Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2936
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

As a wafer cleaning process, RCA (Radio Corporation of America) cleaning is mainly used. However, RCA cleaning has problems such as instability of bath life, re-adsorption of impurities and high-temperature cleaning. Herein, we tried to improve the purity of silicon wafers by using a chelating agent (oxalic acid) to solve these problems. Compounds produced by the reaction between the cleaning solution and each metal powder were identified by referring to the pourbaix diagram. All metals exhibited a particle size distribution of 10 μm or more before reaction, but a particle size distribution of 500 nm or less after reaction. In addition, it was confirmed that the metals before and after the reaction showed different absorbances. As a result of elemental analysis on the surface of the reclaimed silicon wafer cleaned through such a cleaning solution, it was confirmed that no secondary phase was detected other than Si.
Go to article

Bibliography

[1] K. Liu, D. Zuo, X.P. Li, M. Rahman, J. Vac. Sci. Technol. B: Microelectronics and Nanometer Structures 27 (3), 1361-1366 (2009).
[2] M. Kim, K. Ryu, K.J. Lee, J. Korean Powder Metall. Inst. 28 (1), 25-30 (2021)
[3] W. Kern, J. Electrochem. Soc. 137 (6), 1887-1892 (1990).
[4] O .J. Anttila, J. Electrochem. Soc. 139 (4), 1180-1185 (1992).
[5] K. Saga, J. Electrochem. Soc. 143 (10), 3279-3284 (1996).
[6] M. Itano, F.W. Kern, M. Miyashita, T. Ohmi, IEEE Trans. Semicond. Manuf. 6 (3), 258-267 (1993).
[7] W. Kern, Handbook of silicon wafer cleaning technology, United States 2018.
[8] M. Matsuo, T. Takahashi, H. Habuka, A. Goto, Mat. Sci. Semicon. Proc. 110, 104970 (2020).
[9] G .W. Gale, D.L. Rath, E.I. Cooper, S. Estes, H.F. Okorn-Schmidt, J. Brigante, R. Jagannathan, G. Settembre, E. Adams, J. Electrochem. Soc. 148 (9), G513-G516 (2001).
[10] D. Liu, Z. Li, Y. Zhu, Z. Li, R. Kumar, Carbohydr. Polym. 111, 469-476 (2014).
[11] J.B. Fein, Geology 19 (10), 1037-1040 (1991).
[12] N. Zubair, K. Akhtar, Trans. Nonferrous Met. Soc. China 29 (1), 143-156 (2019).
[13] D. Nansheng, W. Feng, L. Fan, L. Zan, Chemosphere 35 (11), 2697-2706 (1997).
[14] A.K. Sharma, A. Singh, R.K. Mehta, S. Sharma, S.P. Bansal, K.S. Gupta, Int. J. Chem. Kinet. 43 (7), 379-392 (2011).
[15] M.Z. Mubarok, J. Lieberto, Procedia Earth Planet. Sci. 6, 457-464 (2013).
[16] D. Rai, B.M. Sass, D.A. Moore, Inorg. Chem. 26 (3), 345-349 (1987).
[17] C.H. Bamford, R.G. Compton, C.F.H. Tipper, Reactions of metallic salts and complexes, and organometallic compounds, Elsevier 1972.
Go to article

Authors and Affiliations

Keunhyuk Ryu
1
Myungsuk Kim
1
Jaeseok Roh
1
ORCID: ORCID
Kun-Jae Lee
1
ORCID: ORCID

  1. Dankook University, Department of Energy Engineering, Cheonan 31116, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Welding of AISI H13 tool steel which is mainly used in mold making is difficult due to the some alloying elements and it high hardenability. The effect filler metal composition on the microstructural changes, phase evolutions, and hardness during gas tungsten arc welding of AISI H13 hot work tool steel was investigated. Corrosion resistance of each weld was studied. For this purpose, four filler metals i.e. ER 312, ER NiCrMo-3, ER 80S, and 18Ni maraging steel were supplied. Potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) were used to study the corrosion behavior of weldments. It was found the ER 80S weld showed the highest hardness owing to fully martensitic microstructure. The hardness in ER 312 and ER NiCrMo3 weld metals was noticeably lower than that of the other weld metals in which the microstructures mainly consisted of austenite phase. The results showed that the corrosion rate of ER 312 weld metal was lower than that other weld metals which is due to the high chromium content in this weld metal. The corrosion rate of ER NiCrMo-3 was lower than that of 18Ni maraging weld. The obtained results from EIS tests confirm the findings of potentiodynamic polarization tests.
Go to article

Bibliography

[1] B. Uddeholm, Bohler-Uddeholm H13 tool steel, 2013.
[2] J . Wang, Z. Xu, and X. Lu, J. Mater. Eng. Perform. 29 (3), 1849- 1859 (2020).
[3] G .A. Roberts, R. Kennedy, G. Krauss, Tool steels, 1998 ASM international.
[4] S. Jhavar, C.P. Paul, N.K. Jain, Eng. Fail. Anal. 34, 519-535 (2013).
[5] R .A. Meaquita, C.A. Barbosa, Proceedings of Machining, 2004 Sao Paulo.
[6] R .A. Mesquita, R. Schneider, Exacta. 8 (3), 307-318 (2010).
[7] W.T. Preciado, C.E.N. Bohorquez, Mater. Process. Technol. 179 (1-3), 244-250 (2006).
[8] A. Skumavc, J. Tušek, M. Mulc, D. Klobčar, Metalurgija. 53 (4), 517-520 (2014).
[9] J . Chen, S.-H. Wang, L. Xue, Mater. Sci. 47 (2), 779-792 (2012).
[10] A. Košnik, J. Tušek, L. Kosec, T. Muhič, Metalurgija. 50 (4), 231-234 (2011).
[11] S. Thompson, Handbook of mould: Tool and die repair welding, 1999 Elsevier.
[12] T. Branza, A. Duchosal, G. Fras, F. Deschaux-Beaume, P. Lours, Mater. Process.
[13] P. Peças, E. Henriques, B. Pereira, M. Lino, M. Silva, Build Futur. Innov. (2006).
[14] L.E.E. Jae-Ho, J. Jeong-Hwan, J.O.O. Byeong-Don, Y.I.M. Hong- Sup, M. Young-Hoon, Trans. Nonferrous Met. Soc. China. 19, 284-287 (2009).
[15] S.U.N. Yahong, S. Hanaki, H. Uchida, H. Sunada, N. Tsujii, Mater. Sci. Technol. 19, 91-93 (2009).
[16] R .H.G. e Silva, L.E. dos Santos Paes, C. Marques, K.C. Riffel, M.B. Schwedersky, J. Brazilian Soc. Mech. Sci. Eng. 41 (1), 38 (2019).
[17] K . Somlo, G. Sziebig, Ifac-papersonline. 52 (22), 101-107 (2019). [18] J .-L. Desir, Eng. Fail. Anal. 8 (5), 423-437 (2001).
[19] J .C. Lippold, Welding metallurgy and weldability, 2015 Wiley Online Library.
[20] J .R. Davis, Corrosion of weldments, 2006 ASM international.
[21] R .G. Buchheit Jr, J.P. Moran, G.E. Stoner, Corrosion. 46 (8), 610- 617 (1990).
[22] K .A. Chiang, Y.C. Chen, Mater. Lett. 59 (14-15), 1919-1923 (2005).
[23] C.F.G. Baxter, J. Irwin, R. Francis, The Third International Offshore and Polar Engineering Conference, 1993.
[24] M . Liljas, Glas. Scotland, Keynote Pap. V. 2, 13-16 (1994).
[25] J . Lippol, J.K. Damian, Welding metallurgy and weldability of stainless steels, 2005 John Wiley & Sons, New York.
[26] J .C. Lippold, S.D. Kiser, J.N. DuPont, Welding metallurgy and weldability of nickel-base alloys, 2011 John Wiley & Sons.
[27] R .M. Rasouli I, Metall. Eng. 21 (1), 54-71 (2018). [28] S. Kou, Welding metallurgy, 2003 John Wiley & Sons, New Jersey.
[29] M . Stern, A.L. Geary, Electrochem. Soc. 104 (1), 56-63 (1957).
[30] Y. Zhang, J. You, J. Lu, C. Cui, Y. Jiang, X. Ren, Surf. Coatings Technol. 204 (24), 3947-3953 (2010).
[31] E .E. Stansbury, R.A. Buchanan, Fundamentals of electrochemical corrosion, 2000 ASM international.
[32] M . Yeganeh, M. Saremi, Prog. Org. Coatings. 79, 25-30 (2015).
[33] P. Langford, J. Broomfield, Constr. Repair. 1 (2), (1987).
[34] A. Aguilar, A.A. Sagüés, R.G. Powers, Corrosion Rates of Steel in Concrete, 1990 ASTM International.
Go to article

Authors and Affiliations

Sadegh Varmaziar
1
ORCID: ORCID
Hossein Mostaan
1
ORCID: ORCID
Mahdi Rafiei
2
ORCID: ORCID
Mahdi Yeganeh
3
ORCID: ORCID

  1. Faculty of Engineering, Department of Materials and Metallurgical Engineering, Arak University, Arak 38156-8-8349, Iran
  2. Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
  3. Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Download PDF Download RIS Download Bibtex

Abstract

Spark Plasma Sintering (SPS) is identified as a suitable technique to prepare the alumina titanium carbide composite to overcome the difficulty in fabricating it through other consolidation method. The present work focuses on the fabrication and characterization of a series of titanium carbide reinforced alumina ceramic composites using a spark plasma sintering process. The titanium carbide reinforcement on the alumina matrix is varied between 20 and 35 wt.%, in order to improve the electrical conductivity and fracture toughness of the composites. The particle size of the starting powders at received and ball milled conditions was analysed through Particle size analyser and Scanning Electron Microscope (SEM). Microstructural analysis revealed that the TiC reinforcement is uniformly dispersed in the sintered composite. XRD report showed that α-alumina and titanium carbide were the two dominant phases without the formation of any reaction phases. Further, the correlation between mechanical and physical properties of the prepared composite was investigated as a function of TiC. Various fracture toughening indicators like crack deflection, bridging and branching were analysed by Vicker’s indentation method. Electrical resistivity of the sintered compact decreases proportionally with the increase in titanium carbide constituents. Maximum density (98.80%) and hardness (20.56 GPa) was obtained for 30 wt. % reinforced composite. Almost 40% improvement in fracture toughness is noted for 25 wt. % reinforced composite. This work demonstrates the synthesis and fabrication of alumina titanium carbide composites at low temperature via SPS resulted in obtaining an intact compact with improved mechanical and electrical properties.
Go to article

Bibliography

[1] Y. Tamura, B.M. Moshtaghioun, D.G. Garcia, A.D. Rodriguez, Ceram. Int. 43, 658-663 (2017).
[2] Y. Wang, F. Luo, W. Zhou, D. Zhu, J. Electron. Mater. 46 (8), 5225-5231 (2017).
[3] G.M. Asmelash, O. Mamat, F. Ahmad, A.K.P. Rao, J. Adv. Ceram. 4 (3), 190-198 (2015).
[4] S. Ghanizadeh, S. Grasso, P. Ramanujam, B. Vaidhyanathan, J. Binner, P. Brown, J. Goldwasser, Ceram. Int. 43, 275-281 (2017).
[5] E .S. Gevorkyan, M. Rucki, A.A. Kagramanyan, V.P. Nerubatskiy, Int. J. Refract. Met. H. 89, 336-339 (2019).
[6] C. Sun, Y. Li, Y. Wang, L. Zhu, Q. Jiang, Y. Miao, X. Chen, Ceram. Int. 40, 12723-12728 (2014).
[7] U .S. Radloff, F. Kern, R. Gadow, J. Eur. Ceram. Soc. 38, 4003- 4013 (2018).
[8] C. Tuzemen, B. Yavas, I. Akin, O. Yucel, F. Sahin, G. Goller, J. Alloy. Compd. 781, 433-439 (2019).
[9] I. Farias, L. Olmos, O. Jimenez, M. Flores, A. Braem, J. Vleugels, Trans. Nonferrous Met. Soc. China 29, 1653-1664 (2019).
[10] L.M. Luo, J.B. Chen, H.Y. Chen, G.N. Luo, X.Y. Zhu, J.G. Cheng, X. Zan, Y.C. Wu, Fusion Eng. Des. 90, 62-66 (2015).
[11] J . Zhang, L. Wang, W. Jiang, L. Chen, Mat. Sci. Eng. A. 487, 137-143 (2008).
[12] H . Istgaldi, M.S. Asl, P. Shahi, B. Nayebi, Z. Ahmadi, Ceram. Int. (2019). DOI: https://doi.org/10.1016/j.ceramint.2019.09.287
[13] A.S. Namini, Z. Ahmadi, A. Babapoor, M. Shokouhimehr, M.S. Asl, Ceram. Int. 45, 2153-2160 (2019).
[14] D. Chakravarthy, S. Roy, P.K. Das, Bull. Mater. Sci. 28, 3, 227-231 (2005).
[15] L. Wang, X. Shu, X. Lu, Y. Wu, Y. Ding, S. Zhang, Mater. Lett. 196, 403-405 (2017).
[16] L. Cheng, Z. Xie, G. Liu, W. Liu, W. Xue, J. Eur. Ceram. Soc. 32, 3399-3406 (2012).
[17] N. Shanbhog, K. Vasanthakumar, N. Arunachalam, S.R. Bakshi, Int. J. Refract. Met. H. 84, 104979-104988 (2019).
[18] B.L. Madej, D. Garbiec, M. Madej, Vacuum. 164, 250-255 (2019).
[19] Y.F. Zhou, Z.Y. Zhao, X.Y. Tan, L.M. Luo, Y. Xu, X. Zan, Q. Xu, K. Tokunaga, X.Y. Zhu, Y.C. Wu, Int. J. Refract. Met. H. 79, 95- 101 (2019).
[20] P. Zhanga, C. Chena, Z. Chena, C. Shena, P. Fenga, Vacuum 164, 286-292 (2019).
[21] C. Luo, Y. Wang, J. Xu, G. Xu, Z. Yan, J. Li, H. Li, H. Lu, J. Suo, Int. J. Refract. Met. H. 81, 27-35 (2019).
[22] B.B. Bokhonov, M.A. Korchagin, A.V. Ukhina, D.V. Dudinaa, Vacuum, 157, 210-215 (2018).
[23] A. Teber, F. Schoenstein, F. Tetard, M. Abdellaoui, N. Jouini, Int. J. Refract. Met. H. 30, 64-70 (2012).
[24] M . Demuynck, J.P. Erauw, O.V. Biest, F. Delannay, F. Cambier, J. Eur. Ceram. Soc. 32, 1957-1964 (2012).
[25] Y.W. Kim, J.G. Lee, J. Am. Ceram. Soc. 12, 1333-37 (1989).
[26] R .A. Cutler, A.C. Hurford, Mat. Sci. Eng. A., 105/106, 183-192 (1988).
[27] J .H. Zhang, T.C. Lee, W.S. Lau, J. Mater. Process. Tech. 63, 908- 912 (1997).
[28] Z. Fu, R. Koc, Ceram. Int. 43, 17233-17237 (2017).
[29] R . Kumar, A.K. Chaubey, S. Bathula, K.G. Prashanth, A. Dhar, J. Mater. Eng. Perform. 27, 997-1004 (2018).
[30] O . Guillon, J.G. Julian, B. Dargatz, T. Kessel, G. Schierning, J. Rathel, M. Herrmann. Adv. Eng. Mater. 16, 830-849 (2014).
[31] D. Zhang, L. Ye, D. Wang, Y. Tang, S. Mustapha, Y. Chen, Composites: Part A. 43, 1587-1598 (2012).
[32] T. Fujii, K. Tohgo, P.B. Putra, Y. Shimamura, J. Mech. Behav. Biomed. 19, 45-53 (2019).
[33] T. Thomas, C. Zhang, A. Sahu, P. Nautiyal, A. Loganathan, T. Laha, B. Boel, A. Agarwal, Mat. Sci. Eng. A. 728, 45-53 (2018).
[34] L.K. Singh, A. Bhadauria, T. Laha, J. Mater. Res. Technol. 8, 503-512 (2019).
[35] T. Fujii, K. Tohgo, M. Iwao, Y. Shimamura, J. Alloy. Compd. 744, 759-768 (2018).
[36] S. Xiang, S. Ren, Y. Liang, X. Zhang, Mat. Sci. Eng. A. 768, 138459 (2019).
[37] M .R. Akbarpour, S. Alipour, Ceram. Int. 43, 13364-13370 (2017).
[38] W.R. Ilaham, L.K. Singh, T. Laha, Fusion Eng. Des. 138, 303-312 (2019).
[39] U . Sabu, B. Majumdar, Bhaskar P. Saha & D. Das, Trans. Ind. Ceram. Soc. 77, 1-7 (2018)
[40] L. Zhang, R.V. Koka, Mater. Chem. Phys. 57, 23-32 (1998).
[41] J . Langer, M.J. Hoffmann, O. Guillon, Acta. Mater. 57, 5454-5465 (2009).
[42] A. Babapoor, M.S. Asl, Z. Ahmadi, A.S. Namini, Ceram. Int. 44, 14541-14546 (2018).
[43] F. Balima, A. Largeteau, Scr. Mater. 158, 20-23 (2019).
[44] W.H. Lee, J.G. Seong, Y.H. Yoon, C.H. Jeong, C.J.V. Tyne, H.G. Lee, S.Y. Chang, Ceram. Int. 45, 8108-8114 (2019).
Go to article

Authors and Affiliations

G. Selvakumar
1
S. Prakash
1
K. Rajkumar
1

  1. Department of Mechanical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
Download PDF Download RIS Download Bibtex

Abstract

In this study, Ni20Cr coatings were obtained by cold spraying on an aluminum alloy 7075 substrate. The obtained coatings were characterized by a uniform microstructure and low porosity. The sprayed coating has the same phase composition as the powder used. Next, the cold sprayed coatings were heat treated using a TRUMPF TLF 6000 TURBO (4 kW) CO2 laser. The laser surface melting of the coatings resulted in the formation of a columnar structure and an improvement in their mechanical properties. The Ni20Cr cold sprayed coatings after additional laser melting showed lower porosity and an increase in microhardness and Young`s modulus.
Go to article

