Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to investigate the antimycobacterial activity of 39 free terpenes and their activity in combination with streptomycin. Antimicrobial activity was first evaluated by screening 39 free terpenes at concentrations from 1.56 to 400 μg/mL. None of these exhibited positive effects against any of the nontuberculous mycobacteria (NTM) strains tested. However, six of the 39 terpenes (isoeugenol, nerol, (+)-α-terpineol, (1R)-(−)-myrtenol, (+)-terpinen-4-ol, and eugenol) were shown to enhance the activity of streptomycin against the NTM strains isolated from diseased ornamental fish.
Go to article

Bibliography

1. Barbosa CR, Scherf JR, de Freitas TS, de Menezes IR, Pereira RL, dos Santos JF, de Jesus SS, Lopes TP, Silveira Z, Oliveira-Tintino CD, Junior JP, Coutinho HD, Tintino SR, da Cunha FA (2021) Effect of carvacrol and thymol on NorA efflux pump inhibition in multi-drug-resistant (MDR) Staphylococcus aureus strains. J Bioenerg Biomembr 53: 489-498.
2. Cantrell CL, Franzblau SG, Fischer NH (2001) Antimycobacterial plant terpenoids. Planta Med 67: 685–694.
3. Coêlho ML, Ferreira JH, de Siqueira-Júnior JP, Kaatz GW, Barreto HM, de Carvalho Melo Cavalcante AA (2016) Inhibition of the NorA multi-drug transporter by oxygenated monoterpenes. Microb Pathog 99: 173–177.
4. Decostere A, Hermans K, Haesebrouck F (2004) Piscine mycobacteriosis: A literature review covering the agent and the disease it causes in fish and humans. Vet Microbiol 99: 159-166.
5. Dias KJ, Miranda GM, Bessa JR, de Araújo AC, Freitas PR, Almeida RS, Paulo CL, Neto JB, Coutinho HD, Ribeiro-Filho J (2022) Terpenes as bacterial efflux pump inhibitors: A systematic review. Front Pharmacol 13: 953982.
6. De Rossi E, Aínsa JA, Riccardi G (2006) Role of mycobacterial efflux transporters in drug resistance: an unresolved question. FEMS Microbiol Rev 30: 36–52.
7. Gupta, AK, Chauhan DS, Srivastava K, Das R, Batra S, Mittal M, Goswami P, Singhal N, Sharma VD, Venkatesan K, Hasnain SE, Katoch VM (2006) Estimation of efflux mediated multi-drug resistance and its correlation with expression levels of two major efflux pumps in mycobacteria. J Commun Dis 38: 246–254.
8. Guz L, Grądzki Z, Krajewska M, Lipiec M, Zabost A, Augustynowicz-Kopeć E, Zwolska Z, Szulowski K (2013) Occurrence and anti-microbial susceptibility of Mycobacterium peregrinum in ornamental fish. Bull. Vet Inst Pulawy 57: 489-492.
9. Guz L, Puk K (2022) Antibiotic susceptibility of mycobacteria isolated from ornamental fish. J Vet Res 66: 69-76.
10. Jin J, Zhang JY, Guo N, Sheng H, Li L, Liang JC, Wang XL, Li Y, Liu MY, Wu XP, Yu L (2010) Farnesol, a potential efflux pump in-hibitor in Mycobacterium smegmatis. Molecules 15: 7750-7762.
11. Kumar G, Karthik L, Bhaskara Rao KV (2011) Haemolytic activity of Indian medicinal plants toward human erythrocytes: an in vitro study. Elixir Appl Botany 40: 5534-5537.
12. Kumar M, Singh SK, Singh PP, Singh VK, Rai AC, Srivastava AK, Shukla L, Kesawat MS, Jaiswal AK, Chung SM, Kumar A (2021) Potential anti-Mycobacterium tuberculosis activity of plant secondary metabolites: Insights with molecular docking interactions. Antioxi-dans 10: 1990.
13. Mahizan NA, Yang SK, Moo CL, Song AA, Chong CM, Chong CW, Abushelaibi A, Lim SH, Lai KS (2019) Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules 24: 2631.
14. Marquez B (2005) Bacterial efflux systems and efflux pumps inhibitors. Biochimie 87: 1137-1147.
15. Martins A, Vasas A, Viveiros M, Molnár J, Hohmann J, Amaral L (2011) Antibacterial properties of compounds isolated from Car-pobrotus edulis. Int J Antimicrob Agents 37: 438-444.
16. Muniz DF, dos Santos Barbosa CR, de Menezes IR, de Sousa EO, Pereira RL, Júnior JT, Pereira PS, de Matos YM, da Costa RH, de Morais Oliveira-Tintino CD, Coutinho HD, Filho JM, de Sousa GR, Filho JR, Siqueira-Junior JP, Tintino SR (2021) In vitro and in sil-ico inhibitory effects of synthetic and natural eugenol derivatives against the NorA efflux pump in Staphylococcus aureus. Food Chem 337: 127776.
17. Puk K, Banach T, Wawrzyniak A, Adaszek Ł, Ziętek J, Winiarczyk S, Guz L (2018) Detection of Mycobacterium marinum, M. pere-grinum, M. fortuitum and M. abscessus in aquarium fish. J Fish Dis 41: 153-156.
18. Puk K, Guz L (2020) Occurrence of Mycobacterium spp. in ornamental fish. Ann Agric Environ Med 27: 535-539.
19. Puk K, Guz L (2022) Effect of alkaloid berberine on the susceptibility of nontuberculous mycobacteria to antibiotics. Pol J Vet Sci 25: 479-481.
20. Puk K, Wawrzykowski J, Guz L (2023) Evaluation of the anti-mycobacterial activity and composition of Carlina acaulis L. root extracts. Pol J Vet Sci 26: 57-63.
21. Sieniawska E, Sawicki R, Swatko-Ossor M, Napiorkowska A, Przekora A, Ginalska G, Augustynowicz-Kopeć E (2018) The effect of combining natural terpenes and antituberculous agents against reference and clinical Mycobacterium tuberculosis strains. Molecules 23: 176.
22. Sieniawska E, Swatko-Ossor M, Sawicki R, Skalicka-Woźniak K, Ginalska G (2017) Natural terpenes influence the activity of antibiot-ics against isolated Mycobacterium tuberculosis. Med Princ Pract 26: 108-112 .
23. Szmygin-Milanowska K, Grzywa-Celińska A, Zwolska Z, Krawczyk P, Guz L, Milanowski J (2016) ‘TB or not TB’ Problems of dif-ferentia diagnosis of cutaneous mycobacteriosis and tuberculosis – A case study and interdisciplinary discussion. Ann Agric Environ Med 23: 97-102.
24. Vasconcelos SS, Caleffi-Ferracioli KR, Hegeto LA, Baldin VP, Nakamura CV, Stefanello TF, Gauze GF, Yamazaki DA, Scodro RB, Siqueira VL, Cardoso RF (2018) Carvacrol activity and morphological changes in Mycobacterium tuberculosis. Future Microbiol 13: 877–888.
Go to article

