Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to determine the effects of an ohmic heating (OH) process with different electric field intensities on Listeria monocytogenes inactivation in protein-enriched cow milk. Protein powder was added at rates of 2.5%, 5% and 7.5% in 1.5% fat content milk, and L. monocytogenes (ATCC 13932) strain was then inoculated into the samples. The OH process was carried out in a laboratory-type pilot unit created using stainless steel electrodes, a K-type thermocouple, a datalogger and power supply providing AC current at 0-250 V, 10 A. The inoculated milk samples were heated to 63°C by applying an electric field intensity of 10V/cm and 20V/cm. L. monocytogenes counts, pH, color measurement and hydroxymethylfurfurol levels were then determined. OH applied with an electric field intensity of 10 V/cm caused an average decrease of 5 logs in L. monocytogenes level in the samples containing 2.5% protein and decreased below the detection limit (<1 log) at the 9th minute (p<0.05). Similarly, application of an electric field intensity of 20 V/cm in milk containing 2.5% and 5% protein caused the L.monocytogenes level to decrease below the detection limit (<1 log) at 2 minutes 30 seconds (p<0.05). No change was observed in the L* (brightness) values of the samples but it was determined that there was a slight increase in pH, a* (redness) and b* (yellowness) values compared to the control group. It was observed that the inactivation of L. monocytogenes by OH depends on the duration of the OH process, protein concentration in the milk and the applied voltage gradient.
Go to article