Bibliography

[1] L. Pawlowski, The science and engineering of thermal spray coatings, J. Willey & Sons Ltd, Chichester, II ed. (2008).
[2] D. Tejero-Martin, M. Rezvani Rad, A. McDonald, T. Hussain, J. Therm. Spray Technol. 28 (4), 598-644 (2019).
[3] G. Di Girolamo, E. Serra, Thermally Sprayed Nanostructured Coatings for Anti-wear and TBC Applications: State-of-the-art and Future Perspectives, Anti-Abrasive Nanocoatings, Ed., Woodhead Publishing Limited, 513-541 (2015). DOI: https://doi.org/10.1016/B978-0-85709-211-3.00020-0
[4] A . Góral, L. Lityńska-Dobrzyńska, W. Żórawski, K. Berent, J. Wojewoda-Budka, Arch. Metall. Mater. 58 (2), 335-339 (2013).
[5] C.M. Kay, J. Karthikeyan, High Pressure Cold Spray, ASM International 2016.
[6] H. Assadi, H. Kreye, F. Gartner, T. Klassen, Acta Materialia 116, 382-407 (2016).
[7] M.R. Rokni, S.R. Nutt, C.A. Widener, G.A. Crawford, V.K. Champagne, Springer. 5, 143-192 (2018).
[8] A . Góral, W. Żórawski, P. Czaja, L. Lityńska-Dobrzyńska, M. Makrenek, S. Kowalski, J. Mater. Res. 110, 49-59 (2019), DOI: 10.3139/146.111698
[9] Q. Wang, N. Birbilis, X. Zahang, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 43, 1395-1399 (2012),
[10] C.W. Ziemian, M.M. Sharma, B.D. Bouffard, T. Nissly, T. Eden, Mater. Des. 54, 212-221(2014)
[11] L. Ajdelsztajn, B. Jodoin, J.M. Schoenung, Surf. Coat. Tech. 201, 1166-1172 (2006).
[12] M. Scendo, W. Żórawski, A. Góral, Metals 9, 890-910 (2019). DOI: 103390/met9080890
[13] E. Qin, B. Wang, W. Li, Ma, H. Lu, S. Wu, J. Therm. Spray Technol. 28, 1072-1080 (2019).
[14] D. Kong, B. Zhao, J. Alloys Compd. 705, 700-707 (2017).
[15] T . Otmianowski, B. Antoszewski, W. Żórawski, Proceesing of 15th International Thermal Spray Conference, 25-29 May, Nice, France, 1333-1336 (1998).
[16] B . Antoszewski, P. Sęk, Proc. SPIE 8703, 8703-8743 (2012). DOI: https://doi.org/10.1117/12.2015240
[17] P. Sęk, Open Eng. 10, 454-461 (2020).
[18] M. Tlotleng, M. Shukla, E. Akinlabi, S. Pityana, Surface Engineering Techniques and Application: Research Advancements 177- 221 (2014). DOI: https://doi.org/10.4018/978-1-4666-5141-8.ch006
[19] D.K. Christoulis, M. Jeandin, E. Irissou, J.G. Legoux, W. Knapp, Laser-Assisted Cold Spray (LACS) InTech. 59-96 (2012). DOI: https://doi.org/10.5772/36104
[20] S.B. Mishra, K. Chandra, S. Prakash, J. Tribol. 128, 469-475 (2006) DOI: 10.1115/1.2197843
[21] A. Mangla, V. Chawla, G. Singh, Int. J. Eng. Sci. Res. Technol. 6, 674-686 (2017).
[22] N. Abu-Warda, A.J. López, M.D. López, M.V. Utrilla, Surf. Coat. Tech. 381, 125133 (2020).
[23] EN ISO 6507-1: 2018.
[24] https://www.scribd.com/document/423195204/DSMTS-0109-2- Ni20Cr-Powders
Go to article

Authors and Affiliations

D. Soboń
1
ORCID: ORCID

  1. Kielce University of Technology, 7 Tysiąclecia Państwa Polskiego Av., 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study, the surface roughness of galvannealed low carbon Al-killed and Ti-Nb stabilized interstitial free steels was investigated using the industrial galvannealing process parameters. The iron content of the coatings was also analysed to establish a relationship with the surface roughness and coating composition. The surface roughness displayed an exponential behaviour with increasing of annealing time at each annealing temperature in both steel coatings, which was in an increasing order in the galvannealed low carbon Al-killed steel coating, whereas it was a reverse order in the galvannealed Ti-Nb stabilized interstitial free steel coating. The craters were observed on the galvannealed coatings resulting in high surface roughness. Increasing the iron content of the coatings leads to a reduction in the surface roughness with δ1k phase.
Go to article

Bibliography

[1] T. Irie, Developments of zinc-based coatings for automotive sheet steel in Japan, in: G. Krauss, D. Matlock (Eds.), Zinc-Based Steel Coating Systems: Metallurgy and Performance, TMS/AIME, Warrendale, PA, USA (1990).
[2] Y. Hisamatsu, Proc. 1st Int. Conf. on Zinc and Zinc Alloy Coated Steel Sheet (Galvatech’89), ISIJ, Tokyo, Japan (1989).
[3] A.R. Marder, Prog. Mater. Sci. 45, 191-271 (2000).
[4] N. Bandyopadhyay, G. Jha, A.K. Singh, T.K. Rout, N. Rani, Surf. Coat. Tech. 200, 4312-4319 (2006).
[5] M .A. Ghoniem, K. Lohberg, Metall. 26 (10), 1026-1030 (1972).
[6] O . Kubaschewski, Iron-Binary Phase Diagrams, Springer-Verlag Berlin Heidelberg GmbH, Aachen, Germany (1982).
[7] J. Nakano, D.V. Malakhov, G.R. Purdy, Calphad, 29 (4), 276-288 (2005).
[8] R . Kainuma, K. Ishida, Tetsu To Hagane 91, 349-355 (2005).
[9] G. Beranger, G. Henry, G. Sanz, The Book of Steel, Lavoisier Publishing with the participation of SOLLAC-Usinor Group, Paris, France (1996).
[10] T. Nakamori, Y. Adachi, T. Toki, A. Shibuya, ISIJ Int. 36 (2), 179-186 (1996).
[11] I . Hertveldt, B.C. De Cooman, J. Dilewijns, 39th MWSP Conference Proceedings, ISS-AIME, ISS, Indianapolis, IN, USA (1997).
[12] M . Chida, H. Irie, U.S. Patent Number 10,597,764 B2 (2020).
[13] S. Sriram, V. Krishnardula, H. Hahn, IOP Conf. Ser-Mat. Sci. 418 (1), 012094 (2018).
[14] M . Sakurai, J.I. Inagaki, M. Yamashita, Tetsu-to-Hagane, 89 (1), 18-22 (2003).
[15] S. Sepper, P. Peetsalu, M. Saarna, Agron. Res., Special Issue 1, 229-236 (2011).
[16] K .I.V. Vandana, M. Rajya Lakshmi, Int. J. Innov. Eng. Tech. 5 (2), 359-363 (2015).
[17] M . Urai, M. Arimura, M. Terada, M. Yamaguchi, H. Sakai, S. Nomura, Tetsu To Hagane 43 (19), 27-30 (1996).
[18] C.S. Lin. M. Meshii, C.C. Cheng, ISIJ Int. 35 (5), 503-511 (1995).
[19] F.E. Goodwin, T. Indian I. Metals 66, 5-6 (2013).
[20] G. Moréas, Y. Hardy, Rev. Met. Paris 98 (6), 599-606 (2001).
[21] A. van der Heiden, A.J.C. Burghardt, W. van Koesveld, E.B. van Perlstein, M.G.J. Spanjers, Galvanneal Microstructure and Anti- Powdering Process Windows, in: A.R. Marder (Ed.), The Physical Metallurgy of Zinc Coated Steel, TMS/AIME Conf. Proc., San Francisco, CA, USA (1994).
[22] P .M. Hale, R.N. Wright, F.E. Goodwin, SAE Technical Paper 2001-01-0084, 2001.
[23] J. Inagaki, M. Sakurai, T. Watanabe, ISIJ Int. 35 (11), 1388-1393 (1995).
[24] S.P. Carless, G.A. Jenkins, V. Randle, Ironmak. Steelmak. 27 (1), 69-74 (2000).
Go to article

Authors and Affiliations

Candan Sen Elkoca
1
ORCID: ORCID
Bulent Ekmekci
2
ORCID: ORCID
Oktay Elkoca
3
ORCID: ORCID

  1. Bulent Ecevit University, Alapli Vocational High School, Zonguldak 67850, Turkey
  2. Bulent Ecevit University, Department of Mechanical Engineering, Zonguldak 67100, Turkey
  3. Duzce University, Department of Mechanical Engineering, Duzce 81620, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The influence of nano dispersion on the thermoelectric properties of Bi2Te3 was actively investigating to wide-spread thermoelectric applications. Herein this report, we have systematically controlled the microstructure of Bi0.5Sb1.5Te3 (BST) alloys through the incorporation of carbon nanofiber (CNF), and studied their effect on thermoelectric properties, and mechanical properties. The BST/x-CNF (x-0, 0.05, 0.1, 0.2 wt.%) composites powder was fabricated using high energy ball milling, and subsequently consolidated the powder using spark plasma sintering. The identification of CNF in bulk composites was analyzed in Raman spectroscopy and corresponding CNF peaks were recognized. The BST matrix grain size was greatly reduced with CNF dispersion and consistently decreased along CNF percentage. The electrical conductivity was reduced and Seebeck coefficient varied in small-scale by embedding CNF. The thermal conductivity was progressively diminished, obtained lattice thermal conductivity was lowest compared to bare sample due to induced phonon scattering at interfaces of secondary phases as well as highly dense fine grain boundaries. The peak ZT of 0.95 achieved for 0.1 wt.% dispersed BST/CNF composites. The Vickers hardness value of 101.8 Hv was obtained for the BST/CNF composites.
Go to article

Bibliography

[1] J.R. Szczech, J.M. Higgins, S. Jin, Enhancement of the thermoelectric properties in nanoscale and nanostructured materials, J. Mater. Chem. 21 (12), 4037-4055 (2011).
[2] Y. Pei, X. Shi, A. Lalonde, H. Wang, L. Chen, G.J. Synder, Convergence of electronic bands for high performance bulk thermoelectrics, Nature 473, 66-69 (2011).
[3] R . Deng, X. Su, S. Hao, Z. Zheng, M. Zhang, H. Xoe, W. Liu, Y. Yan, C. Wolverton, C. Uher, M.G. Kanatzidis, X. Tang, High thermoelectric performance in Bi0.46Sb1.54Te3 nanostructured with ZnTe, Energy Environ. Sci. 11, 1520-1535 (2018).
[4] H . Mamur, M.R.A Bhuiyan, F. Korkmaz, M. Nil, A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications, Renew. Sust. Energ. Rev. 82, 4159-4169 (2018).
[5] I . Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Mahajan, R. Venkatasubramanian, On-chip cooling by superlattice-based thin-film thermoelectrics, Nat. Nanotechnol. 4 (4), 235-238 (2009).
[6] Z. Xiao, X. Zhu, On-Chip Sensing of Thermoelectric Thin Film’s Merit, Sensors 15 (7), 17232-17240 (2015).
[7] X. Hu, X. Fan, B. Feng, D. Kong, P. Liu, R. Li, Y. Zhang, G. Li, Y. Li, Microstructural refinement, and performance improvement of cast n-type Bi2Te2.79Se0.21 ingot by equal channel angular extrusion, Met. Mater. Int. (2020). DOI: https://doi.org/10.1007/s12540-020-00699-5
[8] M. Sabarinathan, M. Omprakash, S. Harish, M. Navaneethan, J. Archana, S. Ponnusamy, Y. Hayakawa, Enhancement of power factor by energy filtering effect in hierarchical BiSbTe3 nanostructures for thermoelectric applications, Appl. Surf. Sci. 418, 246-251 (2017).
[9] B . Madavali, H.S. Kim, K.H. Lee, S.J. Hong, Enhanced Seebeck coefficient by energy filtering in Bi-Sb-Te based composites with dispersed Y2O3 nanoparticles, Intermetallics 82, 68-75 (2017).
[10] J. Hu, B. Liu, H. Subramanyan, B. Li, J. Zhou, J. Liu, Enhanced thermoelectric properties through minority carriers blocking in nanocomposites, J. Appl. Phys. 126 (9), 095107 (2019).
[11] S. Foster, N. Neophytou, Effectiveness of nano inclusions for reducing bipolar effects in thermoelectric materials, Comput. Mater. Sci. 164, 91-98 (2019).
[12] L.D. Hicks, T.C. Harman, X. Sun, M.S. Dresselhaus, Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B 53 (16), R10493-R10496 (1996).
[13] I .V. Zaporotskova, N.P. Boroznina, Y.N. Parkhomenko, L.V. Kozhitov, Carbon nanotubes: Sensor properties, A review, Mod. Electron. Mater. 2 (4), 95-105 (2016).
[14] P.A. Tran, L. Zhang, T.J. Webster, Carbon nanofibers and carbon nanotubes in regenerative medicine, Adv. Drug Deliv. Rev. 61 (12), 1097-1114 (2009).
[15] M. Gurbuz, T. Mutuk, P. Uyan, Mechanical, Wear and Thermal behaviors of graphene reinforced titanium composites, Met. Mater. Int. (2020). DOI: https://doi.org/10.1007/s12540-020-00673-1
[16] D.W. Jung, J.H. Jeong, B.C. Cha, J.B. Kim, B.S. Kong, J.K. Lee, E.S. Oh, Effects of ball-milled graphite in the synthesis of SnO2/graphite as an active material in lithium-ion batteries, Met. Mater. Int. 17 (6), 1021-1026 (2011).
[17] A comparison of Carbon Nanotubes and Carbon Nanofibers, Pyrograf products, Inc, An affiliate of Applied surface sciences, Inc.
[18] K.M. Nam, K. Mees, H.S. Park, M. Willert-Porada, C.S. Lee, Electrophoretic Deposition for the Growth of Carbon nanofibers on Ni-Cu/C-fiber Textiles, Bull. Korean Chem. Soc. 35 (8), 2431- 2437 (2014).
[19] S .J. Jung, S.Y. Park, B.K. Kim, B. Kwon, S.K. Kim, H.H. Park, S.H. Baek, Hardening of Bi-Te based alloys by dispersing B4C nanoparticles, Acta Mater. 97, 68-74 (2015).
[20] C. Marquez, N. Rodriguez, R. Ruiz, F. Gamiz, Electrical characterization and conductivity optimization of laser reduced graphene oxide on insulator using point-contact methods, RSC Adv. 6 (52), 46231-46237 (2016).
[21] P. Sharief, B. Madavali, J.M. Koo, H.J. Kim, S. Hong, S.J. Hong, Effect of milling time parameter on the microstructure and the thermoelectric properties of N-type Bi2Te2.7Se0.3 alloys, Arch. Metall. Mater. 2, 585-590 (2019).
[22] P . Slobodian, P. Riha, R. Olejnik, M. Kovar, P. Svoboda, Thermoelectric properties of carbon nanotube and nanofiber based ethylene-octene copolymer composites for thermoelectric devices, J. Nanomater 2013, 1-7 (2013).
[23] Q. Lognoné, F. Gascoin, On the effect of carbon nanotubes on the thermoelectric properties of n-Bi2Te2. 4Se0. 6 made by mechanical alloying, J. Alloys Compd. 635, 107-111 (2015).
[24] B. Feng, G. Li, X. Hu, P. Liu, R. Li, Y. Zhang, Z. He, Improvement of thermoelectric and mechanical properties of BiCuSeO-based materials by SiC nanodispersion, J. Alloys Compd. 818, 152899 (2020).
Go to article

Authors and Affiliations

P. Sharief
1
B. Madavali
1
Y. Sohn
2
J.H. Han
2
G. Song
1
S.H. Song
1
S.J. Song
1

  1. Kongju National University, Division of Advanced Materials Engineering & Institute for Rare Metals, Cheonan, 331-717, Republic of Korea
  2. Chungnam National University, Department of Materials Science & Engineering, Daejeon, 34134, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

The nano-sized Y2O3 dispersed W composite powder is prepared by ultrasonic spray pyrolysis of a tungsten precursor using ammonium metatungstate hydrate and a polymer addition solution method using Y-nitrate. XRD analysis for calcined powder showed the formation of WO2 phase by partial oxidation of W powder during calcination in air. The TEM and phase analysis for further hydrogen reduction of calcined powder mixture exhibited that the W powder with a uniform distribution of Y2O3 nanoparticles can be successfully produced. These results indicate that the wet chemical method combined with spray pyrolysis and polymer solution is a promising way to synthesis the W-based composites with homogeneous dispersion of fine oxide particles.
Go to article

Bibliography

[1] W.D. Klopp, J. Less-Common Met. 42, 261 (1975).
[2] V. Philipps, J. Nucl. Mater. 415, S2 (2011).
[3] L. Veleva, Z. Oksiuta, U. Vogt, N. Baluc, Fusion Eng. Des. 84, 1920 (2009).
[4] Z. Dong, N. Liu, Z. Ma, C. Liu, Q. Guo, Y. Liu, J. Alloys Compd. 695, 2969 (2017).
[5] C. Ren, Z.Z. Fang, M. Koopman, B. Butler, J. Paramore, S. Middlemas, Int. J. Refract. Met. Hard Mater. 75, 170 (2018).
[6] M.H. Nguyen, S.-J. Lee, W.M. Kriven, J. Mater. Res. 14, 3417 (1999).
[7] S. Yan, J. Yin, E. Zhou, J. Alloys Compd. 450, 417 (2008).
[8] T.R. Wilken, W.R. Morcom, C.A. Wert, J.B. Woodhouse, Met. Trans. B 7, 589 (1976).
[9] S.C. Cifuentes, M.A. Monge, P. Pérez, Corros. Sci. 57, 114 (2012).
Go to article

Authors and Affiliations

Hyeonhui Jo
1
Young-In Lee
1 2
ORCID: ORCID
Myung-Jin Suk
3
Young-Keun Jeong
4
ORCID: ORCID
Sung-Tag Oh
1 2
ORCID: ORCID

  1. Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul 01811, Republic of Korea
  2. Seoul National University of Science and Technology, The Institute of Powder Technology, Seoul 01811, Republic of Korea
  3. Kangwon National University, Department of Materials Science and Engineering, Samcheok 25913, Republic of Korea
  4. Pusan National University, Graduate School of Convergence Science, Busan 46241, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

To comprehensively investigate the diversity of a chamfer technology and a convex roll technology under the same soft reduction process (i.e., section size, reduction amount, casting speed and solid fraction), a three-dimensional mechanical model was developed to investigate the effect of the chamfer profile and roll surface profile on the deformation behavior, cracking risk, stress concentration and reduction force of as-cast bloom during the soft reduction process. It was found that a chamfer bloom and a convex roll can both avoid the thicker corner of the as-cast bloom solidified shell, and significantly reduce reduction force of the withdrawal and straightening units. The convex profile of roll limits lateral spread along bloom width direction, therefore it forms a greater deformation to the mushy zone of as-cast bloom along the casting direction, the tensile strain in the brittleness temperature range (BTR) can obviously increase to form internal cracks. The chamfer bloom is much more effective in compensating the solidification shrinkage of mushy zone. In addition, chamfer bloom has a significant decrease of tensile strain in the brittleness temperature range (BTR) areas, which is expected to greatly reduce the risk of internal cracks.
Go to article

Bibliography

[1] H. Bhadeshia, Prog. Mater. Sci. 57, 304 (2012).
[2] Q . Dong, J. Zhang, B. Wang, X. Zhao, J. Mater. Process. Technol. 81, 238 (2016).
[3] K. Liu, Q. Sun, J. Zhang, C. Wang, Metall. Res. Technol. 113, 504 (2016).
[4] S. Luo, M. Zhu, C. Ji, Ironmak. Steelmak. 41, 233 (2014).
[5] N. Zong, H. Zhang, Y. Liu, Z. Lu, Ironmak. Steelmak. 46, 872 (2019).
[6] S. Ogibayashi, M. Uchimura, K. Isobe, H. Maede, Y. Nishihara, S. Sato, Proc. of 6th Int. Iron and Steel Cong, ISIJ, Tokyo, 271 (1990).
[7] H.M. Chang, S.O. Kyung, D.L. Joo, J.L. Sung, L. Youngseog, ISIJ Int. 52, 1266 (2012).
[8] J. Zhao, L. Liu, W. Wang, H. Lu, Ironmak. Steelmak. 46, 227 (2017).
[9] N. Zong, H. Zhang, Y. Liu, Z. Lu, Metall. Res. Technol. 116, 310 (2019).
[10] N. Zong, H. Zhang, L. Wang, Z. Lu, Metall. Res. Technol. 116, 608 (2019).
[11] C. Li, B. Thomas, Metall. Mater. Trans. B. 35B, 1151 (2004). [12] B. Li, H. Ding, Z. Tang, Int. J. Miner. Metall. Mater. 19, 21 (2012).
[13] K.O. Lee, S.K. Hong, Y.K. Kang, Int. J. Automot. Technol. 10, 697 (2009).
[14] K. Demons, G.C. Lorraine, S.A. Taylor, Mater. Eng. Perform. 16, 592 (2007).
Go to article

Authors and Affiliations

Nanfu Zong
1
ORCID: ORCID
Tao Jing
1
ORCID: ORCID
Yang Liu
2
ORCID: ORCID

  1. Tsinghua University, School of Materials Science and Engineering, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, China
  2. Jiangsu Changqiang Iron and Steel Corp., Ltd., Jiangsu 214500, China
Download PDF Download RIS Download Bibtex

Abstract

Copper slag is usually a mixture of iron oxide and silicon dioxide, which exist in the form of fayalite (2FeO·SiO2), and contains ceramic components as the SiO2, Al2O3 and CaO depending on the initial ore quality and the furnace type. Our present study was focused on manufacture of foundry pig iron with Cu content from copper slag using high-temperature reduction smelting and investigate utilization of by-products as a reformed slag, which is giving additional value to the recycling in a replacement of raw material of Portland cement. Changes of the chemical and mineralogical composition of the reformed slag are highly dependent on the CaO concentration in the slag. The chemical and mineralogical properties and microstructural analysis of the reformed slag samples were determined through X-ray Fluorescence spectroscopy, X-Ray diffractometer and Scanning Electron Microscopy connected to the dispersive spectrometer studies.
Go to article

Bibliography

[1] LS-Nikko copper inc., Private Communication. 2012 Ulsan, Korea.
[2] Korea Zinc Co., Ltd., Onsan Refinery, Private Communication. 2012 Ulsan, Korea.
[3] S .W. Ji, C.H. Seo, J. of Korean Inst. of Resources Institute. 2, 68-72 (2006).
[4] J.P. Wang, K.M. Hwang, H.M. Choi. Indian J. Appl. Res. 2, 977-982 (2018).
[5] J.P. Wang, K.M. Hwang, H.M. Choi. Indian J. Appl. Res. 2, 973-976 (2018).
[6] A.A. Lykasov, G.M. Ryss, Steel Trans. 46 (9), 609-613 (2016).
[7] M.K. Dash, S.K. Patro and etc., Int. J. Sustain. Built. Environ. 5, 484-516 (2016).
[8] B. Gorai, R.K. Jana and etc., Resour. Converv. Recy. 39, 299-313 (2003).
[9] I . Alp, H. Deveci, H. Sungun. J. Hzard. Mater. 159, 390-395 (2008).
[10] P. Sarfo, G. Wyss and etc., J. Min. Eng. 107, 8-19 (2017).
[11] U. Yuksel, I. Tegin. J. Environ. Sci. Eng. Eng. Technol. 6, 388-394 (2017).
[12] Z.X. Lin, Z.D. Qing and etc. ISI J Int. 55, 1347-1352 (2015).
[13] Z. Guo, D. Zhu and etc., J. Met. 86 (6), 1-17 (2016).
[14] A.A. Lykasov, G.M. Ryss and etc., Steel Transl. 46 (9), 609-613 (2016).
[15] Z. Cao, T. Sun and etc., Minerals. 6 (119), 1-11 (2016).
[16] A.Es. Nassef. A. Abo Ei-Nasr, Influence of Copper Additions and Cooling Rate on Mechanical and Tribological Behavior of Grey Cast Iron, 7th Int. Saudi Engineering Conference (SEC7), KSA, Riyadh 2-5, 2-5 Dec 2007, p. 307
[17] G . Gumienny, B. Kacprzyk, Arch. Foundry Eng. 17, 51-56 (2017).
[18] Z. Slovic, K.T. Raic, L. Nedeljkovic, etc., Mater. Technol. 46 (6), 683-688 (2012).
[19] U. Erdenebold, H.M. Choi. J.P. Wang. Arch. Metal. Mater. 63 (4), 1793-1798 (2018).
[20] Ye.A. Kazachkov, Calculations on the theories of metallurgical processes. Metallurgy, Moscow (1988).
[21] G .I. Silman, V.V. Kamynin and etc., Met. Sci. Heat. Treat. 45 (2003), 254-258.
[22] A.A. Razumakov, N.V. Stepanova and etc., Proceedings of MEACS2015. IOP conference series: materials science and engineering, Tomsk Polytechnic University, Tomsk, 1-4 December 2015, 124, 012136 (2016).
[23] E. Konca, K. Tur and etc., Metals 7 (320), 1-9 (2017).
[24] J.O. Agunsoye, S.A. Bello and etc., J. Miner. Mater. Character. Eng. 2, 470-483 (2014).
[25] A.A. Rahman, S.A. Abo-El-Enein and etc., Arab. J. Chem. 9, 8138-8143 (2016).
[26] D .E. Angulo-Ramirez, R.M. de Gutierrez and etc., Constr. Build. Mater. 140, 119-128 (2017).
[27] Y. Maeda. Nippo steel and Sumitomo metal technical report. 109, 114-118 (2015).
[28] Y. Ueki. Nippo steel and Sumitomo metal technical report. 109, 109-113 (2015).
[29] https://www.snmnews.com/news/articleView.html?idxno= 447525, accessed: 05.06.2019.
[30] M. Fleischer. Geological survey professional paper 440-L, 6th edition. Washington, 1964, p. 21-23.
[31] V erlag Stahleisen GmbH. Slag atlas. 2nd edition, Germany, 1995, p. 127.
Go to article

Authors and Affiliations

Urtnasan Erdenebold
1
ORCID: ORCID
Jei-Pil Wang Wang
1
ORCID: ORCID

  1. Pukyong National University, Department of Metallurgical Engineering, Busan, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

This research study intends to develop an online tool condition monitoring system and to examine scientifically the effect of machining parameters on quality measures during machining SAE 1015 steel. It is accomplished by adopting a novel microflown sound sensor which is capable of acquiring sound signals. The dry turning experiments were performed by employing uncoated, TiAlN, TiAlN/WC-C coated inserts. The optimal cutting conditions and their influence on flank wear were determined and predicted value has been validated through confirmation experiment. During machining, sound signals were acquired using NI DAQ card and statistical analysis of raw data has been performed. Kurtosis and I-Kaz coefficient was determined systematically. The correlation between flank wear and I-Kaz coefficient was established, which fits into power-law curve. The neural network model was trained and developed with least error (3.7603e-5). It reveals that the developed neural network can be effectively utilized with minimal error for online monitoring.
Go to article

Bibliography

[1] M. Noordin, V. Venkatesh, S. Sharif, J. Mater. Process. Tech. 185 (1-3), 83-90 (2007). DOI: https://doi.org/10.1016/j.jmatprotec.2006.03.137
[2] C. Moganapriya, M. Vigneshwaran, G. Abbas, A. Ragavendran, V.C. Harissh Ragavendra, R. Rajasekar, Mater. Today, Proceeding (2020).
[3] A.M. Ravi, S.M. Murigendrappa, P.G. Mukunda, T. Indian I. Metals 67 (4), 485-502 (2014). DOI: https://doi.org/10.1007/s12666-013-0369-0
[4] A.P. Kulkarni, V.G. Sargade, Mater. Manuf. Process 30 (6), 748- 755 (2015). DOI: https://doi.org/10.1080/10426914.2014.984217
[5] C. Moganapriya, R. Rajasekar, K. Ponappa, R. Venkatesh, S. Jerome, Mater. Today. Proceeding 5 (2), 8532-8538 (2018). DOI: https://doi.org/10.1016/j.matpr.2017.11.550
[6] G .C. Rosa, A.J. Souza, E.V. Possamai, H.J. Amorim, P.D. Neis, Wear 376, 172-177 (2017). DOI: https://doi.org/10.1016/j.wear.2017.01.088
[7] A. Alok, M. Das, Measurement 133, 288-302 (2019). DOI: https://doi.org/10.1016/j.measurement.2018.10.009
[8] R . Yigit, E. Celik, F. Findik, S. Koksal, Int. J. Refract. Hard. Met. 26 (6), 514-524 (2008). DOI: https://doi.org/10.1016/j.ijrmhm.2007.12.003
[9] R . Horváth, Á. Drégelyi-Kiss, G. Mátyási, Acta Polytech. Hung. 11 (2), 137-147 (2014).
[10] R . Kumar, P.S. Bilga, S. Singh, J. Clean Prod. 164, 45-57 (2017). DOI: https://doi.org/10.1016/j.jclepro.2017.06.077
[11] M.K. Gupta, P. Sood, V.S. Sharma, J. Clean Prod. 135, 1276-1288 (2016). DOI: https://doi.org/10.1016/j.jclepro.2016.06.184
[12] S . Pai, T. Nagabhushana, Handbook of Research on Emerging Trends and Applications of Machine Learning, 2020 IGI Global.
[13] A.K. Jain, B.K. Lad, J. Intell. Manuf. 30 (3), 1423-1436 (2019). DOI: https://doi.org/10.1007/s10845-017-1334-2
[14] R . Teti, K. Jemielniak, G. O’Donnell, D. Dornfeld, CIRP Ann. 59 (2), 717-739 (2010). DOI: https://doi.org/10.1016/j.cirp.2010.05.010
[15] C. Moganapriya, R. Rajasekar, K. Ponappa, R. Venkatesh, R. Karthick, Arch. Metall. Mater. 62 (3), 1827-1832 (2017). DOI: https://doi.org/10.1515/amm-2017-0276
[16] H .B. Ulas,T. Indian I. Metals 67 (6), 869-879 (2014). DOI: https://doi.org/10.1007/s12666-014-0410-y
[17] S . Thangarasu, S. Shankar, T. Mohanraj, K. Devendran, P. I. Mech. Eng. C.-J. Mec. 234 (1), 329-342 (2019).
[18] J .A. Ghani, M. Rizal, M.Z. Nuawi, C.H. Che Haron, M.J. Ghazali, M.N.A. Rahman. Trans. Tech. Publ. 2010.
[19] S . Oraby, D. Hayhurst, Int. J. Mach. Tools Manuf. 44 (12-13), 1261-1269 (2004). DOI: https://doi.org/10.1016/j.ijmachtools.2004.04.018
Go to article

Authors and Affiliations

Moganapriya Chinnasamy
1
ORCID: ORCID
Rajasekar Rathanasamy
1
ORCID: ORCID
Gobinath Velu Kaliyannan
2
ORCID: ORCID
Prabhakaran Paramasivam
1
ORCID: ORCID
Saravana Kumar Jaganathan
3 4 5
ORCID: ORCID

  1. Kongu Engineering College, Department of Mechanical Engineering, Perundurai – 638060, Tamil Nadu State, India
  2. Kongu Engineering College, Department of Mechatronics Engineering, Perundurai – 638060, Tamil Nadu State, India
  3. Bionanotechnology Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
  4. Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
  5. Department of Engineering, Faculty of Science and Engineering, University of Hull, HU6 7RX, United Kingdom
Download PDF Download RIS Download Bibtex

Abstract

A huge amount of carbon black (40-60 phr) was commonly used as a reinforcing material in manufacturing of tires to improve the technical properties of pure rubber. Carbon black causes severe health hazard like skin cancer, respiratory problem due to its fly loss property. This study focusses on reducing the usage of carbon black by replacing it with minimal quantity of nanoclay to compensate the technical properties of rubber. Natural Rubber nanocomposite are fabricated using solution and mechanical mixing method in presence and absence of compatibilizer. Cure characteristics, wear test and mechanical properties were examined. NR nanocomposite with dual filler in presence of compatibilizer showed enhancement in torque values, mechanical and wear resistant property. Wear resistance, tensile strength and modulus of dual filler nanocomposite was increased by 66.7%, 91% and 85% when compared to pure NR. Hence NR nanocomposite with dual filler in presence of compatibilizer was found as a proving and possible nanocomposite for tire application.
Go to article

Bibliography

[1] K . Pal, R. Rajasekar, D.J. Kang, Z.X. Zhang, S.K. Pal, C.K. Das, J.K. Kim, Mater. Des. 31 (2), 677-686 (2010). DOI : https://doi.org/10.1016/j.matdes.2009.08.014
[2] K . Pal, R. Rajasekar, T. Das, D. Kang, S. Pal, J. Kim, C. Das, Plast., Rubber Compos. 38 (7), 302-308 (2009). DOI : https://doi.org/10.1179/174328909X435393
[3] K . Pal, R. Rajasekar, D.J. Kang, Z.X. Zhang, J.K. Kim, C. Das, Mater. Des. 30 (10), 4035-4042 (2009). DOI : https://doi.org/10.1016/j.matdes.2009.05.021
[4] K . Roy, S.C. Debnath, P. Potiyaraj, J. Elastomers Plast., (2019).
[5] S .J. He, Y.Q. Wang, J. Lin, L.Q. Zhang, Adv. Mater. Res. 28-31 (2012).
[6] S . Ahmadi Shooli, M. Tavakoli, J. Macromol. Sci., Part B, 55 (10), 969-983 (2016). DOI : https://doi.org/10.1080/00222348.2016.1230464
[7] R . Sengupta, S. Chakraborty, S. Bandyopadhyay, S. Dasgupta, R. Mukhopadhyay, K. Auddy, A. Deuri, Polym. Eng. Sci. 47 (11), 1956-1974 (2007). DOI: https://doi.org/10.1002/pen.20921
[8] A. Malas, C.K. Das, J. Mater. Sci. 47 (4), 2016-2024 (2012). DOI : https://doi.org/10.1007/s10853-011-6000-z
[9] Q.-X. Jia, Y.-P. Wu, P. Xiang, Y. Xin, Y.-Q. Wang, L.-Q. Zhang, Polym. Polym. Compos. 13 (7), 709-719 (2005).
[10] H. Nabil, H. Ismail, Int. J. Polym. Anal. Charact. 19 (2), 159-174 (2014). DOI: https://doi.org/10.1080/1023666X.2014.873597
[11] R . Rajasekar, G. Heinrich, A. Das, C.K. Das, J. Nanotechnol. 2009, 1-5 (2009). DOI: https://doi.org/10.1155/2009/405153
[12] Y.-W. Mai, Z.-Z. Yu, Polym. Nanocompos., Woodhead publishing, (2006).
[13] R . Rajasekar, G. Nayak, C. Das, Plast., Rubber Compos. 40 (3), 146-150 (2011). DOI : https://doi.org/10.1179/1743289810Y.0000000010
[14] Y. Liang, Y. Wang, Y. Wu, Y. Lu, H. Zhang, L. Zhang, Polym. Test. 24 (1), 12-17 (2005). DOI : https://doi.org/10.1016/j.polymertesting.2004.08.004
[15] K . Pal, R. Rajasekar, S.K. Pal, J.K. Kim, C.K. Das, J. Nanosci. Nanotechnol. 10 (5), 3022-3033 (2010). DOI: https://doi.org/10.1166/ jnn.2010.2170
[16] R . Iyer, S. Suin, N.K. Shrivastava, S. Maiti, B. Khatua, Polym.- Plast. Technol. Eng. 52 (5), 514-524 (2013). DOI : https://doi.org/10.1080/03602559.2012.762024
[17] P. Saramolee, K. Sahakaro, N. Lopattananon, W.K. Dierkes, J.W. Noordermeer, J. Elastomers Plast. 48 (2), 145-163 (2016). DOI: https://doi.org/10.1177/0095244314568469
[18] N. Hayeemasae, I. Surya, H. Ismail, Int. J. Polym. Anal. Charact. 21 (5), 396-407 (2016). DOI : https://doi.org/10.1080/1023666X.2016.1160970
[19] R . Rajasekar, C. Das, Plast., Rubber Compos. 40 (8), 407-412 (2011). DOI: https://doi.org/10.1179/1743289810Y.0000000039
[20] A. Malas, C.K. Das, Mater. Des. 49, 857-865 (2013). DOI : https://doi.org/10.1016/j.matdes.2013.02.040
[21] R . Rajasekar, G. Nayak, A. Malas, C. Das, Mater. Des. 35 (1), 878-885 (2012). DOI: https://doi.org/10.1016/j.matdes.2011.10.018
[22] R . Mahaling, S. Kumar, T. Rath, C. Das, J. Elastomers Plast. 39 (3), 253-268 (2007). DOI: https://doi.org/10.1177/00952443070 76495
[23] P. Teh, Z.M. Ishak, A. Hashim, J. Karger-Kocsis, U. Ishiaku, Eur. Polym. J. 40 (11), 2513-2521 (2004). DOI : https://doi.org/10.1016/j.eurpolymj.2004.06.025
[24] H. Ismail, H. Chia, Eur. Polym. J. 34 (12), 1857-1863 (1998). DOI: https://doi.org/10.1016/S0014-3057(98)00029-9
[25] T. Mohan, J. Kuriakose, K. Kanny, J. Ind. Eng. Chem. 17 (2), 264-270 (2011). DOI: https://doi.org/10.1016/j.jiec.2011.02.019
[26] M.S. Kim, G.H. Kim, S.R. Chowdhury, Polym. Eng. Sci. 47 (3), 308-313 (2007). DOI: https://doi.org/10.1002/pen.20709
[27] A. Khalil, S.N. Shaikh, Z.R. Nudrat, S. Khaula, Adv. Mater. Phys. Chem. 2012, (2012).
[28] G .C.N. R. Rajasekar, C.K. Das, Materials Science & Technologies, 575-590, (2011).
[29] B.P. Kapgate, C. Das, D. Basu, A. Das, G. Heinrich, J. Ela-stomers Plast. 47 (3), 248-261 (2015). DOI: https://doi.org/10.1177/0095244313507807
[30] K . Pal, T. Das, R. Rajasekar, S.K. Pal, C.K. Das, J. Appl. Polym. Sci. 111 (1), 348-357 (2009). DOI: https://doi.org/10.1002/app.29128
[31] M. Balachandran, S. Bhagawan, J. Polym. Res. 19 (2), 9809 (2012). DOI: https://doi.org/10.1007/s10965-011-9809-x
[32] Y. Liu, L. Li, Q. Wang, Plast., Rubber Compos. 39 (8), 370-376 (2010). DOI: https://doi.org/10.1179/174328910X12691245469871
Go to article

