Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Quantum cascade laser is one of the most sophisticated semiconductor devices. Its technology requires extremely high precision and layers quality. Device performance is limited by thermal extraction form laser core. One of solutions is to apply highly resistivity epitaxial material acting as insulating layer on top of the QCL. Present work describes consequent steps of elaboration of MOVPE technology of Fe-compensated InP layers for further applications in quantum cascade lasers.

Go to article

Authors and Affiliations

Mikołaj Badura
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this paper ∼16 μm-emitting multimode InP-related quantum cascade lasers are presented with the maximum operating temperature 373 K, peak and average optical power equal to 720 mW and 4.8 mW at 303 K, respectively, and the characteristic temperature (T0) 272 K. Two types of the lasers were fabricated and characterized: the lasers with a SiO2 layer left untouched in the area of the metal-free window on top of the ridge, and the lasers with the SiO2 layer removed from the metal-free window area. Dual-wavelength operation was obtained, at λ ∼ 15.6 μm (641 cm−1) and at λ ∼ 16.6 μm (602 cm−1) for lasers with SiO2 removed, while within the emission spectrum of the lasers with SiO2 left untouched only the former lasing peak was present. The parameters of these devices like threshold current, optical power and emission wavelength are compared. Lasers without the SiO2 layer showed ∼15% lower threshold current than these ones with the SiO2 layer. The optical powers for lasers without SiO2 layer were almost twice higher than for the lasers with the SiO2 layer on the top of the ridge.

Go to article

Authors and Affiliations

A. Szerling
S. Slivken
M. Razeghi
Download PDF Download RIS Download Bibtex

Abstract

A new approach to passive electromagnetic modelling of coupled–cavity quantum cascade lasers is presented in this paper. One of challenges in the rigorous analysis of such eigenvalue problem is its large size as compared to wavelength and a high quality factor, which prompts for substantial computational efforts. For those reasons, it is proposed in this paper to consider such a coupled-cavity Fabry-Perot resonant structure with partially transparent mirrors as a two-port network, which can be considered as a deterministic problem. Thanks to such a novel approach, passive analysis of an electrically long laser can be split into a cascade of relatively short sections having low quality factor, thus, substantially speeding up rigorous electromagnetic analysis of the whole quantum cascade laser. The proposed method allows to determine unequivocally resonant frequencies of the structure and the corresponding spectrum of a threshold gain. Eventually, the proposed method is used to elaborate basic synthesis rules of coupled–cavity quantum cascade lasers.

Go to article

Authors and Affiliations

M. Krysicki
B. Salski
P. Kopyt
Download PDF Download RIS Download Bibtex

Abstract

The paper presents verification of a peak detection method cooperating with infrared radiation detector module applications. The work has been divided into parts including SPICE simulations and presentation of results obtained with the constructed prototype. The design of the peak detector dedicated to applications with very short pulses requires a different approach than that for standard solutions. It is mainly caused due to the ratio of pulse width and time period. In the described application this ratio is less than 10%. The paper shows testing of an analogue circuit which is capable to be inserted in these applications.

Go to article

Authors and Affiliations

Krzysztof Achtenberg
Janusz Mikołajczyk
Dariusz Szabra
Artur Prokopiuk
Zbigniew Bielecki
Download PDF Download RIS Download Bibtex

Abstract

This paper presents some construction analysis and test results of a Free Space Optics system operating at the wavelength of 9.35 μm. In the system, a quantum cascade laser and a photoreceiver with mercury cadmium telluride photodetectors were used. The main parameters of these elements were discussed taking into account a data link operation. It also provides to determine a data range for various weather conditions related to scattering and scintillation. The results of numerical analyses defined the properties of currently available FSO technologies working in the near infrared or in the short infrared range of spectrum versus the performances of the developed system. The operation of this system was verified in three different test environments. The obtained results may also contain important issues related to the practical application of any FSO system.