Bibliography

1. Ahmad T, Butt MZ, Aadil RM, Inam‐ur‐Raheem M, Abdullah Bekhit AE, Guimarães JT, Balthazar CF, Rocha RS, Esmerino EA, Freitas MQ, Silva MC, Sameen A, Cruz AG (2019) Impact of nonthermal processing on different milk enzymes. Int J Dairy Tech 72: 481-495.
2. Altuntas S, Korukluoğlu M (2018) Listeria monocytogenes in food facilities and new approaches for struggle. J Food 43:101-113.
3. Assiry AM, Gaily MH, Alsamee M, Sarifudin A (2010) Electrical conductivity of seawater during ohmic heating. Desalination 260: 9-17.
4. Awuah GB, Ramaswamy HS, Economides A (2007) Thermal processing and quality: Principles and overview. Chem Eng Process 46: 584-602.
5. Balpetek D, Gürbüz U (2015) Application of ohmic heating system in meat thawing. Procedia Soc 195: 2822-2828.
6. Belfort M, Cherkerzian S, Bell K, Soldateli B, Cordova Ramos E, Palmer C, Steele T, Pepin H, Ellard D, Drouin K, Inder, T (2020) Macronutrient intake from human milk, infant growth, and body composition at term equivalent age: a longitudinal study of hospitalized very preterm infants. Nutrients 12: 2249.
7. Cevik M, Icier F (2020) Characterization of viscoelastic properties of minced beef meat thawed by ohmic and conventional meth-ods. Food Sci Technol Int 26: 277-290.
8. Cho WI, Kim EJ, Hwang HJ, Cha YH, Cheon HS, Choi JB, Chung MS (2017) Continuous ohmic heating system for the pasteurization of fermented red pepper paste. Innov Food Sci Emerg Technol 42: 190-196.
9. Coimbra LO, Vidal VA, Silva R, Rocha RS, Guimarães JT, Balthazar CF, Cruz AG (2020) Are ohmic heating-treated whey dairy beverages an innovation? Insights of the Q methodology. LWT 134: 110052.
10. Costa NR, Cappato LP, Ferreira MV, Pires RP, Moraes J, Esmerino EA, Silva R, Neto RP, Tavares MI, Freitas MQ, Júnior RN, Rodrigues FN, Bisaggio RC, Cavalcanti RN, Raices RSL, Silva MC, Cruz AG (2018) Ohmic Heating: A potential technology for sweet whey processing. Food Res Int 106: 771-779.
11. Inmanee P, Kamonpatana P, Pirak T (2019) Ohmic heating effects on Listeria monocytogenes inactivation, and chemical, physical, and sensory characteristic alterations for vacuum packaged sausage during postpasteurization. LWT 108: 183-189.
12. Jaeger H, Janositz A, Knorr D (2010) The Maillard reaction and its control during food processing. The potential of emerging technologies. Pathol Biol 58: 207-213.
13. Kallipolitis BH, Gahan CG, Piveteau P (2020) Factors contributing to Listeria monocytogenes transmission and impact on food safety. Curr Opin Food Sci 36: 9-17.
14. Kim SS, Kang DH (2015) Effect of milk fat content on the performance of ohmic heating for inactivation of Escherichia coli O157: H7, Salmonella enterica serovar Typhimurium and Listeria monocytogenes. J Appl Microbiol 119: 475-486.
15. Knirsch MC, Dos Santos CA, de Oliveira Soares AA, Penna TC (2010) Ohmic heating–a review. Trends Food Sci Technol 21: 436-441.
16. Lee JY, Kim SS, Kang DH (2015) Effect of pH for inactivation of Escherichia coli O157: H7, Salmonella Typhimurium and Listeria monocytogenes in orange juice by ohmic heating. LWT 62: 83-88.
17. Morales FJ, Jiménez-Pérez S (1999) HMF formation during heat treatment of milk type products as related to milkfat content. J Food Sci 64: 855–859.
18. Morales FJ, Jiménez-Pérez S (2001) Hydroxymethylfurfural determination in infant milk-based formulas by micellar electrokinetic capillary chromatography. Food Chem 72: 525-531.
19. Özkale S, Kahraman HA (2023) Determination of the effect of milk fat on the inactivation of Listeria monocytogenes by ohmic heat-ing. Ankara Univ Vet Fak Derg 70: 277-283.
20. Park IK, Kang DH (2013) Effect of electropermeabilization by ohmic heating for inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in buffered peptone water and apple juice. Appl Environ Microbiol 79: 7122-7129.
21. Parmar P, Singh AK, Meena GS, Borad S, Raju PN (2018) Application of ohmic heating for concentration of milk. J Food Sci Tech-nol 55: 4956-4963.
22. Pereira MO, Guimarães JT, Ramos GL, do Prado-Silva L, Nascimento JS, Sant’Ana AS, Cruz AG (2020) Inactivation kinetics of Lis-teria monocytogenes in whey dairy beverage processed with ohmic heating. LWT 127: 109420.
23. Pires RP, Cappato LP, Guimarães JT, Rocha RS, Silva R, Balthazar CF, Freitas MQ, Silva PHF, Neto RPC, Tavares MIB, Granato D, Raices RSL, Silva MC, Cruz AG (2020) Ohmic heating for infant formula processing: Evaluating the effect of different voltage gra-dient. J Food Eng 280: 109989.
24. Sagong HG, Lee SY, Chang PS, Heu S, Ryu S, Choi YJ, Kang DH (2011) Combined effect of ultrasound and organic acids to reduce Escherichia coli O157: H7, Salmonella Typhimurium, and Listeria monocytogenes on organic fresh lettuce. Int J Food Microbiol 145: 287-292.
25. Sakr M, Liu S (2014) A comprehensive review on applications of ohmic heating (OH). Renewable Sustainable Energy Rev 39: 262-269.
26. Salas AA, Jerome M, Finck A, Razzaghy J, Chandler-Laney P, Carlo WA (2022) Body composition of extremely preterm infants fed protein-enriched, fortified milk: a randomized trial. Pediatr Res 91: 1231-1237.
27. Shi C, Jia Z, Chen Y, Yang M, Liu X, Sun Y, Zheng, Z, Zhang X, Song K, Cui L, Baloch AB, Xia X (2015) Inactivation of Cronobacter sakazakii in reconstituted infant formula by combination of thymoquinone and mild heat. J Appl Microbiol 119: 1700-1706.
28. Somavat R, Mohamed HM, Chung YK, Yousef AE, Sastry SK (2012) Accelerated inactivation of Geobacillus stearothermophilus spores by ohmic heating. J Food Eng 108: 69-76.
29. Somavat R, Mohamed HM, Sastry SK (2013). Inactivation kinetics of Bacillus coagulans spores under ohmic and conventional heating. LWT 54: 194–198.
30. Tian X, Shao L, Yu Q, Liu Y, Li X, Dai R (2019) Evaluation of structural changes and intracellular substance leakage of Escherichia coli O157: H7 induced by ohmic heating. J Appl Microbiol 127: 1430-1441.
31. Urgu M, Saatli TE, Türk A, Koca N (2017) Determination of hydroxymethylfurfural content of heat-treated milk (pasteurized, UHT and lactose-hydrolised UHT milk). Academic Food 15: 249-255.
32. Wang C, Llave Y, Sakai N, Fukuoka M (2021) Analysis of thermal processing of liquid eggs using a high frequency ohmic heating: Experimental and computer simulation approaches. Innov Food Sci Emerg Technol 73: 102792


Go to article

Authors and Affiliations

R.Y. Ayyıldız
1
H.A. Kahraman
2

  1. Department of Food Hygiene and Technology, Institute of Health Sciences, University of Burdur Mehmet Akif Ersoy, 15030, Burdur, Turkey
  2. Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of Burdur Mehmet Akif Ersoy, 15030, Burdur, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Bactericidal activity of caprylic acid (CA) and hydrogen peroxide (HP) was investigated in this study in order to design a suitable formulation for use in the food-processing industry. Antibacterial effects of the two chemicals were tested in vitro against the reference strains of Salmonella enterica subsp. enterica serotype Enteritidis CCM 4420, Escherichia coli CCM 3988, Listeria monocytogenes CCM 5578 and Staphylococcus aureus CCM 4223, as well as against the wild bacterial strains obtained from various food commodities (poultry meat, rabbit meat, raw milk sheep cheese ‘Bryndza’) and potable water. First, suspension test was carried out to determine the minimum bactericidal concentrations for individual chemical compounds. While most Gram-negative bacteria tested were effectively inhibited by HP at a 0.5% concentration, the growth of Gram-positive bacterial strains was stopped by a 2% solution. CA showed similar antibacterial effect on all bacterial strains tested except for Staph. aureus showing the same sus- ceptibility as Gram-negative bacteria. The wild strains generally had higher resistance to both chemicals than the reference strains. Combination of HP and CA at concentrations of 0.01%; 0.05% and 0.1% was further tested by the suspension test, carrier test, and carrier test with simul- taneous exposure to UV light. The total bactericidal activity against selected foodborne pathogens was already observed at a concentration of 0.1% and the efficiency was significantly increased by the use of UV radiation. A novel disinfectant based on the combination of HP with CA appears to be a suitable binary formulation for potential use in the food sector.

Go to article

Authors and Affiliations

J. Výrostková
M. Pipová
B. Semjon
P. Jevinová
I. Regecová
J. Maľová
Download PDF Download RIS Download Bibtex

Abstract

Listeria (L.) monocytogenes is the causative agent of human listeriosis, the frequent sourceof which is food of animal origin. The aim of this study was to determine the influence of lactic acid bacteria (LAB) on the viability of Listeria in carrot juice and compound feed inoculated with L. monocytogenes. The effect of homogenous cultures of Streptococcus (Str.) lactis distaticus, Str. thermophilus and Lactobacillus (Lac.) lactis subsp. Cremoris and the combination of Str. thermophilus with Lac. bulgaricus in the carrot juice and compound feed samples on viability of inoculated L. monocytogenes were examined. There were no statistically significant differences in the results between the experimental groups. Regardless of used LAB, the results showed that the mean pH values in the carrot juice samples decreased from an initial pH of 6.7 to a mean value of 3.7 on 15 experimental day. The Listeria concentration in carrot juice samples decreased from average of 4.94 on day 5 to 3.24 log CFU/mL on day 10, and on day 15 achieved <0.01 log CFU/mL. In the compound feed trials, the pH decreased average from initial 6.5 to 3.7 on day 15. The concentration of Listeria decreased, similarly to the carrot juice samples, from average 5.0 on day 5 to 4.68 on day 10, and on day 15 achieved <0.01 log CFU/mL. In control samples, the number of Listeria increased throughout the study period and amounted to 9.2-9.84 log CFU/mL/g in all the samples. The activity of LAB has been shown to be antagonistic to L. monocytogenes. The results of the study did not show any clear differences between the used LAB strains in limiting the L. monocytogenes concentration. Based on the obtained results it can be conducted that the addition of LAB to animal food increases its microbiological safety.
Go to article

Bibliography

1. Bah A, Albano H, Bastos Barbosa J, Fhoula I, Gharbi Y, Najjari A, Boudabous A, Teixeira P, Ouzari HI (2019) Inhibitory effect of Lactobacillus plantarum FL75 and Leuconostoc mesenteroides FL14 against foodborne pathogens in artificially contaminated fermented tomato juice. Biomed Res Int 6937837.
2. Ben Taheur F, Kouidhi B, Fdhila K, Elabed H, Ben Slama R, Mahdouani K, Bakhrouf A, Chaieb K. (2016) Anti-bacterial and an-ti-biofilm activity of probiotic bacteria against oral pathogens. Microb Pathog 97: 213–220.
3. Boziaris IS, Nychas GJ (2007) Effect of nisin on growth boundaries of Listeria monocytogenes Scott A, at various temperatures, pH and water activities. Food Microbiol 23: 779-784.
4. Dhama K, Karthik K, Tiwari R, Shabbir MZ, Barbuddhe S, Malikf SV, Singh RK (2015) Listeriosis in animals, its public health signifi-cance (food-borne zoonosis) and advances in diagnosis and control: a comprehensive review. Vet Q 35: 211-235.
5. Farber J M, Coates F, Daley E (1992) Minimum water activity requirements for the growth of Listeria monocytogenes. Lett Appl Micro-biol 15: 103-105.
6. Farber JM, Zwietering M, Wiedmann M, Schaffner D, Hedberg CW, Harrison MA, Hartnett E, Chapman B, Donnelly CW, Goodburn KE, Gummalla S (2021) Alternative approaches to the risk management of Listeria monocytogenes in low risk foods. Food Control 123: 107601.
7. ISO 11133:2014 Microbiology of food, animal feed and water — Preparation, production, storage and performance testing of culture media. https://www.iso.org/obp/ui/#iso:std:iso: 11133:ed-1:v2
8. Li Q, Liu X, Dong M, Zhou J, Wang Y (2015) Aggregation and adhesion abilities of 18 lactic acid bacteria strains isolated from tradi-tional fermented food. Int J Agric Policy Res 3: 84–92.
9. Lim JY, Lee CL, Kim GH, Bang YJ, Rhim JW, Yoon KS (2020) Using lactic acid bacteria and packaging with grapefruit seed extract for controlling Listeria monocytogenes growth in fresh soft cheese. J Dairy Sci 103: 8761-8770.
10. Muñoz N, Sonar CR, Bhunia K, Tang J, Barbosa-Cánovas GV, Sablani SS (2019) Use of protective culture to control the growth of Listeria monocytogenes and Salmonella typhimurium in ready-to-eat cook-chill products. Food Control 102: 81-86.
11. Musabekova AA, Dmitrovskiy AM, Musabekov AA, Kurmangazin MS, Musabekova IN, Musabekov AA, Kurmangazin MS (2011) Epizootology of listeriosis in the Republic of Kazakhstan and Aktyubinsk Region. Epidemiol Infect Dis 16: 11-15.
12. Nilsson L, Hansen TB, Garrido P, Buchrieser C, Glaser P, Knochel S, Gram L, Gravesen A (2005) Growth inhibition of Listeria mon-ocytogenes by a nonbacteriocinogenic Carnobacterium piscicola. J Appl Microbiol 98: 172-183.
13. Pessoa WF, Melgaço AC, De Almeida ME, Ramos LP, Rezende RP, Romano CC (2017) In vitro activity of lactobacilli with probiotic potential isolated from cocoa fermentation against Gardnerella vaginalis. Biomed Res Int 2017: 3264194 .
14. Prezzi LE, Lee SH, Nunes VM, Corassin CH, Pimentel TC, Rocha RS, Ramos GL, Guimarães JT, Balthazar CF, Duarte MC, Freitas MQ, Esmerino EA, Silva MC, Cruz AG, Oliveira CA (2020) Effect of Lactobacillus rhamnosus on growth of Listeria monocytogenes and Staphylococcus aureus in a probiotic Minas Frescal cheese. Food Microbiol 92: 103557.
15. Ramos B, Brandão TR, Teixeira P, Silva CL (2020) Biopreservation approaches to reduce Listeria monocytogenes in fresh vegetables. Food Microbiol 85: 103282.
16. Riaz A, Noureen S, Liaqat I, Arshad M, Arshad N (2021) Antilisterial efficacy of Lactobacillus brevis MF179529 from cow: an in vivo evidence. BMC Comp Altern Med 19 : 37.
17. Saucedo-Reyes D, Carrillo-Salaza JA, Reyes-Santamaría MI, Saucedo-Veloz C (2012) Effect of pH and storage conditions on Listeria monocytogenes growth inoculated into sapote mamey (Pouteria sapota (Jacq) H.E. Moore & Stearn) pulp. Food Control 28: 110-117.
18. Serna-Cock L, Rojas-Dorado M, Ordonez-Artunduaga D, Garcia-Salazar A, Garcia-Gonzalez E, Aguilar CN (2019) Crude extracts of metabolites from co-cultures of lactic acid bacteria are highly antagonists of Listeria monocytogenes. Heliyon 5: e02448.
19. Śliżewska K, Chlebicz-Wójcik A, Nowak A (2021) Probiotic properties of new lactobacillus strains intended to be used as feed additives for monogastric animals. Probiotics Antimicrob Proteins 13: 146-162.
20. Wang Y , Wu J, Lv M, Shao Z, Hungwe M, Wang J, Bai X, Xie J, Wang Y, Geng W (2021) Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Front Bioeng Biotechnol 9: 612285.
21. Zapaśnik A, Sokołowska B, Bryła M (2022) Role of lactic acid bacteria in food preservation and safety. Foods 11: 1283.
22. Zilelidou EA, Skandamis PN (2018) Growth, detection and virulence of Listeria monocytogenes in the presence of other microorgan-isms: microbial interactions from species to strain level. Int J Food Microbiol 20: 10-25.
Go to article