Authors and Affiliations

M. Harikrishna Kumar
1
ORCID: ORCID
Shankar Subramaniam
1
Rajasekar Rathanasamy
1
ORCID: ORCID
Samir Kumar Pal
2
ORCID: ORCID
Sathish Kumar Palaniappan
2

  1. School of Building and Mechanical Sciences, Kongu Engineering College, Perundurai – 638060, Tamil Nadu State, India
  2. Department of Mining Engineering, Indian Institute of Technology, Kharagpur – 721302, West Bengal State, India
Download PDF Download RIS Download Bibtex

Abstract

In this study, NiCrBSi-B4C (wt. %5, %10 ve %15 B4C) powder mixtures are coated on the stainless steel surface of AISI304 by tungsten inert gas (TIG) method. We use optic microscope and scanning electron microscope (SEM) for the coating layer analysis, energy dispersive spectrometry (EDS) for element distribution analysis and X-ray diffractogram (XRD) for the analysis of phase components. The measurements of hardness are determined by the microhardness tester. Based on the results obtained by the examination of microstructure and phases, it has been observed that while B and C elemets are more intense in the middle and upper parts of the coating layer, the parts close to the interface have a higher intensity of Ni and Fe. Moreover, there are phases such as Cr7C3, γ – Ni, CrFeB, Ni3B, CrB ve Fe2B are formed in the coating layer. The increasing ratio of B4C results in increasing on the measurement values of microhardness. The maximum hardness value (430,8 HV0.2) is obtained from the coating layer of S4 sample while the minimum value (366,9 HV0.2) is observed from the NiCrBSi coated sample.
Go to article

Bibliography

[1] R. Rachidi, B. El Kihel, F. Delaunois, Mater. Sci. Eng. B-Adv. 241, 13-21 (2019).
[2] H. Zhao, J. Li, Z. Zheng, A. Wang, D. Zeng, Y. Miao, Surf. Coat. Tech. 286, 303-312 (2016).
[3] C.K. Sahoo, M. Masanta, J. Mater Process Tech. 240, 126-137 (2017).
[4] Q. An, L. Huang, S. Jiang, X. Li, Y. Gao, Y. Liu, L. Geng, Vacuum. 145, 312-319 (2017).
[5] J.-S. Meng, G. Jin, X.-P. Shi, Appl. Surf. Sci. 431, 135-142 (2018).
[6] S . Buytoz, M. Ulutan, M.M. Yildirim, Appl. Surf. Sci. 252, 1313- 1323 (2005).
[7] J. Yin, D. Wang, L. Meng, L. Ke, Q. Hu, X. Zeng, Surf. Coat. Tech. 325, 120-126 (2017).
[8] J. Rodriguez, A. Martı́n, R. Fernández, J.E. Fernández, Wear. 255, 950-955 (2003).
[9] N.L. Parthasarathi, M. Duraiselvam, J. Alloy Compd. 505, 824- 831 (2010).
[10] S . Abdi, S. Lebaili, Phys. Procedia. 2, 1005-1014 (2009).
[11] M.J. Tobar, C. Álvarez, J.M. Amado, G. Rodríguez, A. Yáñez, Surf. Coat. Tech. 200, 6313-6317 (2006).
[12] N.Y. Sari, M. Yilmaz, Surf. Coat. Tech. 202, 3136-3141 (2008).
[13] E. Fernández, M. Cadenas, R. González, C. Navas, R. Fernández, J. de Damborenea, Wear 259, 870-875 (2005).
[14] S . Buytoz, GU J. Sci., Part C. 8, 51-63 (2020).
[15] X.-N. Wang, X.-M. Chen, Q. Sun, H.-S. Di, Mater. Lett. 206, 143-145 (2017).
[16] K.A. Habib, D.L. Cano, José Antonio Heredia, J.S. Mira, Surf. Coat. Tech. 358, 824-832 (2019).
[17] L.-Y. Chen, T. Xu, H. Wang, P. Sang, L.-C. Zhang, Surf Coat Tech. 358, 467-480(2019).
[18] Q.W. Meng, T.L. Geng, B.Y. Zhang, Surf. Coat. Tech. 200, 4923- 4928 (2006).
[19] Y.-X. Zhou, J. Zhang, Z.-G. Xing, H.-D.Wang, Z.-L. Lv, Surf. Coat. Tech. 361, 270-279 (2019).
[20] M. Kilic, A. Imak, I Kirik, JMEPEG. 30, 1411-1419 (2021).
[21] K. Kılıçay, S. Buytoz, M. Ulutan, Surf. Coat. Tech. 397, 125974 (2020).
[22] M.-J.Chao, X. Niu, B. Yuan, E.-J. Liang, D.-S. Wang, Surf. Coat. Tech. 201, 1102-1108 (2006).
[23] Y. Z., T. Yu, L. Chen, Y. Chen, C. Guan, J. Sun, Ceram. Int. 46, 25136-25148 (2020).
[24] L. Guo-lu, L. Ya-long, D. Tian-shun, F. Bin-Guo, Wang Hai-dou, Zheng Xiao-dong, Zhou Xiu-kai, Vacuum. 156, 440-448 (2018).
[25] S. Buytoz, M. Ulutan, M.M. Yıldırım, Eng. & Arch. Fac .Osmangazi University XVIII, 93-107 ( 2005).
[26] M. Kilic, European Journal of Technique (EJT) 10, 106-118 (2020).
[27] Guo-lu Li, Ya-long Li, Tian-shun Dong, Hai-dou Wang, Xiao-dong Zheng, Xiu-kai Zhou, Hindawi Advances in Materials Science and Engineering 2018, Article ID 8979678, 1-10 (2018).
[28] M. Storozhenko, O. Umanskyi, V. Krasovskyy, M. Antonov, O. Terentjev, J. Alloy Compd. 778, 15-22 (2019).
[29] A. Zabihi, R. Soltani, Surf. Coat. Tech. 349, 707-718 (2018).
Go to article

Authors and Affiliations

Musa Kiliҫ
1
ORCID: ORCID

  1. Batman University, Faculty of Technology, Department of Manufacturing Engineering, Batman, Turkey
Download PDF Download RIS Download Bibtex

Abstract

In this study, a new chemically modified cellulose polymer-capped ZnO nanopowder prepared by hydrothermal method using chemically modified cellulose polymer as capping agent was successfully reported. The structural characteristics of CMC-capped ZnO nanopowder was reported by FTIR, XRD, SEM and EDX studies. XRD results revealed crystallographic properties like crystal composition, phase purity and crystallite size of the prepared CMC-capped ZnO nanopowder and average size calculated by Debye Scherrer formula as 14.66 nm. EDX studies revealed that the presence of elemental compositions of capping agent in the nanopowder samples. The optical characterization of the CMC-capped ZnO nanopowder was studied using UV absorption (λmax = 303 nm) and PL spectroscopy (λex = 295 nm). The average crystal diameter and grain size were calculated by effective mass approximation formula and compared with XRD findings that agreed well and verified CMC capped ZnO with particle size of 193 nm. Thus, the promising optical characteristics shown by the synthesized CMC capped ZnO nanopowders exposes its potential usage in bio-medical fields.
Go to article

Bibliography

[1] M. Abbas, M. Buntinx, W. Deferme, R. Peeters, Nanomaterials 9 (10), 1494 (2019). DOI: https://doi.org/10.3390/nano9101494
[2] J. Chen, Q. Yu, X. Cui, M. Dong, J. Zhang, C. Wang, J. Fan, Y. Zhu, Z. Guo, J. Mater. Chem. C 7 (38), 11710-11730 (2019). DOI: https://doi.org/10.1039/c9tc03655e
[3] S. Huda, M.A. Alam, P.K. Sharma, J. Drug Deliv. Sci. Technol. 102018 (2020). DOI: https://doi.org/10.1016/j.jddst.2020.102018
[4] F. Farjadian, A.R. Akbarizadeh, L. Tayebi, Heliyon 6 (8), e04747 (2020). DOI: https://doi.org/10.1016/j.heliyon.2020.e04747
[5] M.M. Abutalib, A. Rajeh, Polym. Test. 106803 (2020). DOI: https://doi.org/10.1016/j.polymertesting.2020.106803
[6] L. Cen, K.G. Neoh, E T. Kang, Langmuir 19 (24), 10295-10303 (2003). DOI: https://doi.org/10.1021/la035104c
[7] L. Muthulakshmi, A. Varada Rajalu, G.S. Kaliaraj, S. Siengchin, J. Parameswaranpillai, R. Saraswathi, Composites Part B: Engineering, 175, 107177 (2019). DOI: https://doi.org/10.1016/j.compositesb. 2019.107177
[8] M.V. Lungu, E. Vasile, M. Lucaci, D. Pătroi, N. Mihăilescu, F. Grigore, V. Marinescu, A. Brătulescu, S. Mitrea, A. Sobetkii, A.A. Sobetkii, M. Popa, M.C. Chifiriuc, Materials Characterization 120, 69-81 (2016). DOI: https://doi.org/10.1016/j.matchar.2016.08.022
[9] Zhao, Si-Wei, Guo, Chong-Rui, Hu, Ying-Zhu, Guo, Yuan-Ru, Pan, Qing-Jiang. Open Chemistry 16 (1), 9-20 (2018). DOI: https://doi.org/10.1515/chem-2018-0006
[10] R. Saravanan, L. Ravikumar, Water Environ. Res. 89 (7), 629-640 (2017). DOI: https://doi.org/10.2175/106143016X14733681696329
[11] J. Wang, S. Yu, H. Zhang, Optik 180, 20-26 (2019). DOI: https://doi.org/10.1016/j.ijleo.2018.11.062
[12] R. Saravanan, L. Ravikumar, J. Water Resour. Prot. 7 (6), 530 (2015). DOI: https://doi.org/10.4236/jwarp.2015.76042
[13] S. Krishnaswamy, P. Panigrahi, S. Kumaar, G.S. Nagarajan, Nano- Struct. Nano-Objects 22, 100446 (2020). DOI: https://doi.org/10.1016/j.nanoso.2020.100446
[14] C. Miao, W.Y. Hamad, Curr. Opin. Solid State Mater. Sci. 23 (4), 100761 (2019). DOI: https://doi.org/10.1016/j.cossms.2019.06.005
[15] K.I. Aly, O. Younis, M.H. Mahross, O. Tsutsumi, M.G. Mohamed, M.M. Sayed, Polym. J. 51 (1), 77-90 (2019). DOI: https://doi.org/10.1038/s41428-018-0119-6
[16] K. Rojas, D. Canales, N. Amigo, L. Montoille, A. Cament, L.M. Rivas, O. Gil-Castell, P. Reyes, M.T. Ulloa, A. Ribes-Greus, Compos. Part B Eng. 172, 173-178 (2019). DOI: https://doi.org/10.1016/j.compositesb.2019.05.054
[17] S. Amjadi, S. Emaminia, S.H. Davudian, S. Pourmohammad, H. Hamishehkar, L. Roufegarinejad, Carbohydr. Polym. 216, 376- 384 (2019). DOI: https://doi.org/10.1016/j.carbpol.2019.03.062
[18] D. Bharathi, R. Ranjithkumar, B. Chandarshekar, V. Bhuvaneshwari, Int. J. Biol. Macromol. 129, 989-996 (2019). DOI: https://doi.org/10.1016/j.ijbiomac.2019.02.061
[19] K. Rajesh, V. Crasta, N.R. Kumar, G. Shetty, P.D. Rekha, J. Polym. Res. 26 (4), 99 (2019). DOI: https://doi.org/10.1007/s10965-019-1762-0
[20] Y. Yang, W. Guo, X. Wang, Z. Wang, J. Qi, Y. Zhang, Nano letters, 12 (4), 1919-1922 (2012). DOI: https://doi.org/10.1021/nl204353t
[21] Z. R. Khan, M. Arif , A. Singh, International Nano Letters, 2, 22 (2012). DOI: https://doi.org/10.1186/2228-5326-2-22
[22] F. Rodríguez-Mas, J.C. Ferrer, J.L. Alonso, D. Valiente, S. Fernández de Ávila, Crystals 10 (3), 226 (2020). DOI: https://doi.org/10.3390/cryst10030226
[23] S.K. Ali, H. Wani, C. Upadhyay, K.S. Madhur, I. Khan, S. Gul, N. Jahan, F. Ali, S. Hussain, K. Azmi, Indones. Phys. Rev. 3 (3), 100-110 (2020). DOI: https://doi.org/10.29303/ipr.v3i3.64
[24] D. Ponnamma, J.-J. Cabibihan, M. Rajan, S.S. Pethaiah, K. Deshmukh, J.P. Gogoi, S.K. Pasha, M.B. Ahamed, J. Krishnegowda, B.N. Chandrashekar, Mater. Sci. Eng. C 98, 1210-1240 (2019). DOI: https://doi.org/10.1016/j.msec.2019.01.081
[25] J. Loste, J.-M. Lopez-Cuesta, L. Billon, H. Garay, M. Save, Prog. Polym. Sci. 89, 133-158 (2019). DOI: https://doi.org/10.1016/j.progpolymsci.2018.10.003
Go to article

Authors and Affiliations

R. Jagadeeswari
1
P. Selvakumar
2
ORCID: ORCID
V. Jeevanantham
2
ORCID: ORCID
R. Saravanan
1

  1. Department of Chemistry, KPR Institute of Engineering And Technology, Coimbatore-641407, Tamilnadu, India
  2. Department of Chemistry, Vivekanandha College of Arts And Sciences for Women, Tiruchengode-637205, Tamilnadu, India
Download PDF Download RIS Download Bibtex

Abstract

This work investigates the distribution and the effect of synthesized nano TiO2, micro SiC and B4C particle on the aluminium (A356) metal matrix composites (AMMC). The consequences of this reinforcement on the mechanical, tribology and corrosion behaviour of the AMMC matrix are analyzed. The nano TiO2 is synthesized by wet chemistry sol-gel process, and the reinforcements are added with A-356 by stir casting method. The ASTM standard test specimens are characterized through mechanical, tribology, and corrosion tests for identifying their properties. The metallurgical characterization has been deliberated through XRD and SEM with EDS. In the tensile test results, the percentage of elongation is dropped drastically by 73% due to the enhanced volume % of nano TiO2, micro SiC, and B4C particles. The particle addition of the wear rate and weight loss are reduced at different volume percentages of the A356 matrix. The time plays a significant role in the corrosion rate. The test results also confirm that the corrosion rate is comparatively minimum in 24 hrs (592.35 mm/yr) duration than the 48 hrs (646.368 mm/yr) in both the solutions.
Go to article