Authors and Affiliations

L. Guz
1
K. Puk
1
D. Szwajgier
2
A. Pastuszka
1

  1. Department of Biology and Fish Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
  2. Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

MDAP-2 is a new antibacterial peptide with a unique structure that was isolated from house- flies. However, its biological characteristics and antibacterial mechanisms against bacteria are still poorly understood. To study the biological characteristics, antibacterial activity, hemolytic activi- ty, cytotoxicity to mammalian cells, and the secondary structure of MDAP-2 were detected; the results showed that MDAP-2 displayed high antibacterial activity against all of the tested Gram-negative bacteria. MDAP-2 had lower hemolytic activity to rabbit red blood cells; only 3.4% hemolytic activity was observed at a concentration of 800μg/ml. MDAP-2 also had lower cytotoxicity to mammalian cells; IC50 values for HEK-293 cells, VERO cells, and IPEC-J2 cells were greater than 1000 μg/ml. The circular dichroism (CD) spectra showed that the peptide most- ly has α-helical properties and some β-fold structure in water and in membrane-like conditions. MDAP-2 is therefore a promising antibacterial agent against Gram-negative bacteria. To deter- mine the antibacterial mechanism(s) of action, fluorescent probes, flow cytometry, and transmis- sion electron microscopy (TEM) were used to study the effects of MDAP-2 on membrane perme- ability, polarization ability, and integrity of Gram-negative bacteria. The results indicated that the peptide caused membrane depolarization, increased membrane permeability, and destroyed membrane integrity. In conclusion, MDAP-2 is a broad-spectrum, lower hemolytic activity, and lower cytotoxicity antibacterial peptide, which is mainly effective on Gram-negative bacteria. It exerts its antimicrobial effects by causing bacterial cytoplasm membrane depolarization, increas- ing cell membrane permeability and disturbing the membrane integrity of Gram-negative bacte- ria. MDAP-2 may offer a new strategy to for defense against Gram-negative bacteria.

