Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Data

Wyniki wyszukiwania

Wyników: 2
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

In this paper, a low power highly sensitive Triple Metal Surrounding Gate (TM-SG) Nanowire MOSFET photosensor is proposed which uses triple metal gates for controlling short channel effects and III–V compound as the channel material for effective photonic absorption. Most of the conventional FET based photosensors that are available use threshold voltage as the parameter for sensitivity comparison but in this proposed sensor on being exposed to light there is a substantial increase in conductance of the GaAs channel underneath and, thereby change in the subthreshold current under exposure is used as a sensitivity parameter (i.e., Iillumination/IDark). In order to further enhance the device performance it is coated with a shell of AlxGa1-xAs which effectively passivates the GaAs surface and provides a better carrier confinement at the interface results in an increased photoabsorption. At last performance parameters of TM-SG Bare GaAs Nanowire MOSFET are compared with TM-SG core-shell GaAs/AlGaAs Nanowire MOSFET and the results show that Core-Shell structures can be a better choice for photodetection in visible region.

Przejdź do artykułu

Autorzy i Afiliacje

S.K. Sharma
A. Jain
B. Raj

Abstrakt

Transparent Conductive Electrode (TCE) is an essential part of the optoelectronic and display devices such as Liquid Crystal Displays (LCDs), Solar Cells, Light Emitting Diodes (LEDs), Organic Light Emitting Diodes (OLEDs) and touch screens. Indium Tin Oxide (ITO) is a commonly used TCE in these devices because of its high transparency and low sheet resistance. However, scarcity of indium and brittle nature of ITO limit its use in future flexible electronics. In order to develop flexible optoelectronic devices with improved performance, there is a requirement of replacing the ITO with a better alternate TCE. In this work, several alternative TCEs including transparent conductive oxides, carbon nanotubes, conducting polymers, metal nanowires, graphene and composites of these materials are studied with their properties such as sheet resistance, transparency and flexibility. The advantage and current challenges of these materials are also presented in this work.

Przejdź do artykułu

Autorzy i Afiliacje

S. Sharma
S. Shriwastava
S. Kumar
K. Bhatt
C. Charu Tripathi

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji