Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The most important feature of bells is their sound. Their clarity and beauty depend, first of all, on the bell’s geometry - particularly the shape of its profile and the mechanical properties of alloy. Bells are the castings that work by emitting sound in as-cast state. Therefore all features that are created during melting, pouring, solidification and cooling processes will influence the bell's sound. The mechanical properties of bronze depend on the quality of alloy and microstructure which is created during solidification and depend on its kinetics. Hence, if the solidification parameters influence the alloy’s properties, how could they influence the frequencies of bell`s tone? Taking into account alterable thickness of bell's wall and differences in microstructure, the alloy's properties in bell could be important. In the article authors present the investigations conducted to determine the influence of cooling kinetics on microstructure of bronze with 20 weight % tin contents.

Go to article

Authors and Affiliations

D. Bartocha
C. Baron
J. Suchoń
Download PDF Download RIS Download Bibtex

Abstract

The influence of the cooling rate on the extent of precipitation hardening of cast aluminum alloy (ADC12) was investigated experimentally. This study explored the cooling rate of the solidification of Cu in the α-Al phase to improve the mechanical properties of ADC12 after an aging process (Cu based precipitation hardening). The solid solution of Cu occurred in the α-Al phases during the casting process at cooling rates exceeding 0.03 °C/s. This process was replaced with a solid solution process of T6 treatments. The extent of the solid solution varied depending on the cooling rate; with a higher cooling rate, a more extensive solid solution was formed. For the cast ADC12 alloy made at a high cooling rate, high precipitation hardening occurred after low-temperature heating (at 175 °C for 20 h), which improved the mechanical properties of the cast Al alloys. However, the low-temperature heating at the higher temperature for a longer time decreased the hardness due to over aging. Keywords: Aluminum alloy, Casting, Precipitation, Solid solution, Aging, Solidification rate
Go to article

Bibliography

[1] Sepehrband, P., Mahmudi, R. & Khomamizadeh, F. (2005). Effect of Zr addition on the aging behavior of A319 aluminum cast alloy. Scripta Materialia. 52(4), 253-257.
[2] Rana, G., Zhoua, J.E. & Wang, Q.G. (2008). Precipitates and tensile fracture mechanism in a sand cast A356 aluminum alloy. Journal of Materials Processing Technology. 207(1-3), 46-52.
[3] Tian, L., Guo, Y., Li, J., Xia, F., Liang, M. & Bai, Y. (2018). Effects of solidification cooling rate on the microstructure and mechanical properties of a Cast Al-Si-Cu-Mg-Ni piston alloy. Materials. 11(7), 1230.
[4] Choi, S.W., Kima, Y.M., Leea, K.M., Cho, H.S., Hong, S.K., Kim, Y.C., Kang, C.S. & Kumai, S. (2014). The effects of cooling rate and heat treatment on mechanical and thermal characteristics of Al–Si–Cu–Mg foundry alloys. Journal of Alloys and Compounds. 617, 654-659.
[5] Dobrzański, L.A., Maniara, R., Sokołowski, J. & Kasprzak, W. (2007). Effect of cooling rate on the solidification behavior of AC AlSi7Cu2 alloy. Journal of Materials Processing Technology. 191(1-3), 317-320.
[6] Shabel, B.S., Granger, D.A., Trucker, W.G. (1992). Friction and wear of aluminum-silicon alloys. In P.J. Blau (Eds.), ASM Handbook: Friction, Lubrication, and Wear Technology (pp. 785-794), ASM International.
[7] Son, S.K., Takeda, M., Mitome, M., Bando, Y. & Endo,T. (2005). Precipitation behavior of an Al–Cu alloy during isothermal aging at low temperatures. Materials Letters. 59(6), 629-632.
[8] Wen-jun, T., Lin, Q. & Pi-xiang, Q. (2007). Study on heat treatment blister of squeeze casting parts. China Foundry. 4(2), 108-111.
[9] Okayasu, M., Sahara, N. & Mayama, K. (2021). Effect of microstructural characteristics on mechanical properties of cast Al–Si–Cu alloy controlled by Na. Materials Science and Engineering. A (in press).
[10] Hamasaki, M. & Miyahara, H. (2013). Solidification microstructure and critical conditions of shrinkage porosity generation in die casting process of JIS-ADC12 (A383) alloy. Materials Transactions. 54(7), 1131-1139.
[11] Kamio, A. (1996). Refinement of solidification structure in aluminum alloys. Japan Foundry Engineering Society. 68, 1075-1083.
[12] Okayasu, M. & Go, S. (2015). Precise analysis of effects of aging on mechanical properties of cast ADC12 aluminum alloy. Materials Science and Engineering. A 638, 208-218.
[13] David, S.A. & Vitek, J.M. (1989). Correlation between solidification parameters and weld microstructures. International Materials Reviews. 34(1), 213-245.