Authors and Affiliations

A. Yeleussizova
1
P. Sobiech
2
N. Kaumenov
1
A. Batyrbekov
1
J. Błażejak-Grabowska
4
A. Isabaev
1
A. Platt-Samoraj
3

  1. Department of Veterinary Sanitation, A. Baitursynov Kostanay Regional University, Baitursynov street 47, 110000 Kostanay, Kazakhstan
  2. Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia-Mazury in Olsztyn, Oczapowskiego 14, 10-719 Olsztyn, Poland
  3. Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia-Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland
  4. Department of Commodity Science and Animal Improvement, Faculty of Animal Bioengineering, University of Warmia-Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

Listeria monocytogenes is a ubiquitous microorganism that is isolated from a variety of sources such as soil, water, decaying vegetation, sewage, animal feeds, silage, farm environments and food-processing environments. This study aimed to determine the prevalence, serogroups, biofilm formation, virulence factor genes, and genetic relationships of L. monocytogenes strains isolated from beef meat and meat contact surfaces obtained from a slaughterhouse in Burdur, Turkey. In this study, a total of 179 beef meat and meat contact surface samples were analyzed for the presence of L. monocytogenes by polymerase chain reaction (PCR). Out of a total of 179 beef meat and meat contact surface samples, 83 (46.37%) were found to be contaminated with L. monocytogenes, with the highest incidence (53.01%) occurring in beef meat. In the present study, most of the isolated strains belonged to serogroups IIB and IVB (lineage I). The L. monocytogenes strain also contained monoA-B, prfA, plcA, plcB, mpl, hlyA, actA, gtcA, dltA, Fri, flaA, InlA, InlC, InlJ, and iap genes. Biofilm formation was not determined in the tested samples at pH 5.5 and different temperatures (4°C, 10°C, 25°C, and 37°C). However, strong biofilm formation was observed in 6.45% (2/31) of the strains at pH 7.0 after 48 h incubation at 37°C, and in 3.22% (1/31) of the strains at pH 7.0 after 48 h incubation at 4°C and 10°C. Pulsed-field gel electrophoresis (PFGE) results showed that L. monocytogenes isolates were clonally related, and cross-contamination was present. In addition, PFGE results also revealed that AscI had more distinguishing power than the ApaI restriction enzyme. These results indicate that L. monocytogenes detected from meat and meat contact surfaces in the slaughterhouse pose a potential risk to public health.
Go to article

