Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 105
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Various intelligent transportation systems are proposed in different forms of wireless communication technologies. Recently, the importance of visible light communication and free-space optics has been demonstrated in accomplishing vehicle-to-vehicle and infrastructure-to-vehicle communication systems, due to power efficiency, free licenses, and safety for human health. In this paper, a new hybrid relay system supported by free-space optics/visible light communication with two scenarios is proposed. The first one is that the data are transferred from the source to the relay through a free-space optics communication link and are then directed to the destination through a visible light communication link. The second scenario is that the data are transmitted from the source to the destination passing through two different relays to ensure larger coverage. A 10−6 bit error rate is achieved at a distance of 900 m for the first scenario with a remarkable signal-to-noise ratio of ~25.5 dB, while the largest distance that can be covered by the second scenario is 1200 m with a signal-to-noise ratio of ~30 dB.
Go to article

Authors and Affiliations

Suzan M. EL-Garhy
1 2
Ashraf A. M. Khalaf
2
ORCID: ORCID
Moustafa H. Aly
3
ORCID: ORCID
Mohamed Abaza
3
ORCID: ORCID

  1. Electronics and Communications Department, College of Engineering, Higher Technological Institute, Tenth of Ramadan, Egypt
  2. Electronics and Communications Department, Faculty of Engineering, Minia University, Egypt
  3. Electronics and Communications Department, College of Engineering and Technology, Arab Academy for Science Technology and Maritime Transport, Egypt
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a plane model of articulated vehicles worked out for the analysis of their dynamics. The dAlambert principle was used for derivation of motion equations for this system. The forces and moments acting on wheels were formulated on the basis of the Dugoff-Uffelmann tyre model. The system consists of any number of vehicles connected by kinematic pair of the 5th class (non friction joint of pivot-bush type) and the fifth wheel (with dry fricton). Since crash calculations usually take into account the impulse of crash force only, and since it is not appropriate for articulated vehicles, a new approach to crash calculation is presented in this paper. The authors propose to calculate the force in crash point both as a function of the relative velocity of vehicles and the stiffness of their bodies. Simulation results of articulated lorry crashes and the attempt to verify the performed simulation are presented in the article.
Go to article

Authors and Affiliations

Witold Grzegożek
Piotr Świder
Andrzej Polański
Download PDF Download RIS Download Bibtex

Abstract

This paper proves that the trend of development of modern transport in the world is to maximize the level of providing the personal use of electric vehicles. This mechanism would also partially solve the environmental problems of mankind. To implement this idea, some global automakers have announced the decision of the full transition of production to electric vehicles. At the same time, for effective functioning of the electric-vehicle market, adequate infrastructure needs to be created. There is a positive trend in the annual growth of the charging-station network in developed countries, that characterizes the charging-station market as dynamic and promising, but mostly chaotic and imbalanced at the regional level.
The main hypothesis of the research is about the independence between the level of electric-vehicle market development and networks of charging stations. The object of the study is the Washington (USA) electric-vehicle market, as it is the market segment with the highest development characteristics.
To test the hypothesis, the authors provided a multifactor analysis of the local electric-vehicle market and the existing charging infrastructure. A comprehensive analysis of the electric-vehicle market and the charging-station network in Washington (USA) was performed, and the market characteristics were defined accordingly: the degree of electric-vehicle spread in the regional localities; the level of charging-station-network coverage and concentration; the ratio of electric vehicles to charging stations.
Authors identified the tendency of the state location to innovations connected with electric vehicles. Clusterization and recommendations according to the level of development of the electric-vehicle market aimed to balance and grow the total electric-vehicle market and connected infrastructure.
Go to article

Authors and Affiliations

Oleksandr Yakushev
1
ORCID: ORCID
Daniil Hulak
2
ORCID: ORCID
Oksana Zakharova
2
ORCID: ORCID
Yuliia Kovalenko
3
ORCID: ORCID
Oksana Yakusheva
2
ORCID: ORCID
Olesandr Chernyshov
4
ORCID: ORCID

