Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Data

Wyniki wyszukiwania

Wyników: 3
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

This paper presents a review of models of the current transport in different kind of heterojunctions (HJs) and their characteristics. In order to effectively deduce the dominant electron transport for the HJs based on ZnO or Zn1−xMgxO layers grown on Si substrate by MBE a comparison is performed – which type of the HJ exhibits better electrical properties. The current–voltage characteristics for the studied HJs were measured within 280–300 K. The transport properties of the HJs are explained in terms of Anderson model with reference to aforementioned current transport models. It is found, that the mechanisms of current transport for all of the studied HJs are similar. At a low forward voltage bias the tunneling current dominates while at medium voltage bias (0.5–1 V) multitunneling capture-emission prevails with the electron trap located at 0.1–0.25 eV below the bottom of a ZnO (Zn1−xMgxO) conduction band. Beyond this voltage bias space charge limited current governs the current transport.

Przejdź do artykułu

Autorzy i Afiliacje

E. Płaczek-Popko
K.M. Paradowska
M.A. Pietrzyk
A. Kozanecki

Abstrakt

The review of peculiarity of growth and experimental results of the magneto-transport measurements (longitudinal magneto-resistance Rxx and the Hall resistance Rxy) over a wide interval of temperatures for several samples of Hg1−xCdxTe (x ≈ 0.13–0.15) grown by MBE is presented in this paper. An amazing temperature stability of the SdH-oscillation period and amplitude is observed in the entire temperature interval of measurements up to 50 K. Moreover, the quantum Hall effect (QHE) behaviour of the Hall resistance was shown in the same temperature interval. These peculiarities of the Rxx and Rxy for strained thin layers are interpreted using quantum Hall conductivity (QHC) on topologically protected surface states (TPSS). In the case of not strained layers it is assumed that the QHC on the TPSS contributes also to the conductance of the bulk samples. The experimental results on magneto-transport (QHC and SdH) obtained for the strained 100 nm thickness Hg1−xCdxTe layer are interpreted on the basis of the 8 × 8 kp model and an advantage of the Hg1−xCdxTe as topological insulators is shown. This article is an expanded version of the scientific reports presented at the International Conference on Semiconductor Nanostructures for Optoelectronics and Biosensors 2016 ICSeNOB2016, May 22–25, 2016, Rzeszow, Poland.

Przejdź do artykułu

Autorzy i Afiliacje

G. Tomaka
J. Grendysa
M. Marchewka
P. Śliż
C.R. Becker
A. Stadler
E.M. Sheregii

Abstrakt

In this study, an irreversible thermodynamic model for the high temperature proton exchange membrane fuel cell taking electrochemical and heat losses into account is developed. The power density, exergy destruction index, exergy sustainability index and ecological coefficient of performance is derived. The model was validated against experimental data. The influence of parameters on the irreversible thermodynamic performance of high temperature proton exchange membrane fuel cell are considered. The multi-objective particle swarm optimization algorithm is utilized to optimize the power, ecological coeffi-cient of performance and efficiency. The population distribution of the optimization variables was analyzed using a three-dimensional Pareto frontier analysis, and results show that the maximum power density, maximum efficiency and maximum ecological coefficient of performance being 6340 W/m2, 64.5% and 1.723 respectively, which are 43.28%, 3.7% and 17.8% higher than the preoptimized high temperature proton exchange membrane fuel cell. Moreover, the nondominated sorting genetic algorithm II and simulated annealing algorithm have been chosen versus multi-objective particle swarm optimization algorithm for making the optimization comparative analysis.
Przejdź do artykułu

Autorzy i Afiliacje

Yuting Wang
1
Zheshu Ma
1
Yongming Gu
1
Qilin Guo
1

  1. Nanjing Forestry University, College of Automobile & Traffic Engineering, 210037, China

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji