistan
  3. Lahore Schools of Economics, Lahore, Pakistan
  4. Department of Biology, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia
  5. Department of Zoology, Mirpur University of Science of Technology (MUST), Mirpur Azad Kashmir, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

Soil stabilization techniques are widely used for road construction to improve the properties of the subgrade materials. Using new additives and stabilizers to improve soil properties can reduce the costs of construction and reduce the possible negative effects of these materials on the environment. The purpose of this study was to evaluate the use of a liquid based nano-material called EarthZyme (EZ) and cement kiln dust (CKD) as admixtures to improve the soil properties. A mixture of two soils was used in this study which were prepared from mixing sand soil and fine-grained soil. Compaction tests were performed on the soil that was stabilized with the CKD to determine the density-water content relationships. Unconfined compression tests were also conducted on specimens without treatment, specimen treated with the CKD only, and specimens treated with the CKD and the EZ after curing period for seven days. The obtained results indicated that adding the CKD to the soil decreased the values of the unconfined compression strength (UCS) from 5 to 15 percent. However, adding the CKD reduced the maximum dry density (MDD) from 10 to 12 %. As discussed herein, soil stabilization with the EZ had insignificant effects on the results obtained from the unconfined compression test.
Go to article

Authors and Affiliations

Ahmed Hazim Abdulkareem
1
ORCID: ORCID
Saadoon O. Eyada
2
ORCID: ORCID
Nabeel S. Mahmood
3
ORCID: ORCID

  1. PhD, Civil Engineering Department, University of Anbar, Ramadi, Iraq
  2. MSCE, Civil Engineering Department, Selcuk University, Turkey
  3. PhD, The Department of Dams and Water Resources, University of Anbar, Ramadi, Iraq

This page uses 'cookies'. Learn more