  1. Social Security Department, Cherkasy State Technological University, Ukraine
  2. Department of Economics and Management, Cherkasy State Technological University, Ukraine
  3. Management and Financial & Economic Security Department, Donetsk National Technical University, Ukraine
  4. Department of Management of Non-Productive Sphere, Donetsk State University of Management, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the characteristics of the attitude that students have towards electric cars and the significance of distinguished attitude elements in creating interest in the purchase of such vehicles. Electric cars are the new type of vehicles that have an electric motor and use the electricity stored in batteries. They are introduced to the market, but for various reasons the volume of sales is not high. So far, it is not sufficiently known how electric vehicles are assessed by Poles. The presented research is an attempt to know what the attitude towards this type of vehicle. The attitude model tested in this research includes three areas: knowledge about them, emotions that they evoke and potential behaviors. The participants were students of Rzeszów University of Technology – a group of young people who are potential consumers of new technologies. The obtained results indicate that electric cars are rather unknown. At the same time, they arouse great interest and their image is very positive. The attitude characteristics towards this type of vehicle is supplemented by perceived limitations: too high of a purchase price, lack of sufficient information about them and unsatisfactory technical parameters, mainly the long time needed to recharge the battery and the insufficiently long distance with one recharge. The interest in the purchase is dependent on positive emotions, and the lack of sufficient information is an obstacle in thinking about buying such a vehicle. Understanding the attitudes of Polish students towards electric cars can be helpful in adapting information about such cars to potential customers, which in turn may affect the level of interest and sales volume.

Go to article

Authors and Affiliations

Ryszard Klamut
Download PDF Download RIS Download Bibtex

Abstract

In the recent times, lot of research work carried out in the field of fuel cells explicitly divulges that it has the potential to be an ultimate power source in upcoming years. The fuel cell has more storing capacity, which enables to use in heavy power applications. In these applications, power conditioning is more vital to regulate the output voltage. Hence, we need a dc-dc converter to provide a constant regulated output voltage for such high-power system. Currently, many new converters were designed and implemented as per the requirement. This paper has made comparative study on several topologies of the quadratic high gain dc-dc converter and the applications where these topologies can be used when the fuel cell is given as a source. Also, we have compared various parameters of all the converters considered and generated the results with steady-state and dynamic study. In this article, we briefed the types of analysis carried on the dc-dc converter to study its performance. Moreover, various application of fuel cell is presented and discussed. This paper will be a handbook to the researchers who start to work on high gain dc-dc converter topologies with quadratic boost converter as a base. This article will also guide the engineers to concentrate on the fuel cell components where it needs to be explored for optimizing its operation.
Go to article

Authors and Affiliations

Divya Navamani Jayachandran
1
Jagabar Sathik
2
Tanmay Padhi
1
Aditi Kumari
1

  1. Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, India
  2. Renewable Energy Lab, Prince Sultan University,11586, Riyadh, Saudi Arabia
Download PDF Download RIS Download Bibtex

Abstract

The presented paper encompasses four threads of deliberation that show the essence, cognitive value and utility of the concept of creative cities in the shaping of the future of contemporary cities. These threads are: creative development, a model of a creative city, preconditions of a creative city, and the use of a creative city as a vehicle of development.

Go to article

Authors and Affiliations

Andrzej Klasik
Download PDF Download RIS Download Bibtex

Abstract

In general, currently employed vehicle classification algorithms based on the magnetic signature can distinguish among only a few vehicle classes. The work presents a new approach to this problem. A set of characteristic parameters measurable from the magnetic signature and limits of their uncertainty intervals are determined independently for each predefined class. The source of information on the vehicle parameters is its magnetic signature measured in a system that enables independent measurement of two signals, i.e. changes in the active and reactive component of the inductive loop impedance caused by a passing vehicle. These innovations result in high selective classification system, which utilizes over a dozen vehicle classes. The evaluation of the proposed approach was carried out for good vehicles consisting of 2-axle tractor and a 3-axle semi-trailer.

Go to article

Authors and Affiliations

Janusz Gajda
Marek Stencel
Download PDF Download RIS Download Bibtex

Abstract

The paper describes the design and multibody dynamic analysis of a mechanically interconnected suspension, as applied to a small off-road vehicle. Interconnected suspensions use some sort of connection between the axles of a vehicle in order improve ride quality or vehicle handling. In principle, the connection may be hydraulic, pneumatic, or mechanical, but for installation in a typical passenger car, a mechanical connection would likely be impractical due to weight and complexity. In this paper, the vehicle in question is the University of Windsor SAE Baja off-road competition vehicle, and novel mechanical design is proposed. A multibody dynamic analysis is performed on the proposed design using the EoM open source multibody software developed by theUniversity ofWindsorVehicle Dynamics and Control research group in order to assess any potential performance improvements.