Bibliography

1. Abachin E, Poyart C, Pellegrini E, Milohanic E, Fiedler F, Berche P, Trieu-Cuot P (2002) Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol Microbiol 43: 1-14.
2. Agostinho Davanzo EF, Dos Santos RL, Castro VH, Palma JM, Pribul BR, Dallago BS, Fuga B, Medeiros M, Titze de Almeida SS, da Costa HM, Rodrigues DD, Lincopan N, Perecmanis S, Santana AP (2021) Molecular characterization of Salmonella spp. and Listeria monocytogenes strains from biofilms in cattle and poultry slaughterhouses located in the federal District and State of Goia´s, Brazil. PLoS One 16: e0259687.
3. Andrade JC, João AL, Alonso CS, Barreto AS, Henriques AR (2020) Genetic subtyping, biofilm-forming ability and biocide suscepti-bility of Listeria monocytogenes strains isolated from a ready-to-eat food industry. Antibiotics (Basel) 9: 416.
4. Arslan S, Baytur S (2019) Prevalence and antimicrobial resistance of Listeria species and subtyping and virulence factors of Listeria monocytogenes from retail meat. J Food Saf 39: e12578.
5. Ayaz ND, Cufaoglu G (2016) Listeria monocytogenes as a foodborne pathogen: Biocontrol in foods using lytic bacteriophages. J Clin Microbiol Biochem Technol 2: 035-039.
6. Bubert A, Köhler S, Goebel W (1992) The homologous and heterologous regions within the iap gene allow genus- and species-specific identification of Listeria spp. by polymerase chain reaction. Appl Environ Microbiol 58: 2625-2632.
7. Bubert A, Riebe J, Schnitzler N, Schönberg A, Goebel W, Schubert P (1997) Isolation of catalase-negative Listeria monocytogenes strains from listeriosis patients and their rapid ıdentification by anti-p60 antibodies and/or PCR. J Clin Microbiol 35: 179-183.
8. Bubert A, Sokolovic Z, Chun SK, Papatheodorou L, Simm A, Goebel W (1999) Differential expression of Listeria monocytogenes virulence genes in mammalian host cells. Mol Gen Genet 261: 323-336.
9. Boukili M, Filali FR, Lafkih N, Bouymajane A, Sefiani M, Moumni M (2020) Prevalence, characterization and antimicrobial resistance of Listeria monocytogenes isolated from beef meat in Meknes city, Morocco. Germs 10: 74-80.
10. Çadırcı Ö, Gücükoğlu A, Terzi GG, Uyanık T, Alişarlı M (2018) The existence of Listeria monocytogenes in a cattle slaughterhouse and identification of serotypes by mPCR. Ankara Univ Vet Fak Derg 65: 305-311.
11. CDC (2017) Standard Operating Procedure for PulseNet PFGE of Listeria monocytogenes. https://www.cdc.gov/pulsenet/pdf/listeria-pfge-protocol-508c.pdf
12. Chavant P, Martinie B, Meylheuc T, Bellon-Fontaine MN, Hebraud M (2002) Listeria monocytogenes LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. Appl Environ Microbiol 68: 728-737.
13. Chen M, Cheng J, Zhang J, Chen Y, Zeng H, Xue L, Lei T, Pang R, Wu S, Wu H, Zhang S, Wei X, Zhang Y, Ding Y, Wu Q (2019) Isolation, potential virulence, and population diversity of Listeria monocytogenes from meat and meat products in China. Front Microbiol 10: 946.
14. Cherifi T, Arsenault J, Pagotto F, Quessy S, Côté JC, Neira K, Fournaise S, Bekal S, Fravalo P (2020) Distribution, diversity and per-sistence of Listeria monocytogenes in swine slaughterhouses and their association with food and human listeriosis strains. PLoS One 15: e0236807.
15. Coban A, Pennone V, Sudagidan M, Molva C, Jordan K, Aydin A (2019) Prevalence, virulence characterization, and genetic related-ness of Listeria monocytogenes isolated from chicken retail points and poultry slaughterhouses in Turkey. Braz J Microbiol 50: 1063-1073.
16. Costa M, Pracca G, Sucari A, Galli L, Ibargoyen J, Gentiluomo J, Brusa V, Zugazua MM, Figueroa Y, Londero A, Roge A, Silva H, Der Ploeg CV, Signorini M, Oteiza JM, Leotta GA (2020) Comprehensive evaluation and implementation of improvement actions in bovine abattoirs to reduce pathogens exposure. Prev Vet Med 176: 104933.
17. Demaître N, Van Damme I, De Zutter L, Geeraerd AH, Rasschaert G, De Reu K (2020) Occurrence, distribution and diversity of Lis-teria monocytogenes contamination on beef and pig carcasses after slaughter. Meat Sci 169: 108177.
18. Doumith M, Buchrieser C, Glaser P, Jacquet C, Martin P (2004) Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. J Clin Microbiol 42: 3819-3822.
19. Dussurget O, Dumas E, Archambaud C, Chafsey I, Chambon C, Hébraud M, Cossart P (2005) Listeria monocytogenes ferritin protects against multiple stresses and is required for virulence. FEMS Microbiol Lett 250: 253-261.
20. Furrer B, Candrian U, Hoefelein C, Luethy J (1991) Detection and identification of Listeria monocytogenes in cooked sausage products and in milk by in vitro amplification of haemolysin gene fragments. J Appl Bacteriol 70: 372-379.