Bibliography

[1] S .N.A. Safri, M.T.H. Sultan, M. Jawaid, K. Jayakrishna, Impact behavior of hybrid composites for structural applications: a review, Comp. Part B Eng. 133, 112-21 (2017). DOI: https://doi.org/10.1016/j.Comp Part B.2017.09.008
[2] R amanathan Arunachalam, Pradeep Kumar Krishnan, Rajaraman Muraliraja. A review on the production of metal matrix composites through stir casting-Furnace design, properties, challenges, and research opportunities, J. Manuf. Proc. 42, 213-245 (2019).
[3] M . Kok, Production and mechanical properties of Al2O3 particlereinforced 2024 aluminium alloy composites, J. Mater. Process. Tech. 161, 381-7 (2005).
[4] A.M.K. Esawi, K. Morsi, A. Sayed, A.A. Gawad, P. Borah, Fabrication and properties of dispersed carbon nanotube-aluminum composites, Mater. Sci. Eng. A. 508 (1), 167-73 (2009).
[5] I . Sridhar, K.R. Narayanan, Processing and characterization of MWCNT reinforced aluminum matrix composites, J. Mater. Sci. 44 (7), 1750-6 (2009).
[6] L. Wang, H. Choi, J.M. Myoung, W. Lee, Mechanical alloying of multi-walled carbon nanotubes and aluminium powders for the preparation of carbon/metal composites, Carbon. 47 15), 3427-33 (2009).
[7] D.J. Woo, F.C. Heer, L.N. Brewer, J.P. Hooper, S. Osswald, Synthesis of nanodiamond-reinforced aluminum metal matrix composites using cold-spray deposition, Carbon. 86, 15-25 (2015).
[8] S . Balasivanandha Prabu, L. Karunamoorthy, S. Kathiresan, B. Mohan, Influence of Stirring Speed and Stirring Time on Distribution of Particles in Cast Metal Matrix Composite, J. Mater. Proc. Tech, 171, 268-273 (2006).
[9] R . Mishra Sheok, R.K. Srivastava. Tribological behaviour of Al- 6061/SiC metal matrix composite by Taguchi’s techniques, Int. Jour. Scic. Res. Pub. 2 (10), 1-8 (2012).
[10] J igar Suthar, K.M. Patel. Processing issues, machining, and applications of aluminum metal matrix composites, Mat. Manuf. Proc. 33 (5), 499-527 (2018).
[11] A.S. Vencl, F. Vučetić, B. Bobić, J. Pitel, I. Bobić, Tribological characterization in dry sliding conditions of compocasted hybrid A356/SiCp/Grp composites with graphite macroparticles. Int Jour Adv Manuf Tech. part of Springer Nature, (2018).
[12] B.K. Prasad, O.P. Modi, Sliding wear response of zinc based alloy as affected by suspended solid lubricant particles in oil lubricant, Tribology - Materials, Surf. & Interf. 2 (2), 84-91 (2008).
[13] H . Mazahery, H. Abdizadeh, R. Baharvandi, Development of high-performance A356/nano-Al2O3 composites, Mat. Sci. Engg. A. 518, 61-64 (2009).
[14] Ali Mazahery, Mohsen Ostad Shabani. Influence of the hardcoated B4C particulates on wear resistance of Al-Cu alloys, Comp: Part B. 43, 1302-1308 (2012).
[15] M . Karbalaei Akbari, H.R. Baharvandi, K. Shirvanimoghaddam, Tensile and fracture behavior of nano/micro TiB2 particle reinforced, Mat. Desn. 66, 150-161 (2015).
[16] R . Senthil Kumar, K. Prabu, G. Rajamurugan, P. Ponnusamy, Comparative analysis of particle size on the mechanical and metallurgical characteristics of Al2O3 reinforced sintered and extruded AA2014 nano hybrid composite, Jour. Comp. Mat. 53 (28-29), 4369-4384 (2019). DOI: https://doi.org/10.1177/0021998319856676
[17] B.K. Prasad, Effects of some solid lubricant particles and their concentration in oil towards controlling wear performance of leaded tin bronze bush, Can. Metal Quar. 51 (2), 210-220 (2012). DOI: https://doi.org/10.1179/1879139511Y.0000000030
[18] P. Sangaravadivel, G. Rajamurugan, P. Krishnasamy, Significance of tungsten disulfide on the mechanical and machining characteristics of phosphor bronze metal matrix composite, Advanced Composites Letters 29, 1-13 (2020). DOI: https://doi.org/10.1177/2633366X20962496
[19] A. Vencl, I. Bobic, S. Arostegui, B. Bobic, A. Marinković, M. Babić, Structural, mechanical and tribological properties of A356 aluminum alloy reinforced with Al2O3, SiC, and SiC + graphite particles. J. All and Comp. 506, 631-639 (2010).
[20] A. Singh, G. Rajamurugan, K. Prabu, D. Dinesh, Surface modification of aluminium alloy 5083 reinforced with Cr2O3/TiO2 by friction stir process, SAE Tech. paper, 2019-28-0179, 1-7 (2019). DOI: https://doi.org/10.4271/2019-28-0179
[21] S . Jaiswal, G. Rajamurugan, P. Krishnasamy, Y. Shaswat, M. Kaushik, Mechanical and Corrosion Behaviour of Al 7075 Composite Reinforced with TiC and Al2O3 Particles, SAE Tech. Paper, 2019-28-0094 (2019). DOI: https://doi.org/10.4271/2019-28-0094
Go to article

Authors and Affiliations

D. Paulraj
1
ORCID: ORCID
P.D. Jeyakumar
1
ORCID: ORCID
G. Rajamurugan
2
ORCID: ORCID
P. Krishnasamy
2
ORCID: ORCID

  1. B.S. Abdur Rahman Crescent Institute of Science and Technology, Department of Mechanical Engineering, Chennai-600 048, Tamilnadu, India
  2. Vellore Institute of Technology, School of Mechanical Engineering, Vellore-632014, Tamilnadu, India
Download PDF Download RIS Download Bibtex

Abstract

In this work the conical Ni structures were obtained from an electrolyte containing NH4Cl as a crystal modifier. This process is called one-step method and allows to cover large areas with micro- and nanostructures during a single electrodeposition. Presence of NH4Cl promotes a vertical direction of structure growth in order to block a horizontal one. Additionally, this method does not require using chromic acid solution, which is dangerous for the environment. Due to the ferromagnetic properties of Ni, obtained coatings could be applied as magnetic devices. The influence of the parameters such as a preparation of copper substrate, a composition of electrolyte and electrodeposition conditions (time, the electrolyte temperature and current density) was investigated in this work.
Go to article

Bibliography

[1] K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications, Prog. Energy Combust. Sci. 36, 307-326 (2010). DOI: https://doi.org/10.1016/j.pecs.2009.11.002
[2] L . Huang, M. Wei, S. Zaman, A. Ali, B.Y. Xia, Well-connection of micro-platinum and cobalt oxide flower array with optimized water dissociation and hydrogen recombination for efficient overall water splitting, Chem. Eng. J. 398, 125669 (2020). DOI: https://doi.org/10.1016/j.cej.2020.125669
[3] Z . He, J. Chen, D. Liu, H. Zhou, Y. Kuang, Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation, Diam. Relat. Mater. 13, 1764-1770 (2004). DOI: https://doi.org/10.1016/j.diamond.2004.03.004
[4] M.N. Krstajić Pajić, S.I. Stevanović, V. V. Radmilović, A. Gavrilović- Wohlmuther, P. Zabinski, N.R. Elezović, V.R. Radmilović, S.L. Gojković, V.M. Jovanović, Dispersion effect in formic acid oxidation on PtAu/C nanocatalyst prepared by water-in-oil microemulsion method, Appl. Catal. B Environ. 243, 585-593 (2019). DOI: https://doi.org/10.1016/j.apcatb.2018.10.064
[5] D. Kutyła, K. Kołczyk-Siedlecka, A. Kwiecińska, K. Skibińska, R. Kowalik, P. Żabiński, Preparation and characterization of electrodeposited Ni-Ru alloys: morphological and catalytic study, J. Solid State Electrochem. 23, 3089-3097 (2019). DOI: https://doi.org/10.1007/s10008-019-04374-7
[6] M . Gong, H. Dai, A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts, Nano Res. 8, 23-39 (2015). DOI: https://doi.org/10.1007/s12274-014-0591-z
[7] V .D. Jović, B.M. Jović, U. Lačnjevac, N.V. Krstajić, P. Zabinski, N.R. Elezović, Accelerated service life test of electrodeposited NiSn alloys as bifunctional catalysts for alkaline water electrolysis under industrial operating conditions, J. Electroanal. Chem. 819, 16-25 (2018). DOI: https://doi.org/10.1016/j.jelechem.2017.06.011
[8] P.R. Zabinski, S. Meguro, K. Asami, K. Hashimoto, Electrodeposited Co-Ni-Fe-C alloys for hydrogen evolution in a hot 8 kmol·m-3 NaOH, Mater. Trans. 47, 2860-2866 (2006). DOI: https://doi.org/10.2320/matertrans.47.2860
[9] L. Sun, P.C. Searson, C.L. Chien, Magnetic anisotropy in prismatic nickel nanowires, Appl. Phys. Lett. 79, 4429-4431 (2001). DOI: https://doi.org/10.1063/1.1428113
[10] F. Tian, A. Hu, M. Li, D. Mao, Superhydrophobic nickel films fabricated by electro and electroless deposition, Appl. Surf. Sci. 258, 3643-3646 (2012). DOI: https://doi.org/10.1016/j.apsusc.2011.11.130
[11] Z . Chen, F. Tian, A. Hu, M. Li, A facile process for preparing superhydrophobic nickel films with stearic acid, Surf. Coatings Technol. 231, 88-92 (2013). DOI: https://doi.org/10.1016/j.surfcoat.2012.01.053
[12] S. Rahimi, S. Shahrokhian, H. Hosseini, Ternary nickel cobalt iron sulfides ultrathin nanosheets grown on 3-D nickel nanocone arrays‑nickel plate current collector as a binder free electrode for fabrication of highly performance supercapacitors, J. Electroanal. Chem. 810, 78-85 (2018). DOI: https://doi.org/10.1016/j.jelechem.2018.01.004
[13] T. Hang, M. Li, Q. Fei, D. Mao, Characterization of nickel nanocones routed by electrodeposition without any template, Nanotechnology 19, 035201 (2008). DOI: https://doi.org/10.1088/0957-4484/19/03/035201
[14] T. Hang, A. Hu, H. Ling, M. Li, D. Mao, Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition, Appl. Surf. Sci. 256, 2400-2404 (2010). DOI: https://doi.org/10.1016/j.apsusc.2009.10.074
[15] N . Wang, T. Hang, S. Shanmugam, M. Li, Preparation and characterization of nickel-cobalt alloy nanostructures array fabricated by electrodeposition, CrystEngComm. 16, 6937-6943 (2014). DOI: https://doi.org/10.1039/c4ce00565a
[16] M. Hashemzadeh, K. Raeissi, F. Ashrafizadeh, S. Khorsand, Effect of ammonium chloride on microstructure, super-hydrophobicity and corrosion resistance of nickel coatings, Surf. Coatings Technol. 283, 318-328 (2015). DOI: https://doi.org/10.1016/j.surfcoat.2015.11.008
Go to article

Authors and Affiliations

K. Skibińska
1
ORCID: ORCID
S. Semeniuk
1
D. Kutyła
1
ORCID: ORCID
K. Kołczyk-Siedlecka
1
ORCID: ORCID
A. Jędraczka
1
ORCID: ORCID
P. Żabiński
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059, Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Nowadays the automotive industry mostly prefers innovative solid-state welding technologies that would enable to welding of lightweight and high-performance materials. In this work, 3105-H18 Aluminium alloy (Al) and pure Copper (Cu) specimens with 0.5 mm thickness have been ultrasonically welded in a dissimilar (Al-Cu) manner. Optimization of process parameters of ultrasonic welding has been carried out through full factorial method, three levels of variables considered for this experimental studies namely, weld pressure, amplitude, and time, also each variable interaction with welding strength has been studied. Additionally, micro-hardness and microstructure investigation in welded joints has been studied. The result shows that the weld strength greatly influenced weld amplitude at a medium and higher level of weld pressure. The interface micro-hardness of the welded joint has lower compared to the base metal.
Go to article

Bibliography

[1] H . Peng, X. Jiang, X. Bai, D. Li, D. Chen, Metals 8 (4), 2075-4701 (2018). DOI: https://doi.org/10.3390/met8040229
[2] A.B. Pereira, A. Cabrinha, F. Rocha, P. Marques, F.A. Fernandes, R.J. Alves de Sousa, Metals 9 (1), 102 (2019). DOI: https://doi.org/10.3390/met9010102
[3] N. Eslami, Y. Hischer, A. Harms, D. Lauterbach, S. Böhm, Metals 9 (2), 179 (2019). DOI: https://doi.org/10.3390/met9020179
[4] N. Eslami, Y. Hischer, A. Harms, D. Lauterbach, S. Böhm, Metals 9 (1), 63 (2019). DOI: https://doi.org/10.3390/met9010063
[5] Z. Ni, F. Ye, Mater. Lett. 182 (19-22), (2016). DOI: https://doi.org/10.1016/j.matlet.2016.06.071
[6] S . Salifu, D. Desai, O. Ogunbiyi, R. Sadiku, O. Adesina, O. Adesina, Mater. Today:. Proc., (2020). DOI: https://doi.org/10.1016/j.matpr.2020.03.828
[7] J . Wang, W. Wei, X. Huang, L. Li, F. Pan, Mater. Sci. Eng. A, 529, 497 (2011). DOI: https://doi.org/10.1016/j.msea.2011.09.058
[8] D.-M. Iordache, C.-M. Ducu, E.-L. Niţu, D. Iacomi, A.-G. Plăiaşu, MATEC Web of Conferences. 112: p. 04005, (2017). DOI: https://doi.org/10.1051/matecconf/201711204005
[9] J . Lee, D. Bae, W. Chung, K. Kim, J. Lee, Y. Cho, J. Mater. Process. Technol. 187, 546-549 (2007). DOI: https://doi.org/10.1016/j.jmatprotec.2006.11.121
[10] S . Elangovan, K. Prakasan, V. Jaiganesh, Int. J. Adv. Manuf. Technol. 51 (1-4), 163-171 (2010). DOI: https://doi.org/10.1007/s00170-010-2627-1
[11] M.P. Satpathy, B.R. Moharana, S. Dewangan, S.K. Sahoo, Eng. Sci. Technol. Int. J. 18 (4), 634-647 (2015). DOI: https://doi.org/10.1016/j.jestch.2015.04.007
[12] E . Sooriyamoorthy, S.P.J. Henry, P. Kalakkath, Int. J. Adv. Manuf. Technol. 55 (5-8), 631-640 (2011). DOI: https://doi.org/10.1007/s00170-010-3059-7
[13] M.P. Satpathy, S.K. Sahoo, S. Datta, Appl. Mech. Mater. 592, 652-657 (2014). DOI: https://doi.org/10.4028/www.scientific.net/AMM.592- 594.652
[14] U . Khan, N.Z. Khan, J. Gulati, Procedia. Eng. 173, 1447-1454 (2017). DOI: https://doi.org/10.1016/j.proeng.2016.12.210
[15] J . Liu, B. Cao, J. Yang, J. Manuf. Process. 35, 595-603, (2018). DOI: https://doi.org/10.1016/j.jmapro.2018.09.008
Go to article

Authors and Affiliations

A. Mohan Kumar
1
ORCID: ORCID
R. Rajasekar
1
ORCID: ORCID
V. Karthik
2
ORCID: ORCID
S. Kheawhom
3
ORCID: ORCID

  1. School of Building and Mechanical Sciences, Kongu Engineering College, Erode, Tamilnadu, India - 6380602
  2. NIT, Tiruchirappalli, Department of Metallurgical and Materials Engineering, Tamilnadu, India – 620015
  3. Chulalongkorn University, Faculty of Engineering, Department of Chemical Engineering, Bangkok, Thailand – 10330
Download PDF Download RIS Download Bibtex

Abstract

This study is to find the extent of variation in mechanical properties between plate and pipe welds fabricated out of the same FSW process parameters. Common thickness of 3 mm along with similar tool specifications is used to fabricate the weld. Process parameters of tool rotational speed 2000 rpm and weld speed 94 mm/min that was defined as optimal for pipe weld is used as common process parameters. Welds are analyzed for hardness and tensile properties. Yield strength and ultimate tensile strength varied about 8.1% and 11.2% respectively between plate and pipe welds. The hardness of the stir zones varied about 11.6% between plate and pipe welds.
Go to article

Bibliography

[1] G . Mathers, The welding of aluminium and its alloys. Woodhead publishing (2002).
[2] T.H. Tra, ASEAN Engineering Journal 4, 73-81 (2011).
[3] A. Ismail, M. Awang, M.A. Rojan, S.H. Samsudin, ARPN J. Eng. Appl. Sci. 11 (1), 277-280 (2006).
[4] P. Manikkavasagan, G. Rajamurugan, K.S. Kumar, D. Yuvaraj, In: Mater. Sci. Forum. 302-305 (2015).
[5] K.A. Prabha, P.K. Putha, B.S. Prasad, Mater. Today-Proc 5 (9), 18535-18543 (2018). https://doi.org/10.1016/j.matpr.2018.06.196
[6] K. Elangovan, V. Balasubramanian, J. Mater. Process Tech. 200 (1), 163-175 (2008). DOI: https://doi.org/10.1016/j.jmatprotec.2007.09.019
[7] D. Maneiah, K.P. Rao, K.B. Raju, Int. J. Adv. Res. Technol. 4 (12), 53-57 (2017). DOI: https://doi.org/10.22161/ijaers.4.12.10
[8] S. Ragu Nathan, V. Balasubramanian, S. Malarvizhi, A.G. Rao, Def. Technol. 11 (3), 308-317 (2015). DOI: https://doi.org/10.1016/j.dt.2015.06.001
[9] A. Ismail, M. Awang, H. Fawad, K. Ahmad, in: Proceedings of the 7th Asia Pacific IIW International Congress, Singapore, 78-81 (2013).
[10] I . Sabry, A. Khourshid, H. Hindawy, A. Elkassas, Engineering and Technology in India, 2 (1), 1-14 (2017). DOI: https://doi.org/10.15740/HAS/ETI/8.1&2/1-14
[11] M. Akbari, P. Asadi, Mater. Res. Express 6 (6), 066545 (2019). DOI: https://doi.org/10.1088/2053-1591/ab0d72
[12] S.M. Senthil, R. Parameshwaran, S. Ragu Nathan, M. Bhuvanesh Kumar, K. Deepandurai, Struct. Multidiscip. O. 62 (4), 1117-1133 (2020). DOI: https://doi.org/10.1007/s00158-020-02542-2
[13] S.M. Senthil, R. Parameshwaran, S.R. Nathan, S. Karthi, Russ. J. Nondestruct. 55 (12), 957-966 (2019). DOI: https://doi.org/10.1134/S1061830919120106
[14] I . Mumvenge, S.A. Akinlabi, P.M. Mashinini, O.S. Fatoba, J. Okeniyi, E.T. Akinlabi, in: IOP Conf. Ser- Mat. Sci., 012035 (2018). DOI: https://doi.org/10.1088/1757-899X/413/1/012035
[15] A. Ismail, M. Awang, F. Ab Rahman, B.A. Baharudin, P.Z.M. Khalid, D.A. Hamid, in: Engineering Applications for New Materials and Technologies, 439-444 (2018). DOI: https://doi.org/10.1007/978-3-319-72697-7_35
[16] J.S. Sashank, P. Sampath, P.S. Krishna, R. Sagar, S. Venukumar, S. Muthukumaran, Mater. Today-Proc, 5 (2), 8348-8353 (2018). DOI: https://doi.org/10.1016/j.matpr.2017.11.527
[17] J. Tang, Y.J. Shen, Manuf. Process 29, 29-40 (2017). DOI: https://doi.org/10.1016/j.jmapro.2017.07.005
Go to article