Go to article

Bibliography

[1] E. Zapletal. Balanced suspension. SAE Technical Paper 2000-01-3572, 2000.
[2] J.F. Buj. Integral suspension system for motor vehicles based on passive components. SAE Technical Paper 2002-01-3105, 2002.
[3] G. Rideout, R.J. Anderson. Experimental testing and mathematical modeling of the interconnected hydragas suspension system. SAE Technical Paper 2003-01-0312, 2003.
[4] J.R. Wilde, G.J. Heydinger, D.A. Guenther, T.P. Mallin, A.M. Devenish. Experimental evaluation of fishhook maneuver performance of a kinetic suspension system. SAE Technical Paper 2005- 01-0392, 2005.
[5] J.R. Wilde, G.J. Heydinger, D.A. Guenther. ADAMS simulation of ride and handling performance of the Kinetic™ suspension system. SAE Technical Paper 2006-01-1972, 2006.
[6] M.C. Smith, G.W. Walker. Interconnected vehicle suspension. Journal of Automobile Engineering, 219(3):295–307, 2005. doi: 10.1243/095440705X6578.
[7] B. Mavroudakis, P. Eberhard. Mode decoupling in vehicle suspensions applied to race cars. In Proceedings of the III European Conference on Computational Mechanics Solids, Structures and Coupled Problems in Engineering, Lisbon 2006.
[8] D. Cao, S. Rakheja, C.Y. Su. Roll and pitch-plane coupled hydro-pneumatic suspension. Vehicle System Dynamics, 48(3):361–386, 2010. doi: 10.1080/00423110902883251.
[9] B.P. Minaker, X. Yang, S. Li. Design optimization of an SAE Baja vehicle using the EoM open source multibody dynamics code. Proceedings of The Canadian Society for Mechanical Engineering International Congress, 2014
Go to article

Authors and Affiliations

Bruce P. Minaker
1
Zheng Yao
1

  1. Department of Mechanical,Automotive & Materials Engineering, University of Windsor, Canada
Download PDF Download RIS Download Bibtex

Abstract

The goal of this research is to achieve close to real-time dynamics performance for allowing auto-pilot in-the-loop testing of unmanned ground vehicles (UGV) for urban as well as off-road scenarios. The overall vehicle dynamics performance is governed by the multibody dynamics model for the vehicle, the wheel/terrain interaction dynamics and the onboard control system. The topic of this paper is the development of computationally efficient and accurate dynamics model for ground vehicles with complex suspension dynamics. A challenge is that typical vehicle suspensions involve closed-chain loops which require expensive DAE integration techniques. In this paper, we illustrate the use the alternative constraint embedding technique to reduce the cost and improve the accuracy of the dynamics model for the vehicle.

Go to article

Authors and Affiliations

Abhinandan Jain
Calvin Kuo
Paramsothy Jayakumar
Jonathan Cameron
Download PDF Download RIS Download Bibtex

Abstract

The article aims at presenting the philosophy and model of the development vehicle to be understood as a new concept and tool to investigate and program local and regional development processes. The practical issues covered by the article include the identification and discovery of development vehicles, the elements of which can be observed in Polish metropolitan areas and agglomerations.

Go to article

Authors and Affiliations

Andrzej Klasik
Florian Kuźnik
Download PDF Download RIS Download Bibtex

Abstract

Electromobility and electric cars are the words that began to gain significance in the social discourse in Poland especially intensively since 2017. Then, along with the announcement of the „Plan for the Development of the Electromobility Market in Poland”, government declarations appeared regarding one million electric cars that are to be used on Polish roads by 2025. It is already known today that such a result in Poland is impossible to achieve in the assumed time. According to the report of the Polish Alternative Fuels Association-PSPA (Polish EV Outlook 2020), in the event of introducing subsidies for the purchase of cars or subsidies, such as the possibility of 100% VAT deduction by buyers of such vehicles, the number of electric cars in Poland in 2025 could be over 280 thousand pcs. Without such government support, the Polish electric car park will be twice smaller. High prices of electric cars are one of the key barriers limiting Poles in making decisions related to the purchase of a vehicle. The aim of this article is to analyse the current state of the social environment in relation to the topic of ecological, electric cars. To what extent is it beneficial for the potential car owner to change from a traditional (petrol or diesel) car to an electric car due to purely financial benefits and other aspects? The article consists of an overview – presenting aspects related to the socio-economic benefits of buying an electric car. It also contains specific calculations regarding the profitability of using such a car in Polish conditions.
Go to article