Go to article

Authors and Affiliations

Janusz Mikolajczyk
Dariusz Szabra
Artur Prokopiuk
Krzysztof Achtenberg
ORCID: ORCID
Jacek Wojtas
ORCID: ORCID
Zbigniew Bielecki
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

High-power terahertz sources operating at room-temperature are promising for many applications such as explosive materials detection, non-invasive medical imaging, and high speed telecommunication. Here we report the results of a simulation study, which shows the significantly improved performance of room-temperature terahertz quantum cascade lasers (THz QCLs) based on a ZnMgO/ZnO material system employing a 2-well design scheme with variable barrier heights and a delta-doped injector well. We found that by varying and optimizing constituent layer widths and doping level of the injector well, high power performance of THz QCLs can be achieved at room temperature: optical gain and radiation frequency is varied from 108 cm−1 @ 2.18 THz to 300 cm−1 @ 4.96 THz. These results show that among II–VI compounds the ZnMgO/ZnO material system is optimally suited for high-performance room-temperature THz QCLs.

Go to article

Authors and Affiliations

V.P. Sirkeli
H.L. Hartnagel
Download PDF Download RIS Download Bibtex

Abstract

Lasers emitting mid-infrared (MIR) beams have become indispensable for spectroscopy, free space communication or remote security measures. To the one of the most promising families of the lasers suitable for these applications certainly belongs a group of the Quantum Cascade Lasers (QCL). However, among the conditions they must satisfy there is a high enough radiance of the beam they emit. Radiance depends in a complicated way on the laser output power and optical quality of the laser beam. This paper has been devoted to a description and a short analysis of the factors that decide about radiance of so far developed QCLs. Literature concerning both single devices and QCL arrays operating in beam combining systems have been examined and results described. The survey may be useful for estimation of how far the QCLs have come of age.

Go to article

Authors and Affiliations

B. Mroziewicz
E. Pruszyńska-Karbownik
Download PDF Download RIS Download Bibtex

Abstract

We investigate the light-current-voltage characteristics and emission spectra of 2.3 THz quantum cascade laser operating in the negative differential resistance (NDR) region. It was shown that the formation of electric field domains (EFDs) leads to a large number of discontinuities on the current-voltage and the total optical power on current characteristics. Measurements of emission spectra at different current (before the NDR region and in the NDR region) shows that the formation of EFDs results in decrease of the output intensity, but does not influence on Fabry-Perot multi-mode structure of THz QCL. The developed theoretical model predicts the formation of EFDs in the NDR region and qualitatively explain the experimental results.

Go to article

Authors and Affiliations

R.A. Khabibullin
N.V. Shchavruk
D.S. Ponomarev
D.V. Ushakov
A.A. Afonenko
K.V. Maremyanin
O.Yu. Volkov
V.V. Pavlovskiy
A.A. Dubinov
Download PDF Download RIS Download Bibtex

Abstract

The work presents doping characteristics and properties of high Si−doped InGaAs epilayers lattice−matched to InP grown by low pressure metal−organic vapour phase epitaxy. Silane and disilane were used as dopant sources. The main task of investigations was to obtain heavily doped InGaAs epilayers suitable for usage as plasmon−confinement layers in the construction of mid−infrared InAlAs/InGaAs/InP quantum−cascade lasers (QCLs). It requires the doping concentration of 1×1019 cm–3 and 1×1020 cm–3 for lasers working at 9 μm and 5 μm, respectively. The electron concentration increases linearly with the ratio of gas−phase molar fraction of the dopant to III group sources (IV/III). The highest electron concentrations suitable for InGaAs plasmon−contact layers of QCL was achieved only for disilane. We also observed a slight influence of the ratio of gas−phase molar fraction of V to III group sources (V/III) on the doping efficiency. Structural measurements using high−resolution X−ray diffraction revealed a distinct influence of the doping concentration on InGaAs composition what caused a lattice mismatch in the range of –240 ÷ –780 ppm for the samples doped by silane and disilane. It has to be taken into account during the growth of InGaAs contact layers to avoid internal stresses in QCL epitaxial structures.

Go to article

Authors and Affiliations

B. Ściana
M. Badura
W. Dawidowski
K. Bielak
D. Radziewicz
D. Pucicki
A. Szyszka
K. Żelazna
M. Tłaczała

This page uses 'cookies'. Learn more