21. Graves LM, Hunter SB, Ong AR, Schoonmaker-Bopp D, Hise K, Kornstein L, DeWitt WE, Hayes PS, Dunne E, Mead P, Swaminathan B (2005) Microbiological aspects of the investigation that traced the 1998 outbreak of listeriosis in the United States to contaminated hot dogs and establishment of molecular subtyping-based surveillance for Listeria monocytogenes in the PulseNet Network. J Clin Microbiol 43: 2350-2355.
22. Hellström S (2011) Contamination routes and control of Listeria monocytogenes in food production. Academic dissertation. University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland. SBN 978-952-10-7109-6 (PDF)
23. Hitchins AD, Jinneman K, Chen Y (2022) Chapter 10: Detection of Listeria monocytogenes in foods and environmental samples, and enumeration of Listeria monocytogenes in foods. In: Food and Drug Administraiton Bacteriological Analytical Manual (BAM), Food and Drug Administraiton. https://www.fda.gov/food/laboratory-methods-food/bamchapter-10-detection-listeria-monocytogenes-foods-andenvironmental-samples-and-enumeration
24. Iglesias MA, Kroning IS, Decol LT, de Melo Franco BD, da Silva WP (2017) Occurrence and phenotypic and molecular characteriza-tion of Listeria monocytogenes and Salmonella spp. in slaughterhouses in southern Brazil. Food Res Int 100: 96-101.
25. ISO (2017) International Organization for Standardization, EN ISO 11290-1:2017. Microbiology of the food chainHorizontal method for the detection and enumeration of Listeria monocytogenes and of Listeria spp. Part 1: Detection method. https://www.iso.org/obp/ui/#iso:std:iso: 11290:-1:ed-2:v1:en
26. Jang YS, Moon JS, Kang HJ, Bae D, Seo KH (2021) Prevalence, characterization, and antimicrobial susceptibility of Listeria monocytogenes from raw beef and slaughterhouse environments in Korea. Foodborne Pathog Dis 18: 419-425.
27. Jaradat ZW, Schutze GE, Bhunia AK (2002) Genetic homogeneity among Listeria monocytogenes strains from infected patients and meat products from two geographic locations determined by phenotyping, ribotyping and PCR analysis of virulence genes. Int J Food Microbiol 76: 1-10.
28. Jennison AV, Masson JJ, Fang NX, Graham RM, Bradbury MI, Fegan N, Gobius KS, Graham TM, Guglielmino CJ, Brown JL, Fox EM (2017) Analysis of the Listeria monocytogenes population structure among isolates from 1931 to 2015 in Australia. Front Microbiol 8: 603.
29. Kayode AJ, Igbinosa EO, Okoh AI (2019) Overview of listeriosis in the Southern African Hemisphere-Review. J Food Saf 40: e12732.
30. Kyoui D, Takahashi H, Miya S, Kuda T, Kimura B (2014) Comparison of the major virulence-related genes of Listeria monocytogenes in Internalin A truncated strain 36-25-1 and a clinical wild-type strain. BMC Microbiol 14: 15.
31. Leimeister-Wachter M, Domann E, Chakraborty T (1991) Detection of a gene encoding a phosphatidylinositolspecific phospholipase C that is co-ordinately expressed with listeriolysin in Listeria monocytogenes. Mol Microbiol 5: 361-366.
32. Li X, Shi X, Song Y, Yao S, Li K, Shi B, Sun J, Liu Z, Zhao W, Zhao C, Wang J (2022) Genetic diversity, antibiotic resistance, and virulence profiles of Listeria monocytogenes from retail meat and meat processing. Food Res Int 162: 112040.
33. Liu D, Ainsworth AJ, Austin FW, Lawrence ML (2004) Use of PCR primers derived from a putative transcriptional regulator gene for species-specific determination of Listeria monocytogenes. Int J Food Microbiol 91: 297-304.
34. Liu D, Lawrence ML, Ainsworth AJ, Austin FW (2008) Genotypic identification. In: Liu D (ed) Handbook of Listeria monocytogenes, 1st ed., Boca Raton: CRC Press, Taylor & Francis Group, pp 169-202.
35. Liu D, Lawrence ML, Austin FW, Ainsworth AJ (2007) A multiplex PCR for species- and virulence-specific determination of Listeria monocytogenes. J Microbiol Methods 71: 133-140.
36. Mazaheri T, Ripolles-Avila C, Hascoët AS, Rodríguez-Jerez JJ (2020) Effect of an enzymatic treatment on the removal of mature Listeria monocytogenes biofilms: A quantitative and qualitative study. Food Control 114: 107266.
37. Neves E, Lourenco A, Silva AC, Coutinho R, Brito L (2008) Pulsed-field gel electrophoresis (PFGE) analysis of Listeria monocytogenes isolates from different sources and geographical origins and representative of the twelve serovars. Syst Appl Microbiol 31: 387-392.
38. Nishibori T, Cooray K, Xiong H, Kawamura I, Fujita M, Mitsuyama M (1995) Correlation between the presence of virulence-associated genes as determined by PCR and actual virulence to mice in various strains of Listeria spp. Microbiol Immunol 39: 343-349.