Authors and Affiliations

Krystian Majchrzak
1
Piotr Olczak
2
ORCID: ORCID
Dominika Matuszewska
3
ORCID: ORCID
Magdalena Wdowin
2
ORCID: ORCID

  1. Foundation Instaway Institute, Warszawa, Poland
  2. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
  3. AGH University of Science and Technology, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of this article is to present the author’s opinion about possible underwater natural gas pipeline monitoring using Polish Navy resources. Due to the bathymetrical characteristics of the pipeline equatorials the high efficiency and safe for the deck operators systems are expected to support the bottom survey and gas line monitoring. Time and engaged resources reduction are crucial factors in this kind of mission together with high probability of possible dangerous objects detection. The paper describes main threats for the underwater transportation line as a state energetic independence vital object (supplies diversification). An example of a threat caused by lost unmanned platform technologies near Nord Stream was presented and analyzed as well. The rapid development of unmanned maritime technologies (aerial, surface and subsurface) observed in the last decade creates new possibilities in maritime security/surveillance applications. The Polish mine counter measures assets which were equipped with sophisticated AUV’s as a part of the Polish Navy modernization process (new minehunters Kormoran IInd class deployable). The presented autonomous underwater vehicles (AUV) are equipped with advanced sonars and create new possibilities in the issue of effective threats detection/classification/ identification and neutralization. The main advantages of such solutions were pointed in the article with the crucial one based on time reduction as well as human – deck operators threats constraints. The first successes in the operational use of unmanned systems were reached during the military exercises (historical ordnance disposal) conducted on historical mine laying areas. This creates good possibilities to train the unmanned system operators in live objects activity which improves skills and knowledge. Moreover, the double use applications of unmanned technologies both in defense and maritime security has been observed.

Go to article

Authors and Affiliations

Rafał Miętkiewicz
Download PDF Download RIS Download Bibtex

Abstract

The objective of this paper is to estimate performance of a new approach for spectrum sharing and coordination between terrestrial base stations (BS) and On-board radio access nodes (UxNB) carried by Unmanned Aerial Vehicles (UAV). This approach employs an artificial intelligence (AI) based algorithm implemented in a centralized controller. According to the assessment based on the latest specifications of 3rd Generation Partnership Project (3GPP) the newly defined Unmanned Aerial System Traffic Management (UTM) is feasible to implement and utilize an algorithm for dynamic and efficient distribution of available radio resources between all radio nodes involved in process of optimization. An example of proprietary algorithm has been described, which is based on the principles of Kohonen neural networks. The algorithm has been used in simulation scenario to illustrate the performance of the novel approach of centralized radio channels allocation between terrestrial BSs and UxNBs deployed in 3GPP-defined rural macro (RMa) environment. Simulation results indicate that at least 85% of simulated downlink (DL) transmissions are gaining additional channel bandwidth if presented algorithm is used for spectrum distribution between terrestrial BSs and UxNBs instead of baseline soft frequency re-use (SFR) approach.
Go to article

