Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Anaerobic digestion is an important technology for the bio-based economy. The stability of the process is crucial for its successful implementation and depends on the structure and functional stability of the microbial community. In this study, the total microbial community was analyzed during mesophilic fermentation of sewage sludge in full-scale digesters.

The digesters operated at 34–35°C, and a mixture of primary and excess sludge at a ratio of 2:1 was added to the digesters at 550 m3/d, for a sludge load of 0.054 m3/(m3·d). The amount and composition of biogas were determined. The microbial structure of the biomass from the digesters was investigated with use of next-generation sequencing.

The percentage of methanogens in the biomass reached 21%, resulting in high quality biogas (over 61% methane content). The abundance of syntrophic bacteria was 4.47%, and stable methane production occurred at a Methanomicrobia to Synergistia ratio of 4.6:1.0. The two most numerous genera of methanogens (about 11% total) were Methanosaeta and Methanolinea, indicating that, at the low substrate loading in the digester, the acetoclastic and hydrogenotrophic paths of methane production were equally important. The high abundance of the order Bacteroidetes, including the class Cytophagia (11.6% of all sequences), indicated the high potential of the biomass for efficient degradation of lignocellulitic substances, and for degradation of protein and amino acids to acetate and ammonia.

This study sheds light on the ecology of microbial groups that are involved in mesophilic fermentation in mature, stably-performing microbiota in full-scale reactors fed with sewage sludge under low substrate loading.

Go to article

Authors and Affiliations

Piotr Świątczak
Agnieszka Cydzik-Kwiatkowska
Paulina Rusanowska
Download PDF Download RIS Download Bibtex

Abstract

QF-PCR is a widely used molecular biology method. To name just a few of its uses, it is considered to be useful in paternity tests, identification tests or prenatal diagnostics. Therefore, there is a good chance that medical faculty students would come into contact with this technology — directly or indirectly — during their professional work. The following article proposes a teaching classes scenario conducted in the problem-based learning manner, which aims to familiarize students with the QF-PCR technique. In addition, other modern methods of molecular genetics are among topics that students can learn during the problem-based learning modules. The classes are divided into three parts. In the first part, students learn about the possible usage of QF-PCR in paternity tests. The second part focuses on learning about the advantages and limitations of QF-PCR in prenatal diagnosis. Learning activities in the last part are designed to show the limitations of the diagnostic properties of the method — students analyze the case study, in which QF-PCR must be replaced by other modern methods of molecular genetics. By analyzing three independent stories, students learn about usage, advantages and limitations of QF-PCR, and additionally gain knowledge in basic, pre-clinical and clinical sciences. This course is designated as an elective course for final year medical students who have completed either: a basic genetics course, a mo-lecular genetics course, a biochemistry course or a molecular biology course. The focus of the classes is to draw students’ attention to the possible application and rapid development of molecular biology techni-ques, which is the base for modern therapeutic and diagnostic strategies.
Go to article

Authors and Affiliations

Kinga A. Kocemba-Pilarczyk
1
Anna Bentke-Imiolek
1
Paulina Dudzik
1

  1. Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland

This page uses 'cookies'. Learn more