Go to article

Authors and Affiliations

M. Okayasu
1
N. Sahara
1
M. Touda
2

  1. Graduate School of Natural Science and Technology, Okayama University3-1-1 Tsushimanaka, Kita-ku, Okayama city, Okayama, 700-8530, Japan
  2. Kyowa Casting Co., Ltd.5418-3 Nishi Ebara-cho, Ibara city, Okayama, 715-0006, Japan
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of the analysis of cooling curves of cast iron with approximately eutectic composition rasterized at different rates of cooling and ingot crystallization. The test samples were in the form of rods with a diameter of 30,0.mm and a coagulation modulus M = 0.75 cm. They were cast in a sand mould made of furan mass placed on a chill in the form of a cast-iron plate, with which one of the front surfaces of the rod casting was in contact. In this way, a differentiated cooling rate along the rod was achieved. At selected distances from the chiller (5, 15, 25, 25 and 45 mm) thermocouple moulds were placed in the cavity to record the cooling curves used in thermal (AT) and derivation (ATD) analysis. The solidification time of the ingot in the part farthest from the chiller was about 200s, which corresponds to the solidification time in the test cup AT. An analysis of the recorded cooling curves was performed in order to determine the values of characteristic points on the AT curve (Tsol. Tliq, ΔTrecal., τclot, etc.). Relationships between cooling time and rate and characteristic points on AT and ATD curves were developed. For example, Tsol min changes in the range of 1115 - 1145 for the range of cast iron solidification times in the selected ingot zone from ~ 70 to ~ 200 s, which corresponds to the process speed from 0.0047 to 0.014 [1/s]. The work also includes an analysis of other characteristic points on the AT and ATD curves as functions of the solidification rate of cast iron of the same composition.
Go to article

Bibliography

[1] Humphreys, J.G. (1961). Effect of composition on the liquidus and eutectic temperatures on the eutectic point of cast iron. BCIRA Journal. 9(5), 609-621.

[2] Władysiak, R. (2001). Quality control of austenitic cast iron using the ATD method. Archives of Foundry. 1(2), 400-407. (in Polish)

[3] Falęcki, Z., Zych, J., Pyka, M. (1982). Research and development of comprehensive quality control of liquid cast iron using thermal analysis. AGH, Project No. 5.371.50, Kraków. (in Polish).

[4] Falęcki, Z., Zych, J. (1989). Equipment for quality control of liquid metal. Patent PRL, No. 247772. Warszawa. (in Polish).

[5] Gawroński, J., Szajnar, J., Jura, Z., & Studnicki, A. (2004). Prof. S. Jura, creator of the theory and industrial applications of diagnostics and consumption of metals and alloys. Archives of Foundry. 4(16), 1-74. (in Polish).

[6] Heraeus (2024). Thermal Analysis of Cast Iron. Retrieved January 21, 2024 from www.electro-nite.be.

[7] Novacast (2024). ATAS - Thermal Analysis System, NovaCast Foundry Saltions. Retrieved January 15, 2024 from www.novacastfoundry.se

[8] Stefanescu, D.M. (2015). Thermal analysis - theory and applications in metalcasting. International Journal of Metalcasting. 9(1), 7-22. https://doi.org/10.1007/BF03355598.

[9] Zych, J. (2016). Impact of speed of cooling of initial phase (α) and of eutectics (α + β) on physical and mechanical properties of Al-Si-Mg alloys. In 72nd World Foundry Congress, 21-25th May 2016 (pp. 1-2). Nagoya, Japan.

[10] Stawarz, M. & Szajnar, J. (2003). Quality assessment of ductile iron using the ATD method. Archives of Foundry. 3(10), 199-206. ISSN 1642-5308. (in Polish).

[11] Jura, S., Sakwa, J. & Borek, K. (1980). Differential analysis of solidification and crystallization processes of gray cast iron. Krzepnięcie Metali i Stopów. 3, 25-35. (in Polish)

[12] Jura, S. (1985). The essence of the ATD method. Modern methods of assessing the quality of alloys. PAN- Katowice, Foundry Institute of the Silesian University. (in Polish).

[13] Jura, S., Sakwa, J. & Borek, K. (1980). Thermal and differential analysis of solidification and crystallization of cast iron. Przegląd Odlewnictwa. 1, 7-10. (in Polish).

[14] Zych, J. (2015). Analisys of castings defects - selected problems – laboratory. AGH. Kraków, SU 1737. (in Polish).

[15] Zych, J. (2013). Assessment of the cooling curve using the thermal and derivation-gradient analysis method (ATDG), Foundry’s guide. vol. I, Materials (pp. 964-981). Poland: Wydawnictwo Stowarzyszenia Technicznego Odlewników Polskich (in Polish).

[16] Döpp, R., Blankenagel, D. (1979). Zur thermischen analyse von temperguss und grauguss. Giesserei. 66(7), 182-186.
Go to article

Authors and Affiliations

J.S. Zych
1

  1. AGH University of Krakow, Faculty of Foundry Engineering, Reymonta 23. 30-059 Kracow, Poland,

This page uses 'cookies'. Learn more