Bibliography

[1] 3GPP, “UAS-UAV”, https://www.3gpp.org/uas-uav, accessed 18 November 2019.
[2] 3GPP TR 36.777, “Release 15. Enhanced LTE support for aerial vehicles”, January 2018.
[3] 3GPP TS 22.125, “Release 16. Unmanned Aerial System (UAS) support in 3GPP. Stage 1”, September 2019.
[4] 3GPP TS 22.125, “Release 17. Unmanned Aerial System (UAS) support in 3GPP. Stage 1”, December 2019.
[5] S. Zhang, Y. Zeng, R. Zhang, “Cellular-Enabled UAV Communication: A Connectivity-Constrained Trajectory Optimization Perspective”, IEEE Transactions on Communications, Vol. 67, No. 3, March 2019. DOI: 10.1109/TCOMM.2018.2880468.
[6] B. Li, Z. Fei, Y. Zhang, “UAV Communications for 5G and Beyond: Recent Advances and Future Trends”, IEEE Internet of Things Journal, Vol. 6, No. 2, April 2019. DOI: 10.1109/JIOT.2018.2887086.
[7] L. Sboui, H. Ghazzai, Z. Rezki, M.-S. Alouini, “Energy-Efficient Power Allocation for UAV Cognitive Radio Systems”, 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall). DOI: 10.1109/VTCFall.2017.8287971.
[8] J. Huang, W. Mei, J. Xu, Q. Ling, Z. Rui, “Cognitive UAV Communication via Joint Maneuver and Power Control”, IEEE Transactions on Communications, Vol. 67, No. 11, November 2019. DOI: 10.1109/TCOMM.2019.2931322.
[9] G. Hattab, D. Cabric, “Energy-Efficient Massive IoT Shared Spectrum Access over UAV-enabled Cellular Networks”, Accepted for publication in IEEE Transactions on Communications, 2020. DOI: 10.1109/TCOMM.2020.2998547.
[10] C. Zhang, W. Zhang, “Spectrum Sharing for Drone Networks”, IEEE Journal on Selected Areas in Communications, Vol. 35, No. 1, January 2017. DOI: 10.1109/JSAC.2016.2633040.
[11] X. Ying, M.M. Buddhikot, S. Roy, “SAS-Assisted Coexistence-Aware Dynamic Channel Assignment in CBRS Band”, IEEE Transactions on Wireless Communications, Vol. 17, No. 9, September 2018. DOI: 10.1109/TWC.2018.2858261.
[12] T. Kohonen, “Self-Organizing Maps”, Series in Information Sciences, Vol. 30, Springer-Verlag Berlin Heidelberg, Third ed., 2001.
[13] K. Bechta, “Radio resource allocation”, International Application No.: PCT/FI2017/050149.
[14] Y. Yu, E. Dutkiewicz, X. Huang, M. Mueck, G. Fang, “Performance Analysis of Soft Frequency Reuse for Inter-cell Interference Coordination in LTE Networks”, 2010 10th International Symposium on Communications and Information Technologies. DOI: 10.1109/ISCIT.2010.5665044.
[15] 3GPP TS 38.901, “Release 16. Study on channel model for frequencies from 0.5 to 100 GHz”, January 2020.

Go to article

Authors and Affiliations

Kamil Bechta
1

  1. Mobile Networks Business Division of Nokia
Download PDF Download RIS Download Bibtex

Abstract

Vehicle emissions and performance fueled with waste cooking oil biodiesel is the main topic of this research. Biodiesel was produced through transesterification with physical and chemical characteristics comparable to diesel. B20 is a methyl ester of 20% blended with diesel. A diesel vehicle was modified and equipped with all measuring instruments needed to perform all experiments. The variable speed and load tests were conducted on the vehicle to measure the performance and emissions at different loads (0–30 kW) and different speeds (0–33 km/h). The vehicle speed was the maximum attained for each gear with a constant fuel flow rate without external fuel control at a steady state. At a vehicle speed of 33 km/h, the greatest increases in fuel consumption and exhaust gas temperature for biodiesel B20 were 17 and 6%, respectively, as related to pure diesel. At a vehicle speed of 33 km/h, B20 reduced the distance traveled, carbon monoxide and hydrocarbon concentrations compared to diesel by 22, 9 and 10%, respectively. At a vehicle speed of 33 km/h, the increases in nitrogen oxides and oxygen concentrations of B20 were 4 and 3% higher, respectively, than crude diesel over the whole tested load range. The biggest increases in distance, fuel consumption, and exhaust gas temperature for B20 over diesel were 13, 3, and 2%, respectively, at a vehicle load of 30 kW. The B20 blend decreased CO and hydrocarbon emissions related to diesel by 17 and 32%, respectively, at a vehicle load of 30 kW. The increases in nitrogen oxides and oxygen concentrations of B20 across the whole load range were 11 and 3% higher than pure diesel at a vehicle load of 30 kW, respectively. Biodiesel blend B20 is suggested for application in vehicles providing that the vehicle is moderately loaded.
Go to article

Authors and Affiliations

Said M.A. Ibrahim
1
ORCID: ORCID
Kamal A. Abed
2
ORCID: ORCID
M.S. Gad
3
ORCID: ORCID
Hassan M.M. Mustafa
2
ORCID: ORCID

  1. Mechanical Engineering Department, Faculty of Engineering, Al-Azhar University, Cairo, Egypt
  2. Mechanical Engineering Department, Engineering and Renewable Energy Research Institute, National Research Centre, Giza, Egypt
  3. Mechanical Engineering Department, Faculty of Engineering, Fayoum University, Fayoum, Egypt
Download PDF Download RIS Download Bibtex