Authors and Affiliations

S.M. Senthil
1
ORCID: ORCID
S. Ragu Nathan
2
R. Parameshwaran
1
ORCID: ORCID
M. Bhuvanesh Kumar
3

  1. Kongu Engineering College, Erode, India
  2. Sree Vidyan Ikethan Engineering College, Tirupati, India
  3. National Institute of Technology, Tiruchirappalli, India
Download PDF Download RIS Download Bibtex

Abstract

β-FeSi2 with the addition of B4C nanoparticles was manufactured by sintering mechanically alloyed Fe and Si powders with Mn, Co, Al, P as p and n-type dopants. The consolidated samples were subsequently annealed at 1123 K for 36 ks. XRD analysis of sinters after annealing confirmed nearly full transformation from α and ε into thermoelectric β-FeSi2 phase. SEM observations of samples surface were compliant with the diffraction curves. TEM observations allowed to depict evenly distributed B4C nanoparticles thorough material, with no visible aggregates and establish grain size parameter d2 < 500 nm. All dopants contributed to lower thermal conductivity and Seebeck coefficient, with Co having strongest influence on increasing electrical conductivity in relation to reference FeSi2. Combination of the addition of Co as dopant and B4C nanoparticles as phonon scatterer resulted in dimensionless figure of merit ZT reaching 7.6 × 10–2 at 773 K for Fe0.97Co0.03Si2 compound.
Comparison of the thermoelectric properties of examined sinters to the previously manufactured of the same stoichiometry but without B4C nanoparticles revealed theirs overall negative influence.
Go to article

Bibliography

[1] S. Twaha, J. Zhu, Y. Yan, B. Li, A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement, Renewable and Sustainable Energy Reviews 65, 698-726 (2016).
DOI : https://doi.org/10.1016/j.rser.2016.07.034
[2] R .M. Ware, D.J. McNeill, Iron disilicide as a thermoelectric generator material, Proc. Inst. Electr. Eng. 111, 178 (1964). DOI : https://doi.org/10.1049/piee.1964.0029
[3] T. Kojima, Semiconducting and Thermoelectric Properties of Sintered Iron Disilicide, Phys. Stat. Sol. (A) 111, 233-242 (1989). DOI : https://doi.org/10.1002/pssa.2211110124
[4] M . Takeda, M. Kuramitsu, M. Yoshio, Anisotropic Seebeck coefficient in β-FeSi2 single crystal, Thin Solid Films 461, 179-181 (2004). DOI : https://doi.org/10.1016/j.tsf.2004.02.066
[5] M . Ito, T. Tada, S. Katsuyama, Thermoelectric properties of Fe0.98Co0.02Si2 with ZrO2 and rare-earth oxide dispersion by mechanical alloying, J. Alloys Compd. 350, 296-302 (2003). DOI : https://doi.org/10.1016/S0925-8388(02)00964-7
[6] K . Biswas, J. He, I. Blum, et al., High-performance bulk thermoelectrics with all-scale hierarchical architectures, Nature 489, 414-418 (2012). DOI : https://doi.org/10.1038/nature11439
[7] A . Michalski, M. Rosiński, Pulse Plasma Sintering and Applications, Adv. Sinter. Sci. Technol. 219-226 (2017).
[8] K .F. Cai, C.W. Nan, X.M. Min, The effect of silicon addition on thermoelectric properties of a B4C ceramic, Materials Science and Engineering: B 67, 3, 1999, 102-107 (1999). ISSN 0921-5107. DOI : https://doi.org/10.1016/S0921-5107(99)00220-2
[9] Y. Ohba, T. Shimozaki, H. Era, Thermoelectric Properties of Silicon Carbide Sintered with Addition of Boron Carbide, Carbon, and Alumina, Materials Transactions 49, 6, 1235-1241 (2008). DOI : http://dx.doi.org/10.2320/matertrans.MRA2007232
[10] M .J. Kruszewski et al., Microstructure and Thermoelectric Properties of Bulk Cobalt Antimonide (CoSb3) Skutterudites Obtained by Pulse Plasma Sintering, J. Electron. Mater. 45, 1369-1376 (2016). DOI : https://doi.org/10.1007/s11664-015-4037-5
[11] A. Michalski, D. Siemiaszko, Nanocrystalline cemented carbides sintered by the PPS method, Int. J. Refract. Met. Hard Mater. 25, 153 (2007). DOI : https://doi.org/10.1016/j.ijrmhm.2006.03.007
[12] A.M. Abyzov, M.J. Kruszewski, Ł. Ciupiński, M. Mazurkiewicz, A. Michalski, K.J. Kurzydłowski, Diamond-tungsten based coating- copper composites with high thermal conductivity produced by Pulse Plasma Sintering, Mater. Des. 76, 97 (2015). DOI : https://doi.org/10.1016/j.matdes.2015.03.056
[13] J. Grzonka, J. Kruszewski, M. Rosiński, Ł. Ciupiński, A. Michalski, K.J. Kurzydłowski, Interfacial microstructure of copper/ diamond composites fabricated via a powder metallurgical route, Mater. Charact. 99, 188 (2015). DOI : https://doi.org/10.1016/j.matchar.2014.11.032
[14] M. Rosiński, J. Wachowicz, T. Płociński, T. Truszkowski, A. Michalski, Properties of WCCO/diamond composites produced by PPS method intended for drill bits for machining of building stones, Ceram. Trans. 243, 181 (2014). DOI : https://doi.org/10.1002/9781118771464
[15] W. Liu, X. Yan, G. Chen, Z. Ren, Recent advances in thermoelectric nanocomposites, Nano Energy 1, 42-56 (2012). DOI : https://doi.org/10.1016/j.nanoen.2011.10.001
[16] F. Dąbrowski, Ł. Ciupiński, J. Zdunek, J. Kruszewski, R. Zybała, A. Michalski, K.J. Kurzydłowski, Microstructure and thermoelectric properties of p and n type doped β-FeSi2 fabricated by mechanical alloying and pulse plasma sintering, Materials Today: Proceedings 8, 2, 531-539 (2019). DOI : https://doi.org/10.1016/j.matpr.2019.02.050
[17] M. Ito, H. Nagai, S. Katsuyama, K. Majima, Thermoelectric properties of β-FeSi2 with B4C and BN dispersion by mechanical alloying, J. Mat. Science 37, 2609-2614 (2002). DOI : https://doi.org/10.1023/A:1015891811725
[18] M . Ito, H. Nagai, T. Tanaka, S. Katsuyama, K. Majima, Thermoelectric performance of n-type and p-type β-FeSi2 prepared by pressureless sintering with Cu addition, J. Alloys Compd. 319, 303-311 (2001). DOI : https://doi.org/10.1016/S0925-8388(01)00920-3
[19] N . Niizeki, et al., Effect of Aluminum and Copper Addition to the Thermoelectric Properties of FeSi2 Sintered in the Atmosphere, Mater. Trans. 50, 1586-1591 (2009). DOI : https://doi.org/10.2320/matertrans.E-M2009808
[20] A . Heinrich, et al., Thermoelectric properties of β-FeSi2 single crystals and polycrystalline β-FeSi2+x thin films, Thin Solid Films 381, 287-295 (2001). DOI : https://doi.org/10.1016/S0040-6090(00)01758-2
[21] K. Nogi, T. Kita, Rapid production of β-FeSi2 by spark-plasma sintering, J. Mater. Sci. 35, 5845-5849 (2000). DOI : https://doi.org/10.1023/A:1026752206864
[22] J. Tani, H. Kido, Electrical properties of Co-doped and Ni-doped β-FeSi2, J. Appl. Phys. 84, 1408 (1998). DOI : https://doi.org/10.1063/1.368174
[23] H . Nagai, M. Ito, S. Katsuyama, K. Majima, The Effect of Co and Ni Doping on the Thermoelectric Properties of Sintered β-FeSi2, Journal of the Japan Society of Powder and Powder Metallurgy, Released December 04, 2009. DOI : https://doi.org/10.2497/jjspm.41.560
[24] H.Y. Chen, X.B. Zhao, C. Stiewe, D. Platzek, E. Mueller, Microstructures and thermoelectric properties of Co-doped iron disilicides prepared by rapid solidification and hot pressing, J. Alloys Compd. 433, 338-344 (2007). DOI : https://doi.org/10.1016/j.jallcom.2006.06.080
[25] Y . Ohta, S. Miura, Y. Mishima, Thermoelectric semiconductor iron disilicides produced by sintering elemental powders, Intermetallics, 7, 1203-1210 (1999). DOI : https://doi.org/10.1016/S0966-9795(99)00021-7
[26] H .Y. Chen, X.B. Zhao, T.J. Zhu, Y.F. Lu, H.L. Ni, E. Muller, A. Mrotzek, Influence of nitrogenizing and Al-doping on microstructures and thermoelectric properties of iron disilicide materials, Intermetallics 13, 704-709 (2005). DOI : https://doi.org/10.1016/j.intermet.2004.12.019
[27] M . Ito, H. Nagai, E. Oda, S. Katsuyama, K. Majima, Effects of P doping on the thermoelectric properties of β-FeSi2, J. Appl. Phys. 91, 2138-2142 (2002). DOI : https://doi.org/10.1063/1.1436302
[28] X. Qu, S. Lü, J. Hu, Q. Meng, Microstructure and thermoelectric properties of β-FeSi2 ceramics fabricated by hot-pressing and spark plasma sintering, J. Alloys Compd. 509, 10217-10221 (2011). DOI : https://doi.org/10.1016/j.jallcom.2011.08.070
[29] Y. Ma, R. Heijl, A.E.C. Palmqvist, Composite thermoelectric materials with embedded nanoparticles, J Mater Sci 48, 2767-2778 (2013). DOI : https://doi.org/10.1007/s10853-012-6976-z
[30] T. Wejrzanowski, Computer Assisted Analysis of Gradient Materials Microstructure, Masters Thesis, Warsaw University of Technology (2000).
[31] K. Nogi, T. Kita, X-Q. Yan, Optimum Sintering and Annealing Conditions for β-FeSi2 Formed by Slip Casting, J. Ceram. Soc. Japan 109, 265-269 (2001). DOI : https://doi.org/10.2109/jcersj.109.1267_265
[32] G. Shao, K.P. Homewood, On the crystallographic characteristics of ion beam synthesized, Intermetallics 8, 1405-1412 (2000). DOI : https://doi.org/10.1016/S0966-9795(00)00090-X
Go to article

Authors and Affiliations

F. Dąbrowski
1
ORCID: ORCID
Ł. Ciupiński
1
ORCID: ORCID
J. Zdunek
1
ORCID: ORCID
W. Chromiński
1
ORCID: ORCID
M. Kruszewski
1
ORCID: ORCID
R. Zybała
1 2
ORCID: ORCID
A. Michalski
1
K.J. Kurzydłowski
1

  1. Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warszawa, Poland
  2. Łukasiewicz Research Network, Institute of Microelectronics and Photonics, 32/46, Lotników Str., 02-668 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Metal-intermetallic layered (MIL) composites attract considerable attention due to their remarkable structural and ballistic performance. This study aimed to develop a Ti/Al-based multilayered MIL material by adding ceramic powders, since they can improve the composite’s impact resistance. To this end, an experiment was conducted which a stack of alternating Ti and Al sheets bonded by hot pressing; Ti/Al multilayers containing additional layers of Al2O3 and SiC powders were also produced. The samples obtained were examined using electron microscopy techniques. The clads’ mechanical properties were investigated using a Charpy hammer. In the reaction zone, only one intermetallic phase occurred: the Al3Ti phase. The model with an additional Al2O3 layer showed the highest impact energy. None of the Ti/Al clads broke during the Charpy impact test, a result proving their high ductility.
Go to article

Bibliography

[1] I.A. Bataev, A.A. Bataev, V.I. Mali, D.V. Pavliukova, Structural and mechanical properties of metallic-intermetallic laminate composites produced by explosive welding and annealing, Mater. Design 35, 225-234 (2012). DOI: https://doi.org/10.1016/j.matdes.2011.09.030
[2] F. Foadian, M. Soltanieh, M. Adeli, M. Etminanbakhsh, A Study on the Formation of Intermetallics During the Heat Treatment of Explosively Welded Al-Ti Mulitlayers, Metall. Mater. Trans. A 45A, 1823 (2014). DOI: https://doi.org/10.1007/s11661-013-2144-6
[3] H. Paul, Ł. Maj, M. Prażmowski, A. Gałka, M. Miszczyk, P. Petrzak, Microstructure and mechanical properties of multilayered Al/Ti composites produced by explosive welding, Procedia Manufacturing 15, 1391-1398 (2018). DOI: https://doi.org/10.1016/j.promfg.2018.07.343
[4] D.M. Fronczek, R. Chulist, Z. Szulc, J. Wojewoda-Budka, Growth kinetics of TiAl3 phase in annealed Al/Ti/Al explosively welded clads, Mater. Lett. 198, 160-163 (2017). DOI: https://doi.org/10.1016/j.matlet.2017.04.025
[5] F. Kong, Y. Chen, D. Zhang, Interfacial microstructure and shear strength of Ti-6Al-4V/TiAl laminate composite sheet fabricated by hot packed rolling, Mater. Design 32, 3167-3172 (2011). DOI: https://doi.org/10.1016/j.matdes.2011.02.052
[6] H. Xiao, Z. Qi, C. Yu, C. Xu, Preparation and properties for Ti/ Al clad plates generated by differential temperature rolling, J. Mater. Process. Tech. 249, 285-290 (2017). DOI: https://doi.org/10.1016/j.jmatprotec.2017.06.013
[7] M. Fan, Z. Luo, Z. Fu, X. Guo, J. Tao, Vacuum hot pressing and fatigue behaviors of Ti/Al laminate composites, Vacuum 154, 101- 109 (2018). DOI: https://doi.org/10.1016/j.vacuum.2018.04.047
[8] L. Qin, M. Fan, X. Guo, J. Tao, Plastic deformation behaviors of Ti-Al laminated composite fabricated by vacuum hot-pressing, Vacuum 155, 96-107 (2018). DOI: https://doi.org/10.1016/j.vacuum.2018.05.021
[9] J . Li, K.H. Wang, K. Zhang L.L. Kang, H. Liang, Mechanism of interfacial reaction between Ti and Al-ceramic, Mater. Design 105, 223-233 (2016). DOI: https://doi.org/10.1016/j.matdes.2016.05.073
[10] G .H.S.F.L. Carvalho, I. Galvão, R. Mendes, R.M. Leal, A. Loureiro, Explosive welding of aluminium to stainless steel, J. Mat. Process. Tech. 262, 340-349 (2018). DOI: https://doi.org/10.1016/j.jmatprotec.2018.06.042
[11] I. D. Zakharenko, Critical conditions in detonation welding, Fizika Goreniya i Vzryva 8 (3), 422-427 (1972).
[12] M. Tayyebi, D. Rahmatabadi, M. Adhami, R. Hashemi, Influence of AR B technique on the microstructural, mechanical and fracture properties of the multilayered Al1050/Al5052 composite reinforced by SiC particles, J. Mater. Res. Tech. 8 (5), 4287-4301 (2019). DOI: https://doi.org/10.1016/j.jmrt.2019.07.039
[13] M.N. Yuan, Lili Li, Zh J. Wang, Study of the microstructure modulation and phase formation of Ti-Al3Ti laminated composites, Vacuum 157, 481-486 (2018). DOI: https://doi.org/10.1016/j.vacuum.2018.09.002
Go to article

Authors and Affiliations

W. Kowalski
1
ORCID: ORCID
H. Paul
1
ORCID: ORCID
P. Petrzak
1
ORCID: ORCID
Ł. Maj
1
ORCID: ORCID
I. Mania
1
ORCID: ORCID
M. Faryna
1
ORCID: ORCID

  1. Institute of Metallurgy and Materials Science , Polish Academy of Sciences , 25 Reymonta Str., 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

On the basis of research, the mechanisms of dissolution and erosion during brazing of aluminium alloys and the influence of these phenomena on brazed joints of heat exchangers are presented. A number of factors have been identified that affect the formation of these phenomena during brazing aluminium alloys, these include : the maximum temperature and holding time at brazing temperature, and the type and amount of filler metal. The research was supported by examples of dissolution and erosion phenomena during series production of aluminium heat exchangers using three brazing profiles (normal, hot and very hot). It has been found that the dissolution of the engine radiator components during brazing, is from 18 to 68%, depending on the brazing profile used. For a very hot profile, erosion in part of the brazed exchanger, even destroys (removes) thin elements of the cooling fins.
Go to article