39. Oevermann A, Zurbriggen, A Vandevelde M (2010) Rhombencephalitis caused by Listeria monocytogenes in humans and ruminants: a zoonosis on the rise? Interdiscip Perspect Infect Dis 2010: 632513.
40. Oh H, Kim S, Lee S, Lee H, Ha J, Lee J, Choi Y, Choi KH, Yoon Y (2018) Prevalence, serotype diversity, genotype and antibiotic resistance of Listeria monocytogenes isolated from carcasses and human in Korea. Korean J Food Sci Anim Resour 38: 851-865.
41. Olaimat AN, Al-Holy MA, Shahbaz HM, Al-Nabulsi AA, Abu Ghoush MH, Osaili TM, Ayyash MM, Holley RA (2018) Emergence of antibiotic resistance in Listeria monocytogenes isolated from food products: a comprehensive review. Compr Rev Food Sci Food Saf 17: 1277-1292.
42. Orsi RH, den Bakker HC, Wiedmann M (2011) Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. Int J Med Microbiol 301: 79-96.
43. Orsi RH, Wiedmann M (2016) Characteristics and distribution of Listeria spp., including Listeria species newly described since 2009. Appl Microbiol Biotechnol 100: 5273-5287.
44. Papatzimos G, Kotzamanidis C, Kyritsi M, Malissiova E, Economou V, Giantzi V, Zdragas A, Hadjichristodoulou C, Sergelidis D (2022) Prevalence and characteristics of Listeria monocytogenes in meat, meat products, food handlers and the environment of the meat processing and the retail facilities of a company in Northern Greece. Lett Appl Microbiol 74: 367-376.
45. Penesyan A, Paulsen IT, Kjelleberg S, Gillings MR (2021) Three faces of biofilms: a microbial lifestyle, a nascent multicellular organism, and an incubator for diversity. NPJ Biofilms and Microbiomes, 7: 80.
46. Poimenidou SV, Dalmasso M, Papadimitriou K, Fox EM, Skandamis PN, Jordan K (2018) Virulence gene sequencing highlights similarities and differences in sequences in Listeria monocytogenes Serotype 1/2a and 4b strains of clinical and food origin from 3 different geographic locations. Front Microbiol 9: 1103.
47. Promadej N, Fiedler F, Cossart P, Dramsi S, Kathariou S (1999) Cell wall teichoic acid glycosylation in Listeria monocytogenes serotype 4b requires gtcA, a novel, serogroup-specific gene. J Bacteriol 181: 418-425.
48. Sahin S, Mogulkoç MN, Kalın R (2020) Prevalence and serotype distribution of Listeria monocytogenes isolated from retail raw meats. J Fac Vet Med Erciyes Univ 17: 22-27.
49. Slama RB, Miladi H, Chaieb K, Bakhrouf A (2013) Survival of Listeria monocytogenes cells and the effect of extended frozen storage (-20°C) on the expression of its virulence gene. Appl Biochem Biotechnol 170: 1174-1183.
50. Soni DK, Singh M, Singh DV, Dubey SK (2014) Virulence and genotypic characterization of Listeria monocytogenes isolated from vegetable and soil samples. BMC Microbiol 14: 241.
51. Sudagidan M, Cavusoglu C, Bacakoglu F (2008) Investigation of the virulence genes in methicillin-resistant Staphylococcus aureus strains isolated from biomaterial surfaces. Mikrobiyol Bul 42: 29-39.
52. Teixeira LA, Carvalho FT, Vallim DC, Pereira RC, Neto AC, Vieira BS, Carvalho RC, Figueiredo EE (2020) Listeria monocytogenes in export-approved beef from Mato Grosso, Brazil: prevalence, molecular characterization and resistance to antibiotics and disinfectants. Microorganisms 8: 18.
53. Vasquez-Boland JA, Kocks C, Dramsi S, Ohayon H, Geoffroy C, Mengaud J, Cossart P (1992) Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread. Infect Immun 60: 219-230.
54. Yan H, Neogi SB, Mo Z, Guan W, Shen Z, Zhang S, Li L, Yamasaki S, Shi L, Zhong N (2010) Prevalence and characterization of an-timicrobial resistance of foodborne Listeria monocytogenes isolates in Hebei province of Northern China, 2005-2007. Int J Food Mi-crobiol 144: 310-316.
55. Yucel N, Citak S, Onder M (2005) Prevalence and antibiotic resistance of Listeria species in meat products in Ankara, Turkey. Food Microbiol 22: 241-245.
56. Zhang H, Wang J, Chang Z, Liu X, Chen W, Yu Y, Wang X, Dong Q, Ye Y, Zhang X (2021) Listeria monocytogenes contamination characteristics in two ready-to-eat meat plants from 2019 to 2020 in Shanghai. Front Microbiol 12: 729114.
Go to article

Authors and Affiliations

F. Tasci
1
M. Sudagidan
2
O. Yavuz
2
A. Soyucok
3
A. Aydin
4

  1. Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, 15030, Istiklal Campus, Burdur, Turkey
  2. Scientific and Technology Application and Research Center, Burdur Mehmet Akif Ersoy University, Burdur, 15030, Istiklal Campus, Burdur, Turkey
  3. Department of Food Processing, Food Agriculture and Livestock Vocational School, Burdur Mehmet Akif Ersoy University, 15030, Istiklal Campus, Burdur, Turkey
  4. Department of Food Hygiene and Technology, Faculty of Veterinary Medicine,Istanbul University-Cerrahpasa, 34320, Avcilar, Istanbul, Turkey

This page uses 'cookies'. Learn more