Abstract

The paper presents theoretical analysis of excited vibrations of the vehicle in a wide range of excitation frequencies (from I to 80 Hz). The mathematical model and calculations were prepared for the accepted physical model of the vehicle. The model was used to simulate the excited vertical vibrations. The bifurcation figures with an excitation frequency as a bifurcation parameter were determined on the basis of the simulation results - the changes of kinematics values in time. Bifurcation diagrams give a picture of vehicle vibrations. This picture gives the possibility of identification of characteristic parameters of sprigs and dumping elements and can be used for control, diagnostic aims, and for making technical investigations of vehicle suspension.
Go to article

Authors and Affiliations

Ryszard Andrzejewski
Jerzy Werner
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a model of a car with special attention given to the drive system. Two possible drive systems were considered: with standard differential and independent drive of each wheel by means of an electric motor. In both cases, flexibilities of live axle shafts have been taken into consideration. A 3D model of the car was assumed. The model consists of a system of rigid bodies connected one with another by means of elastic-damping elements. The phases of static and kinetic friction were considered in the steering and drive systems. The method of homogenous transformations was used in the mathematical description. The results of computer simulations are presented.
Go to article

Authors and Affiliations

Marek Szczotka
Stanisław Wojciech
Download PDF Download RIS Download Bibtex

Abstract

Geospatial data obtained using Unmanned Aerial Vehicles (UAVs) and Unmanned Surface Vehicles (USVs) are increasingly used to model the terrain in the coastal zone, in particular in shallow waterbodies (with a depth of up to 1 m). In order to generate a terrain relief, it is important to choose a method for modelling that will allow it to be accurately projected. Therefore, the aim of this article is to present a method for accuracy assessment of topo-bathymetric surface models based on geospatial data recorded by UAV and USV vehicles. Bathymetric and photogrammetric measurements were carried out on the waterbody adjacent to the public beach in Gdynia (Poland) in 2022 using a DJI Phantom 4 RTK UAV and an AutoDron USV. The geospatial data integration process was performed in the Surfer software. As a result, Digital Terrain Models (DTMs) in the coastal zone were developed using the following terrain modelling methods: Inverse Distance to a Power (IDP), Inverse Distance Weighted (IDW), kriging, the Modified Shepard’s Method (MSM) and Natural Neighbour Interpolation (NNI). The conducted study does not clearly indicate any of the methods, as the selection of the method is also affected by the visualization of the generated model. However, having compared the accuracy measures of the charts and models obtained, it was concluded that for this type of data, the kriging (linear model) method was the best. Very good results were also obtained for the NNI method. The lowest value of the Root Mean Square Error (RMSE) (0.030 m) and the lowest value of the Mean Absolute Error (MAE) (0.011 m) were noted for the GRID model interpolated with the kriging (linear model) method. Moreover, the NNI and kriging (linear model) methods obtained the highest coefficient of determination value (0.999). The NNI method has the lowest value of the R68 measure (0.009 m), while the lowest value of the R95 measure (0.033 m) was noted for the kriging (linear model) method.
Go to article

Authors and Affiliations

Oktawia Lewicka
1 2

  1. Department of Geodesy and Oceanography, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia, Poland
  2. Marine Technology Ltd., ul. Wiktora Roszczynialskiego 4-6, 81-521 Gdynia, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a theoretical analysis of the effect of electric car performance characteristics on vehicle energy consumption and driving range. The test object was a Nissan Leaf electric vehicle. The characteristic curves of basic and additional resistance to motion (sum of rolling resistance and air resistance and inertia resistance or grade resistance, respectively) were applied to the model characteristic curve of electric motor torque of the tested vehicle. Based on that, the graphs describing the relationships between vehicle energy consumption and vehicle speed were made (for specific values of car acceleration / acclivity grade) as well as the relations between vehicle driving range and its traction properties. It was concluded that the use of performance characteristics significantly increased the vehicle’s energy consumption and decreased the available vehicle’s driving range.
Go to article

Authors and Affiliations

Wawrzyniec Gołębiewski
Download PDF Download RIS Download Bibtex

Abstract

The noise of motor vehicles is one of the most important problems as regards to pollution on main roads. However, this unpleasant characteristic could be used to determine vehicle speed by external observers. Building on this idea, the present study investigates the capabilities of a microphone array system to identify the position and velocity of a vehicle travelling on a previously established route. Such linear microphone array has been formed by a reduced number of microphones working at medium frequencies as compared to industrial microphone arrays built for location purposes, and operates with a processing algorithm that ultimately identifies the noise source location and reduces the error in velocity estimation
Go to article