Bibliography

[1] E . Frąckowiak, W. Mroziński, Using flame brazing technology for producing aluminum automotive heat exchangers, Welding Technology Review 9, 57-62 (2007).
[2] Z. Mirski, K. Granat, A. Misiek, Brazing of aluminum heat exchangers in the automotive industry, Spajanie materiałów konstrukcyjnych 2, 32-34 (2015).
[3] D . Pritchard, Soldering, Brazing, Welding; Crowood Press. (2001).
[4] Z. Mirski, J. Pabian, Modern trends in production of brazed heat exchangers for automotive industry. Welding Technology Review 89 (8), 5-12 (2017).
[5] J. Pilarczyk (Ed.), Engineer’s Guide: Welding, 2, WNT, Warszawa (2014).
[6] K . Ferjutz, J.R. Davis. ASM Handbook 6, Welding, Brazing, and Soldering. 10th ed. ASM International; (1993).
[7] M. Motyka, L. Orman, M. Lech-Grega, M. Nowak, Advanced technics in analysis of quality problems in aluminium brazed heat exchangers, Rudy i Metale Nieżelazne 7 (2010).
[8] J. Nowacki, M. Chudziński, P. Zmitrowicz, Brazing in Mechanical Engineering, WNT, Warszawa (2007).
[9] K . Hyun-Ho, L. Soon-Bok, Effect of a brazing process on mechanical and fatigue behavior of alclad aluminum 3005, Journal of Mechanical Science and Technology 26 (7), 2111-2115 (2012).
[10] A . Sharma, S.H. Lee, H.O. Ban, Y.S. Shin, J.P. Jung, Effect of various factors on the brazed joint properties in Al brazing technology, Journal of Welding and Joining 34 (2), 30-35 (2016).
[11] P.K. Velu, Study of the Effect of Brazing On Mechanical Properties of Aluminum Alloys For Automotive Heat Exchangers; A Thesis Submitted to the Faculty of Purdue University. In Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering Purdue University Indianapolis, Indiana, USA (2017).
[12] M. Nylén, U. Gustavsson, W.B. Hutchinson, A. Örtnäs, Mechanistic Studies of Brazing in Clad Aluminium Alloys, Materials Science Forum 217-222, 1703-1708 (1996).
[13] M. Nylén, U. Gustavsson, W.B. Hutchinson, Å. Karlsson, The Mechanism of Braze Metal Penetration by Migration of Liquid Films of Aluminium Alloys, Materials Science Forum 331-337, 1737-1742 (2000).
[14] T. Yiyou, T. Zhen, J. Jianqing, Effect of Microstructure on Diffusional Solidification of 4343/3005/4343 Multi-Layer Aluminum Brazing Sheet. The Minerals, Metals & Materials Society and ASM International (2012).
[15] M. Nylén, U. Gustavsson, W.B. Hutchinson, Å. Karlsson, H. Johansson, Mechanisms of Erosion during Brazing of Aluminium Alloys, Materials Science Forum 396-402, 1585-1590 (2002).
[16] T. Izumi, T. Ueda, Influence of Erosion Phenomenon on Flow Behavior of Liquid Al-Si Filler Between Brazed Component; 13th International Conference on Aluminum Alloys (ICAA13) Pittsburgh (2012).
Go to article

Authors and Affiliations

Z. Mirski
1
ORCID: ORCID
J. Pabian
2
ORCID: ORCID
T. Wojdat
1
ORCID: ORCID

  1. Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Department of Metal Forming, Welding and Metrology, 27 Wybrzeże Wypiańskiego, 50-370 Wrocław, Poland
  2. Research & Development, MAHLE Behr Ostrów Wielkopolski
Download PDF Download RIS Download Bibtex

Abstract

Much zinc residue is produced during the traditional processes involved in zinc hydrometallurgy in the leaching stage: its composition is complex and valuable metals are difficult to recover therefrom. If not handled properly, it can lead to a waste of resources and environmental pollution. To solve this problem, zinc leach residue specimens were treated using the carbothermal reduction method (CTR) that is easy to operate and has a high energy utilisation rate. The methods, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and scanning transmission electron microscopy (STEM) were used for analytical characterisation. Based on this, this research investigated a structure-function relationship between microstructures and microwave-absorbing properties of ZnO smoke from CTR-treated zinc leach residue. The results demonstrate that microstructures and macro-properties of ZnO smoke obtained at different temperatures differ greatly. Under conditions including a calcination temperature of 1250°C, holding time of 60 min, and addition of 50% and 10% of powdered coal and CaO separately, the ZnO content in the obtained smoke is 99.14%, with regular micron-sized ZnO particles therein. For these particles, the minimum reflection loss (RLmin) reached –25.56 dB at a frequency of 15.84 GHz with a matching thickness of 5 mm. Moreover, frequency bandwidth corresponding to RL < –10 dB can reach 2.0 GHz. ZnO smoke obtained using this method is found to have excellent microwave-absorbing performance, which provides a new idea for high-value applications of zinc-rich residue.
Go to article

Bibliography

[1] M. Li, B. Peng, L.Y. Chai, Technological Mineralogy and Environmental Activity of Zinc Leaching Residue from Zinc Hydrometallurgical Process, T. Nonfer. Metal. Soc. 23 (5), 1480-1488 (2013). DOI: https://doi.org/10.1016/S1003-6326(13)62620-5
[2] G .M. Jiang, B. Peng, Y.J. Liang, Recovery of Valuable Metals from Zinc Leaching Residue by Sulfate Roasting and Water Leaching, T. Nonfer. Metal. Soc. 27, 1180-1187 (2017). DOI: https://doi.org/10.1016/S1003-6326(17)60138-9
[3] H . Yan, L.Y. Chai, B. Peng, A Novel Method to Recover Zinc and Iron from Zinc Leaching Residue, Mine Eng. 55, 103-110 (2014). DOI: https://doi.org/10.1016/j.mineng.2013.09.015
[4] W . Luo, Q. Feng, L. Ou, Kinetics of Saprolitic Laterite Leaching by Sulphuric Acid at Atmospheric Pressure, Mine Eng. 23 (6), 458- 462 (2010). DOI: https://doi.org/10.1016/j.mineng.2009.10.006
[5] L. Tang, C.B. Tang, J. Xiao, A Cleaner Process for Lead Recovery from Lead-containing Hazardous Solid Waste and Zinc Leaching Residue Via Reducing-matting Smelting, J. Clean Prod. 241, 1-8 (2019). DOI: https://doi.org/10.1016/j.jclepro.2019.118328
[6] A . Özverdi, M. Erdem, Environmental Risk Assessment and Stabilization/Solidification of Zinc Extraction Residue: I. Environmental Risk Assessment, Hydrometallurgy 100, 103-109 (2010). DOI: https://doi.org/10.1016/j.hydromet.2009.10.011
[7] J.M. Steer, A.J. Giffiths, Investigation of Carboxylic Acids and Non-aqueous Solvents for the Selective Leaching of Zinc from Blast Furnace Dust Slurry, Hydrometallurgy 140, 34-4 1(2013). DOI: https://doi.org/10.1016/j.hydromet.2013.08.011
[8] P. Xing, B.Z. Ma, P. Zeng, Deep Cleaning of a Metallurgical Zinc Leaching Residue and Recovery of Valuable Metals, Int. J. Min. Met. Mater. 24 (11), 1217-1227 (2017). DOI: https://doi.org/10.1007/s12613-017-1514-2
[9] S. Wang, Y.Y. Shen, S.Q. Zhang. Leaching of High Arsenic Content Dust and a New Process for the Preparation of Copper Arsenate, Arch. Metall. Mater. 63 (3), 1167-1172 (2018). DOI: https://doi.org/10.24425/123789
[10] X.B. Li, C. Wei, Z.G. Deng, Extraction and Separation of Indium and Copper from Zinc Residue Leach Liquor by Solvent Extraction, Sep. Purif. Technol. 156, 348-355 (2015). DOI: https://doi.org/10.1006/j.seppur.2015.10.021
[11] O .N. Kononova, A.G. Kholmogorov, N.V. Danilenko, Recovery of Silver from Thiosulfate and Thiocyanante Leach Solutions by Adsorption on Anion Exchange Resins and Activated Carbon, Hydrometallurgy 88, 189-195 (2007). DOI: https://doi.org/10.1016/j.hydromet.2017.03.012
[12] G .G. Mei, D.R. Wang, J.Y. Zhou, Zinc Hydrometallurgy [M], Central South University of Technology Press, 2001 China, Changsha.
[13] G . Yu, N. Peng, L. Zhou, Selective Reduction Process of Zinc Ferrite and its Application in Treatment of Zinc Leaching Residues. T. Nonfer. Metal. Soc. 55, 103-110 (2014). DOI: https://doi.org/10.1016/S1003-6326(15)63899-7
[14] I . M. Alibe, K.A. Matori, H.A.A. Sidek, The Influence of Calcination Temperature on Structural and Optical Properties of ZnOSiO2 Nanocomposite by Simple Thermal Treatment Route, Arch. Metall. Mater. 63 (2), 539-545 (2018). DOI: https://doi.org/10.24425/118972
[15] M.H. Tang, M.Z. Chen, X. Zhu, Elimination of 180° Non-uniqueness of ZnO Diffraction Pattern, Anal. Test. Technol. Instrum. 23 (2), 130-134 (2017). DOI: https://doi.org/10.16495/j.1006-3757.2017.02.012
[16] G .Z. Liu, Z.D. Wang, Z.G. Wan, Study on Microwave Synthesis of ZnO Microrods, J. Hubei. Univ. Technol. 22 (5), 5-7 (2007).
[17] I .M. Alibe, K.A. Matori, E. Saion, The Influence of Calcination Temperature on Structural and Pptical Properties of ZnO Nanoparticles Via Simple Polymer Synthesis Route, Sci. Sinter. 49 (3), 263-275 (2017). DOI: https://doi.org/10.2298/SOS1703263A
[18] I .M. Alibe, K.A. Matori, H.A.A. Sidek, Effects of Calcination Holding Time on Properties of Wide Band Gap Willemite Semiconductor Nanoparticles by the Polymer Thermal Treatment Method, Molecules 23 (4), 1-18 (2018). DOI: https://doi.org/10.3390/molecules23040873
[19] S. Geetha, K.K.K. Satheesh, C.R.K. Rao, EMI Shielding: Methods and Materials. A Review. J. Appl. Polym. Sci. 112 (4), 2073-2086 (2010). DOI: https://doi.org/10.1002/app.29812
[20] L.L. Yan, M. Zhang, S.C. Zhao, Wire-in-tube ZnO@carbon by Molecular Layer Deposition: Accurately Tunable Electromagnetic Parameters and Remarkable Wave Absorption, Chem. Eng. J. 382, 1-11 (2020). DOI: https://doi.org/10.1016/j.cej.2019.122860
[21] X. Meng, Y.Q. Liu, G.H. Han, Three-dimensional (Fe3O4/ ZnO)@C Double-core@shell Porous Nanocomposites with Enhanced Broadband Wave Absorption, Carbon 162, 356-364 (2020). DOI: https://doi.org/10.1016/j.carbon.2020.02.035
[22] L.Z. Zhao, S.X. Hu, S.W. Li, Absorption Principle and Research Progress of Absorbing Materials, Modern Defense. Technol. 35 (1), 27-31 (2007).
[23] X.J. Zhang, G.S. Wang, Y.Z. Wei, Polymer-composite with High Dielectric Constant and Enhanced Absorption Properties Based on Grapheme-CuS Nanocomposites and Polyvinylidene Fluoride, J. Mater. Chem. A 1 (39), 12115-12122 (2013). DOI: https://doi.org/10.1039/c3ta12451g
Go to article

Authors and Affiliations

Zhiwei Ma
1
ORCID: ORCID
Sheng Wang
1
ORCID: ORCID
Xueyan Du
1
ORCID: ORCID
Ji Zhang
1
ORCID: ORCID
Ruifeng Zhao
1
ORCID: ORCID
Shengquan Zhang
1
ORCID: ORCID

  1. Lanzhou University of Technology, State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou 730050, China
Download PDF Download RIS Download Bibtex

Abstract

The impact of Garnet addition into the AL7075 Aluminium matrix on the physical, mechanical and corrosion properties are studied in this research paper. Al 7075/garnet composites are fabricated by using two-stage stir casting method in different (0, 5, 10, 15) volume percentages. Photomicrograph of prepared samples revealed the uniform distribution of garnet reinforcement into the base matrix. The corrosion rate is calculated by potentiodynamic polarization method. The actual density is increased by around 1.2% for Al 7075 / garnet (15%) composite as compared to base alloy. Micro hardness of Al 7075 / garnet (15%) composite is raised by around 47 (34%) compare to as cast base matrix. Al7075 / garnet (15%) composite tensile strength stood at 252 Mpa, which is 40% greater than the base alloy. Al 7075 / 15% garnet composites reduce around 97% of corrosion rate than the base matrix. Alloy elements influenced the corrosion than Garnet reinforcement.
Go to article

Bibliography

[1] M. Murali, M. Sambathkumar, M.S. Saravanan, Univers. J. Mater. Sci. 2 (3), 49-53 (2014). DOI : https://doi.org/10.13189/ujms.2014.020301
[2] A . Baradeswaran, A. Elaya Perumal, Compos. Part B-Eng. 54 (0), 146-152 (2013). DOI : https://doi.org/10.1016/j.compositesb.2013.05.012
[3] V .V. Shanbhag, N.N. Yalamoori, S. Karthikeyan, R. Ramanujam, K. Venkatesan, Procedia Eng. 97 (0), 607-613 (2014). DOI : https://doi.org/10.1016/j.proeng.2014.12.379
[4] S. Devaganesh, P.D. Kumar, N. Venkatesh, R. Balaji, J. Mater. Res. Technol. 9 (3), 3759-3766 (2020). DOI : https://doi.org/10.1016/j.jmrt.2020.02.002
[5] S.A. Kumar, A.P. Kumar, B.B. Naik, B. Ravi, Mater. Today-Proc. 5 (9), 17924-17929 (2018). DOI : https://doi.org/10.1016/j.matpr.2018.06.121
[6] M.P. Kumar, K. Sadashivappa, G.P. Prabhukumar, S. Basavarajappa, Mater. Sci.-Medzg 12 (3), 209-213 (2006).
[7] J. Hashim, L. Looney, M.S.J. Hashmi, J. Mater. Process. Tech. 92-93 (0), 1-7 (1999). DOI : https://doi.org/10.1016/S0924-0136(99)00118-1
[8] A . Mandal, M. Chakraborty, B. Murty, Wear 262 (1-2), 160-166 (2007). DOI: https://doi.org/10.1016/j.wear.2006.04.003
[9] S. Sivakumar, K. Padmanaban, M. Uthayakumar, P.I. Mech Eng. J-J-Eng. 228 (12), 1410-1420 (2014). DOI : https://doi.org/10.1177/1350650114541107
[10] G. Ranganath, S. Sharma, M. Krishna, Wear 251 (1-12), 1408-1413 (2001). DOI: https://doi.org/10.1016/S0043-1648(01)00781-5
[11] M. Sambathkumar, P. Navaneethakrishnan, K. Ponappa, K. Sasikumar, Lat. Am. J. Solids Stru. 14 (2), 243-255 (2017). DOI : https://doi.org/10.1590/1679-78253132
[12] M.A. Prasad, N. Bandekar, Journal of Materials Science and Chemical Engineering 3 (03), 1 (2015). DOI : https://doi.org/10.4236/msce.2015.33001
[13] A . Baradeswaran, A.E. Perumal, Compos. Part B-Eng. 56, 464-471 (2014). DOI : https://doi.org/10.1016/j.compositesb.2013.08.013
[14] S. Kumar, A. Sharma, R. Arora, O. Pandey, J. Mater. Res. Technol. 8 (6), 5443-5455 (2019). DOI : https://doi.org/10.1016/j.jmrt.2019.09.012
[15] S.C. Sharma, Wear 249 (12), 1036-1045 (2001). DOI : https://doi.org/10.1016/S0043-1648(01)00810-9
[16] M. Uthayakumar, S. Aravindan, K. Rajkumar. Mater. Design 47, 456-464 (2013). DOI : https://doi.org/10.1016/j.matdes.2012.11.059
[17] A . Sharma, S. Kumar, G. Singh, O. Pandey, Particul. Sci. Technol. 33 (3), 234-239 (2015). DOI : https://doi.org/10.1080/02726351.2014.954686
[18] H .T. Naeem, F.F. Abdullah, Eclet. Quim. 44 (2), 45-52 (2019). DOI: https://doi.org/10.26850/1678-4618eqj.v44.2.2019
[19] K . Seah, M. Krishna, V. Vijayalakshmi, J. Uchil, Corros. Sci. 44 (5), 917-925 (2002). DOI : https://doi.org/10.1016/S0010-938X(01)00099-3
Go to article

Authors and Affiliations

M. Sambathkumar
1
ORCID: ORCID
P. Navaneethakrishnan
1
ORCID: ORCID
K.S.K. Sasikumar
1
ORCID: ORCID
R. Gukendran
1
ORCID: ORCID
K. Ponappa
2
ORCID: ORCID

  1. Kongu Engineering College, Department of Mechanical Engineering, Erode, Tamilnadu, India
  2. Indian Institute of Information Technology Design and Manufacturing Jabalpur, Department of Mechanical Engineering, Jabalpur, India
Download PDF Download RIS Download Bibtex

Abstract

In this research, the effect of sodium silicate (Na2SiO3) on the geopolymerization of fly ash type F (low calcium) has been studied. The variations of Na2SiO3 used in the synthesized geopolymers were 19, 32, and 41wt%. The fly ash from three different power plant sources was characterized using X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Particle Size Analyzer (PSA), and Scanning Electron Microscopy (SEM). Fly ash-based geopolymers were tested for mechanical strength and setting time. The best geopolymer was obtained by adding 32% Na2SiO3, produced a compressive strength of 21.62 MPa with a setting time of 30 hours. Additions of 19wt% Na2SiO3 failed to form geopolymer paste while the addition of 41wt% Na2SiO3 decreased the mechanical strength of the geopolymer. Higher calcium content in low calcium fly ash produces stronger geopolymer and faster setting time.
Go to article

