Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Designing of a nanoscale Quantum Well (QW) heterostructure with a well thickness of ∼60 Å is critical for many applications and remains a challenge. This paper has a detailed study directed towards designing of In0.29Ga0.71As0.99N0.01/GaAs straddled nanoscale-heterostructure having a single QW of thickness ∼60 Å and optimization of optical and lasing characteristics such as optical and mode gain, differential gain, gain compression, anti-guiding factor, transparency wavelength, relaxation oscillation frequency (ROF), optical power and their mutual variation behavior. The outcomes of the simulation study imply that for the carrier concentration of ∼2 × 1018cm−3 the optical gain of the nano-heterostructure is of 2100 cm−1 at the wavelength is of 1.30 μm. Though the obtained gain is almost half of the gain of InGaAlAs/InP heterostructure, but from the wavelength point of view the InGaAsN/GaAs nano-heterostructure is also more desirable because the 1.30 μm wavelength is attractive due to negligible dispersion in the silica based optical fiber. Hence, the InGaAsN/GaAs nano-heterostructure can be very valuable in optical fiber based communication systems.

Go to article

Authors and Affiliations

K. Sandhya
G. Bhardwaj
R. Dolia
P. Lal
S. Kumar
S. Dalela
F. Rahman
P.A. Alvi
Download PDF Download RIS Download Bibtex

Abstract

In this paper questions of optimization of growth conditions in the method of molecular beam epitaxy for creation of high-efficient quantum dot infrared photodetectors are considered. As a model material system for theoretical investigations, heterostructures with germanium-silicon quantum dots on the silicon surface are chosen. For calculations of the dependencies of quantum dots array parameters on synthesis conditions the kinetic model of growth of differently shaped quantum dots based on the general nucleation theory is proposed. The theory is improved by taking into account the change in free energy of nucleation of an island due to the formation of additional edges of islands and due to the dependence of surface energies of facets of quantum dots on the thickness of a 2D wetting layer during the Stranski–Krastanow growth. Calculations of noise and signal characteristics of infrared photodetectors based on heterostructures with quantum dots of germanium on silicon are done. Dark current in such structures caused by thermal emission and barrier tunneling of carriers, as well as detectivity of the photodetector in the approximation of limitation by generation-recombination noises are estimated. Moreover, the presence of dispersion of quantum dots by size is taken into account in the calculations of the generation-recombination noises. Results of calculations of the properties of structures with quantum dots and their dependencies on growth parameters, as well as the characteristics of quantum dot photodetectors are presented. Comparison of the estimated parameters of quantum dots ensembles and the characteristics of quantum dot photodetectors with experimental data is carried out.

Go to article

Authors and Affiliations

I.I. Izhnin
O.I. Fitsych
A.V. Voitsekhovskii
A.P. Kokhanenko
K.A. Lozovoy
V.V. Dirko
Download PDF Download RIS Download Bibtex

Abstract

Magnetoabsorption in far and mid IR ranges in double HgTe/CdHgTe quantum wells with inverted band structure has been studied in high magnetic fields up to 30 T. Numerous intraband and interband transitions have been revealed in the spectra and interpreted within axial 8 × 8 k·p model. Splitting of dominant magnetoabsorption lines resulting from optical transitions from hole-like zero-mode Landau level has been discovered and discussed in terms of a built-in electric field and collective phenomena.

Go to article

Authors and Affiliations

L.S. Bovkun
A.V. Ikonnikov
V.Ya. Aleshkin
K.V. Maremyanin
N.N. Mikhailov
S.A. Dvoretskii
S.S. Krishtopenko
F. Teppe
B.A. Piot
M. Potemski
M. Orlita
V.I. Gavrilenko
Download PDF Download RIS Download Bibtex

Abstract

The work presents doping characteristics and properties of high Si−doped InGaAs epilayers lattice−matched to InP grown by low pressure metal−organic vapour phase epitaxy. Silane and disilane were used as dopant sources. The main task of investigations was to obtain heavily doped InGaAs epilayers suitable for usage as plasmon−confinement layers in the construction of mid−infrared InAlAs/InGaAs/InP quantum−cascade lasers (QCLs). It requires the doping concentration of 1×1019 cm–3 and 1×1020 cm–3 for lasers working at 9 μm and 5 μm, respectively. The electron concentration increases linearly with the ratio of gas−phase molar fraction of the dopant to III group sources (IV/III). The highest electron concentrations suitable for InGaAs plasmon−contact layers of QCL was achieved only for disilane. We also observed a slight influence of the ratio of gas−phase molar fraction of V to III group sources (V/III) on the doping efficiency. Structural measurements using high−resolution X−ray diffraction revealed a distinct influence of the doping concentration on InGaAs composition what caused a lattice mismatch in the range of –240 ÷ –780 ppm for the samples doped by silane and disilane. It has to be taken into account during the growth of InGaAs contact layers to avoid internal stresses in QCL epitaxial structures.

Go to article

Authors and Affiliations

B. Ściana
M. Badura
W. Dawidowski
K. Bielak
D. Radziewicz
D. Pucicki
A. Szyszka
K. Żelazna
M. Tłaczała

This page uses 'cookies'. Learn more