Authors and Affiliations

Ramón Peral-Orts
Emilio Velasco-Sánchez
Nuria Campillo-Davó
Héctor Campello-Vicente
Download PDF Download RIS Download Bibtex

Abstract

Systems of road traffic parameters measurement play a key role in the process of road traffic control, its supervision as well as in gathering and processing information for statistical purposes. Expectations of users of such systems mainly concern automation and provision of measurement continuity, possibility of selection of the measured road traffic parameters and high accuracy along with reliability of obtained results. In order to meet the requirements set for such systems, at the Department of Instrumentation and Measurement of the AGH University of Science and Technology in Cracow a new prototype system of road traffic parameters measurement - Traffic-1 - has been constructed. The innovativeness of the solution is manifested in the structure of the system that can be modified by the user adequately to current measurement needs and in the used algorithms of signals processing. The work contains a brief description of the constructed system with particular focus on the used innovations that are the result of many years of research work of the designers.

Go to article

Authors and Affiliations

Piotr Burnos
Ryszard Sroka
Janusz Gajda
Zbigniew Marszałek
Piotr Piwowar
Marek Stencel
Tadeusz Żegleń
Download PDF Download RIS Download Bibtex

Abstract

This paper considers a method for indirect measuring the vertical displacement of wheels resulting from the road profile, using an inverse parametric data-driven model. Wheel movement is required in variable damping suspension systems, which use an onboard electronic control system that improves ride quality and vehicle handling in typical maneuvres. This paper presents a feasibility study of such an approach which was performed in laboratory conditions. Experimental validation tests were conducted on a setup consisting of a servo-hydraulic test rig equipped with displacement, force and acceleration transducers and a data-acquisition system. The fidelity and adequacy of various parametric SISO model structures were evaluated in the time domain based on correlation coefficient, FPE and AIC criteria. The experimental test results showed that inverse models provide accuracy of inversion, ranging from more than 70% for the ARX model structure to over 90% for the OE model structure.

Go to article

Authors and Affiliations

Piotr Czop
Download PDF Download RIS Download Bibtex

Abstract

Reliable estimation of longitudinal force and sideslip angle is essential for vehicle stability and active safety control. This paper presents a novel longitudinal force and sideslip angle estimation method for four-wheel independent-drive electric vehicles in which the cascaded multi-Kalman filters are applied. Also, a modified tire model is proposed to improve the accuracy and reliability of sideslip angle estimation. In the design of longitudinal force observer, considering that the longitudinal force is the unknown input of the electric driving wheel model, an expanded electric driving wheel model is presented and the longitudinal force is obtained by a strong tracking filter. Based on the longitudinal force observer, taking into consideration uncertain interferences of the vehicle dynamic model, a sideslip angle estimation method is designed using the robust Kalman filter and a novel modified tire model is proposed to correct the original tire model using the estimation results of longitudinal tire forces. Simulations and experiments were carried out, and effectiveness of the proposed estimation method was verified.

Go to article

Authors and Affiliations

Long Chen
Te Chen
Xing Xu
Yingfeng Cai
Haobin Jiang
Xiaoqiang Sun
Download PDF Download RIS Download Bibtex

Abstract

The advance of MEMS-based inertial sensors successfully expands their applications to small unmanned

aerial vehicles (UAV), thus resulting in the challenge of reliable and accurate in-flight alignment for airborne

MEMS-based inertial navigation system (INS). In order to strengthen the rapid response capability

for UAVs, this paper proposes a robust in-flight alignment scheme for airborne MEMS-INS aided by global

navigation satellite system (GNSS). Aggravated by noisy MEMS sensors and complicated flight dynamics,

a rotation-vector-based attitude determination method is devised to tackle the in-flight coarse alignment

problem, and the technique of innovation-based robust Kalman filtering is used to handle the adverse impacts

of measurement outliers in GNSS solutions. The results of flight test have indicated that the proposed

alignment approach can accomplish accurate and reliable in-flight alignment in cases of measurement outliers,

which has a significant performance improvement compared with its traditional counterparts.

Go to article

Authors and Affiliations

Dingjie Wang
Yi Dong
Qingsong Li
Jie Wu
Yule Wen

This page uses 'cookies'. Learn more