Bibliography

[1] Y . Zhang, R. Xiao, X. Jiang, W. Li, X. Zhu, B. Huang, J. Cleaner. Prod. 273, 122970 (2020). DOI : https://doi.org/10.1016/j.jclepro.2020.122970
[2] İ.İ. Atabey, O. Karahan, C. Bilim, C.D. Atiş, Constr. Build. Mater. 264 (2020). DOI : https://doi.org/10.1016/j.conbuildmat.2020.120268
[3] C.L. Wong, K.H. Mo, U.J. Alengaram, S.P. Yap, J. Build. Eng. 32 101655 (2020). DOI : https://doi.org/10.1016/j.jobe.2020.101655
[4] A. Abdullah, K. Hussin, M.M.A.B. Abdullah, Z. Yahya, W. Sochacki, R.A. Razak, K. Błoch, H. Fansuri, Materials 14, 1111 (2021). DOI: https://doi.org/10.3390/ma14051111
[5] Y .S. Wang, Y. Alrefaei, J.G. Dai, Cem. Concr. Res. 127, 105932 (2020). DOI : https://doi.org/10.1016/j.cemconres.2019.105932
[6] F. Demir, E. Moroydor Derun, J. Non-Cryst. Solids. 524, 119649 (2019). DOI: https://doi.org/10.1016/j.jnoncrysol.2019.119649
[7] S. Top, H. Vapur, M. Altiner, D. Kaya, A. Ekicibil, J. Mol. Struct. 1202, 127236 (2020). DOI : https://doi.org/10.1016/j.molstruc.2019.127236
[8] O .H. Li, L. Yun-Ming, H. Cheng-Yong, R. Bayuaji, M.M.A.B. Abdullah, F.K. Loong, T.A. Jin, N.H. Teng, M. Nabiałek, B. Jeż, N.Y. Sing, Magnetochemistry 7 (1), 9 (2021). DOI : https://doi.org/10.3390/magnetochemistry7010009
[9] W.W.A. Zailani, M.M.A.B. Abdullah, M.F. Arshad, R.A. Razak, M.F.M. Tahir, R.R.M.A. Zainol, M. Nabialek, A.V. Sandu, J.J. Wysłocki, K. Błoch, Materials 14, 56 (2021). DOI : https://doi.org/10.3390/ma14010056
[10] M .A. Faris, M.M.A.B. Abdullah, R. Muniandy, M.F. Abu Hashim, K. Błoch, B. Jeż, S. Garus, P. Palutkiewicz, N.A. Mohd Mortar, M.F. Ghazali, Materials 14, 1310 (2021). DOI : https://doi.org/10.3390/ma14051310
[11] P. Zhang, Z. Gao, J. Wang, J. Guo, S. Hu, Y. Ling, J. Cleaner Prod. 270 122389 (2020). DOI : https://doi.org/10.1016/j.jclepro.2020.122389
[12] K .U. Ambikakumari Sanalkumar, M. Lahoti, E.H. Yang, Constr. Build. Mater. 225, 283-291 (2019). DOI : https://doi.org/10.1016/j.conbuildmat.2019.07.140
[13] D . Panias, I.P. Giannopoulou, T. Perraki, Colloids Surf. A. 301, 246-254 (2007). DOI : https://doi.org/10.1016/j.colsurfa.2006.12.064
[14] A .M. Kaja, A. Lazaro, Q.L. Yu, Constr. Build. Mater. 189, 1113- 1123 (2018). DOI : https://doi.org/10.1016/j.conbuildmat.2018.09.065
[15] M .N.S. Hadi, M. Al-Azzawi, T. Yu, Constr. Build. Mater. 175, 41-54 (2018). DOI: https://doi.org/10.1016/j.conbuildmat.2018.04.092
[16] X.Y. Zhuang, L. Chen, S. Komarneni, C.H. Zhou, D.S. Tong, H.M. Yang, W.H. Yu, H. Wang, J. Cleaner Prod. 125, 253-267 (2016). DOI: https://doi.org/10.1016/j.jclepro.2016.03.019.
[17] T . Hemalatha, A. Ramaswamy, J. Cleaner Prod. 147, 546-559 (2017). DOI: https://doi.org/10.1016/j.jclepro.2017.01.114
[18] C. Belviso, Prog. Energy Combust. Sci. 65, 109-135 (2018). DOI : https://doi.org/10.1016/j.pecs.2017.10.004
[19] R.E. Hidayati, G.R. Anindika, F.S. Faradila, C.I.B. Pamungkas, I. Hidayati, D. Prasetyoko, H. Fansuri, IOP Conf. Ser. Mater. Sci. Eng. Sci. Eng. 864 (2020). DOI : https://doi.org/10.1088/1757-899X/864/1/012017.
[20] J .G. Jang, H.K. Lee, Constr. Build. Mater. 102, 260-269 (2016). DOI: https://doi.org/10.1016/j.conbuildmat.2015.10.172
[21] H. Fansuri, N. Swastika, L. Atmaja, Akta Kimindo 3, 61-66 (2008).
[22] P. Rożek, M. Król, W. Mozgawa, Spectrochim. Acta – Part A. 198, 283-289 (2018). DOI: https://doi.org/10.1016/j.saa.2018.03.034
[23] V . Gupta, D.K. Pathak, S. Siddique, R. Kumar, S. Chaudhary, Constr. Build. Mater. 235, 117413 (2020). DOI : https://doi.org/10.1016/j.conbuildmat.2019.117413
[24] A . Mehta, R. Siddique, Constr. Build. Mater. 150, 792-807 (2017). DOI: https://doi.org/10.1016/j.conbuildmat.2017.06.067.
[25] S.K. Nath, S. Kumar, Constr. Build. Mater. 233, 117294 (2020). DOI: https://doi.org/10.1016/j.conbuildmat.2019.117294
[26] A . De Rossi, M.J. Ribeiro, J.A. Labrincha, R.M. Novais, D. Hotza, R.F.P.M. Moreira, Process Saf. Environ. Prot. 129, 130-137 (2019). DOI: https://doi.org/10.1016/j.psep.2019.06.026
[27] L .N. Assi, E. Eddie Deaver, P. Ziehl, Constr. Build. Mater. 167, 372-380 (2018). DOI : https://doi.org/10.1016/j.conbuildmat.2018.01.193
[28] D .-W. Zhang, D. Wang, Z. Liu, F. Xie, Constr. Build. Mater. 187, 674-680 (2018). DOI: https://doi.org/10.1016/j.conbuildmat. 2018.07.205
[29] P. Risdanareni, P. Puspitasari, E. Januarti Jaya, MAT EC Web Conf. 97 (2017). DOI : https://doi.org/10.1051/matecconf/20179701031
[30] B .G. Kutchko, A.G. Kim, Fuel. 85, 2537-2544 (2006). DOI : https://doi.org/10.1016/j.fuel.2006.05.016
[31] W.W.A. Zailani, A. Bouaissi, M.M. Al Bakri Abdullah, R. Abd Razak, S. Yoriya, M.A.A. Mohd Salleh, M.A.Z. Mohd Remy Rozainy, H. Fansuri, Appl. Sci. 10, 1-14 (2020). DOI : https://doi.org/10.3390/app10093321
[32] D .D. Burduhos Nergis, P. Vizureanu, L. Andrusca, D. Achitei, IOP Conference Series: Materials Science and Engineering. 572, 012026 (2019). DOI : https://doi.org/10.1088/1757-899X/572/1/012026
[33] D .D. Burduhos Nergis, P. Vizureanu, I. Ardelean, A.V. Sandu, O. Corbu, E. Matei, Materials 13, 3211 (2020). DOI : https://doi.org/10.3390/ma13020343
[34] D .W. Zhang, D.M. Wang, F.Z. Xie, Constr. Build. Mater. 207, 284-290 (2019). DOI : https://doi.org/10.1016/j.conbuildmat.2019.02.149
[35] L .H. Buruberri, D.M. Tobaldi, A. Caetano, M.P. Seabra, J.A. Labrincha, Elsevier Ltd, 2019. DOI : https://doi.org/10.1016/j.jobe.2018.11.017
[36] H. Fansuri, D. Prasetyoko, Z. Zhang, D. Zhang, Asia-Pac. J. Chem. Eng. 7 (1), 73-79 (2012). DOI: https://doi.org/10.1002/apj.493
Go to article

Authors and Affiliations

Ririn Eva Hidayati
1
Fitria Sandi Faradilla
1
Dadang Dadang
1
Lia Harmelia
1
Nurlina Nurlina
2
Didik Prasetyoko
1
Hamzah Fansuri
1

  1. Institut Teknologi Sepuluh Nopember, Department of Chemistry, Faculty of Science and Data Anlytics , Kampus ITS Sukolilo, Surabaya 60111, Indonesia
  2. Universitas Tanjungpura, Faculty of Mathematics and Natural Sciences, Department of Chemistry, Pontianak 78111, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

A n-type semiconductor ZnO has high transmittance features, excellent chemical stability and electrical properties. It is also commonly used in a range of fields, such as gas sensors, photocatalysts, optoelectronics, and solar photocell. Magnesium-doped zinc oxide (Mg-ZnO) nano powders were effectively produced using a basic chemical precipitation process at 45°C. Calcined Mg-ZnO nano powders have been characterized by FTIR, XRD, SEM-EDX and PL studies. XRD measurements from Mg-ZnO revealed development of a crystalline structure with an average particle size of 85 nm and SEM analysis confirmed the spherical morphology. Electrochemical property of produced Mg-ZnO nanoparticles was analyzed and the specific capacitance value of 729 F g–1 at 0.5 A g–1 current density was recorded and retained a specific capacitance ~100 percent at 2 A g–1 current density.
Go to article

Bibliography

[1] M . Kim, K.-J. Kim, S.-J. Lee, H.-M. Kim, S.-Y. Cho, M.-S. Kim, S.-H. Kim, K.-B. Kim, ACS Appl. Mater. Interfaces 9 (1), 701-709 (2017). DOI: https://doi.org/10.1021/acsami.6b12622
[2] S. Choi, S. I. Han, D. Kim, T. Hyeon, D.-H. Kim, Chem. Soc. Rev. 48 (6), 1566-1595 (2019). DOI: https://doi.org/10.1039/C8CS00706C
[3] L .H. Madkour, in Nanoelectron. Mater. Springer, 605-699 (2019). DOI: https://doi.org/10.1007/978-3-030-21621-4_16
[4] M . Rafique, M. B. Tahir, I. Sadaf, in Adv. Res. Nanosci. Water Technol. Springer, 95-131 (2019). DOI: https://doi.org/10.1007/978-3-030-02381-2_5
[5] T. Xiao, J. Huang, D. Wang, T. Meng, X. Yang, Talanta 206, 120210 (2020). DOI: https://doi.org/10.1016/j.talanta.2019.120210
[6] Y. Zhang, X. Xia, B. Liu, S. Deng, D. Xie, Q. Liu, Y. Wang, J. Wu, X. Wang, J. Tu, Adv. Energy Mater. 9 (8), 1803342 (2019). DOI: https://doi.org/10.1002/aenm.201803342
[7] F. Khurshid, M. Jeyavelan, M.S.L. Hudson, S. Nagarajan, R. Soc. Open Sci. 6 (2), 181764 (2019). DOI: https://doi.org/10.1098/rsos.181764
[8] M .M. Sajid, N.A. Shad, Y. Javed, S.B. Khan, N. Amin, Z. Zhang, Z. Imran, M.I. Yousuf, Appl. Nanosci. 10 (2), 421-433 (2020). DOI: https://doi.org/10.1007/s13204-019-01199-8
[9] H . Zeng, X. Zhao, F. Zhao, Y. Park, M. Sillanpää, Chem. Eng. J. 382, 122972 (2020). DOI: https://doi.org/10.1016/j.cej.2019.122972
[10] L . Zheng, F. Teng, X. Ye, H. Zheng, X. Fang, Adv. Energy Mater. 10 (1), 1902355 (2020). DOI: https://doi.org/10.1002/aenm.201902355
[11] M . Periyasamy, A. Kar, J. Mater. Chem. C 8 (14), 4604-4635 (2020). DOI: https://doi.org/10.1039/C9TC06469A
[12] S.K. Gupta, S. Gupta, A.K. Gupta, Adv. Sci. Eng. Med. 12 (1), 11-26 (2020). DOI: https://doi.org/10.1166/asem.2020.2516
[13] Z. Li, A. Khajepour, J. Song, Energy 182, 824-839 (2019). DOI: https://doi.org/10.1016/j.energy.2019.06.077
[14] S.A. Hashmi, N. Yadav, M.K. Singh, Polym. Electrolytes Charact. Tech. Energy Appl. 231-297 (2020). DOI: https://doi.org/10.1002/9783527805457.ch9
[15] X. Kong, L. Yang, Z. Cheng, S. Zhang, Materials 13 (1), 180 (2020). DOI: https://doi.org/10.3390/ma13010180
[16] B. Zhao, F. Mattelaer, J. Kint, A. Werbrouck, L. Henderick, M. Minjauw, J. Dendooven, C. Detavernier, Electrochimica Acta 320, 134604 (2019). DOI: https://doi.org/10.1016/j.electacta.2019.134604
[17] Y. Wang, C. Ma, C. Wang, P. Cheng, L. Xu, L. Lv, H. Zhang, Sol. Energy 189, 412-420 (2019). DOI: https://doi.org/10.1016/j.solener.2019.07.082
[18] J. Jiang, S. Liu, Y. Wang, Y. Liu, J. Fan, X. Lou, X. Wang, H. Zhang, L. Yang, Chem. Eng. J. 359, 746-759 (2019). DOI: https://doi.org/10.1016/j.cej.2018.11.190
[19] H .M.A. Javed, W. Que, M.R. Ahmad, K. Ali, M.I. Ahmad, A. ul Haq, S.K. Sharma, in Sol. Cells (Springer, 2020), pp. 25-54. DOI: https://doi.org/10.1007/978-3-030-36354-3
[20] S.E. Arasi, P. Devendran, R. Ranjithkumar, S. Arunpandiyan, A. Arivarasan, Mater. Sci. Semicond. Process. 106, 104785 (2020). DOI: https://doi.org/10.1016/j.mssp.2019.104785
[21] H .-C. Chen, Y.R. Lyu, A. Fang, G.J. Lee, L. Karuppasamy, J.J. Wu, C.K. Lin, S. Anandan, C.Y. Chen, Nanomaterials 10 (3), 475 (2020). DOI: https://doi.org/10.3390/nano10030475
[22] N . Sivakumar, J. Gajendiran, R. Jayavel, Chem. Phys. Lett. 745, 137262 (2020). DOI: https://doi.org/10.1016/j.cplett.2020.137262
[23] M .A.F. Mohd Shaifuddin, C.A. Che Abdullah, S.H. Ribut, N.S. Rosli, R. Mohd Zawawi, Malays. J. Sci. Health Technol. (2019). https://oarep.usim.edu.my/jspui/handle/123456789/5353
[24] G. Wu, Y. Song, J. Wan, C. Zhang, F. Yin, J. Alloys Compd. 806, 464-470 (2019). DOI: https://doi.org/10.1016/j.jallcom.2019.07.175
[25] S. Kasap, I.I. Kaya, S. Repp, E. Erdem, Nanoscale Adv. 1 (7), 2586-2597 (2019). DOI: https://doi.org/10.1039/C9NA00199A
[26] U . Bhat, S. Meti, Graphene-Based ZnO nanocomposites for Supercapacitor Applications in Graphene as Energy Storage Materials for Supercapacitors, Eds. Inamuddin, Rajender Boddula, Mohammad Faraz Ahmer and Abdullah M. Asiri, Materials Research Foundations 64, 181 (2020). DOI: https://doi.org/10.21741/9781644900550-7
[27] M . Ghosh, S. Mandal, A. Roy, S. Chakrabarty, G. Chakrabarti, S.K. Pradhan, Mater. Sci. Eng. C 106, 110160 (2020). DOI: https://doi.org/10.1016/j.msec.2019.110160
[28] R . Subbiah, S. Muthukumaran, V. Raja, Optik 164556 (2020). DOI: https://doi.org/10.1016/j.ijleo.2020.164556
[29] R . Sánchez-Tovar, E. Blasco-Tamarit, R.M. Fernández-Domene, M. Villanueva-Pascual, J. García-Antón, Surf. Coat. Technol. 125605 (2020). DOI: https://doi.org/10.1016/j.surfcoat.2020.125605
[30] N . Jayaprakash, R. Suresh, S. Rajalakshmi, S. Raja, E. Sundaravadivel, M. Gayathri, M. Sridharan, Mater. Technol. 35 (2), 112-124 (2020). DOI: https://doi.org/10.1080/10667857.2019.1659533
[31] M . Achehboune, M. Khenfouch, I. Boukhoubza, B.M. Mothudi, I. Zorkani, A. Jorio, J. Mater. Sci. Mater. Electron. 31 (6), 4595- 4604 (2020). DOI: https://doi.org/10.1007/s10854-020-03011-8
[32] C.V. Thulasi-Varma, B. Balakrishnan, H.-J. Kim, J. Ind. Eng. Chem. 81, 294-302 (2020). DOI: https://doi.org/10.1016/j.jiec.2019.09.017
[33] J. Yus, B. Ferrari, A.J. Sanchez-Herencia, Z. Gonzalez, Electrochimica Acta 335, 135629 (2020). DOI: https://doi.org/10.1016/j.electacta.2020.135629
[34] N . Liu, Z. Pan, X. Ding, J. Yang, G. Xu, L. Li, Q. Wang, M. Liu, Y. Zhang, J. Energy Chem. 41, 209-215 (2020). DOI: https://doi.org/10.1016/j.jechem.2019.05.008
[35] M . Bolsinger, M. Weller, S. Ruck, P. Kaya, H. Riegel, V. Knoblauch, Electrochimica Acta. 330, 135163 (2020). DOI: https://doi.org/10.1016/j.electacta.2019.135163
[36] H . Jia, Z. Wang, B. Tawiah, Y. Wang, C.-Y. Chan, B. Fei, F. Pan, Nano Energy 70, 104523 (2020). DOI: h ttps://doi.org/10.1016/j.nanoen.2020.104523
Go to article

Authors and Affiliations

S. Arul
1
ORCID: ORCID
T. Senthilnathan
2
ORCID: ORCID
V. Jeevanantham
3
ORCID: ORCID
K.V. Satheesh Kumar
4
ORCID: ORCID

  1. Jai Shriram Engineering College, Department of Physics, Tirupur-638660, Tamilnadu, India
  2. Sri Venkateshwara College of Engineering, Department of Applied Physics, Sriperumbudur-602117, Tamilnadu, India
  3. Vivekanandha College of Arts & Sciences for Women, Department of Chemistry, Tiruchengode 637205, Tamilnadu, India
  4. Kongu Engineering College, Department of Mechanical Engineering, Erode-638060, Tamilnadu, India

This page uses 'cookies'. Learn more