Go to article

Authors and Affiliations

Z. Pei
X. Ying
Y. Tang
L. Liu
H. Zhang
S. Liu
D. Zhang
K. Wang
L. Kong
Y. Gao
H. Ma
Download PDF Download RIS Download Bibtex

Abstract

Taraxacum Officinale, commonly called dandelion, is herbaceous perennial belonging to the family of Asteraceae, having good antibacterial effects which are related to its phenolic substances. In this study, the effect of phenolic contents as well as the antibiofilm activity against Staphylococcus aureus of phenolic extract from T. Officinale were evaluated in vitro. With 70% metha- nol-water (v/v) as a solvent, the dandelion was extracted by ultrasonic assisted extraction method. Subsequent identification and quantification of phenol in extract was carried out using High Performance Liquid Chromatography (HPLC). The minimum inhibitory concentration and anti- bacterial kinetic curve of dandelion phenolic extract were analyzed by spectrophotometry. Changes in extracellular alkaline phosphatase (AKP) contents, electrical conductivity, intracellular protein contents, and DNA of S. aureus after the action of dandelion phenolic extract were determined to study its effect on the permeability of S. aureus cell wall and cell membrane. The results showed that chlorogenic acid (1.34 mg/g) was present in higher concentration, followed by luteolin (1.08 mg/g), ferulic acid (0.22 mg/g), caffeic acid (0.21 mg/g), and rutin (0.19 mg/g) in the dandelion phenolic extract. The minimum inhibitory concentration (MIC) of dandelion phenolic extract against S. aureus was 12.5 mg/mL. The antibacterial kinetic curve analysis showed that the inhibitory effect of dandelion phenolic extract on S. aureus was mainly in the exponential growth phase. After applying the dandelion phenolic extract, the growth of S. aureus was signifi- cantly inhibited entering into the decay phase early. Furthermore, after the action of dandelion, the extracellular AKP contents of S. aureus, the electrical conductivity and the extracellular protein contents were all increased. The phenolic extract also affected the normal reproduction of S. aureus. These results suggest that dandelion has an inhibitory effect on S. aureus, and the mechanism of its action was to destroy the integrity of the cell walls and cell membranes.
Go to article

Authors and Affiliations

P. Xu
1 2 3
X.B. Xu
1
A. Khan
4
T. Fotina
3
S.H. Wang
2

  1. School of Life Science and Basic Medicine, Xinxiang University, Jinsui St. 191, 453003 Xinxiang, China
  2. College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Eastern Hua Lan Street, 453003 Xinxiang, China
  3. Department of Veterinary Medicine, Sumy National Agrarian University, Herasima Kondratieva St. 160, 40021 Sumy, Ukraine
  4. College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, P.R. China
Download PDF Download RIS Download Bibtex

Abstract

Bactericidal activity of caprylic acid (CA) and hydrogen peroxide (HP) was investigated in this study in order to design a suitable formulation for use in the food-processing industry. Antibacterial effects of the two chemicals were tested in vitro against the reference strains of Salmonella enterica subsp. enterica serotype Enteritidis CCM 4420, Escherichia coli CCM 3988, Listeria monocytogenes CCM 5578 and Staphylococcus aureus CCM 4223, as well as against the wild bacterial strains obtained from various food commodities (poultry meat, rabbit meat, raw milk sheep cheese ‘Bryndza’) and potable water. First, suspension test was carried out to determine the minimum bactericidal concentrations for individual chemical compounds. While most Gram-negative bacteria tested were effectively inhibited by HP at a 0.5% concentration, the growth of Gram-positive bacterial strains was stopped by a 2% solution. CA showed similar antibacterial effect on all bacterial strains tested except for Staph. aureus showing the same sus- ceptibility as Gram-negative bacteria. The wild strains generally had higher resistance to both chemicals than the reference strains. Combination of HP and CA at concentrations of 0.01%; 0.05% and 0.1% was further tested by the suspension test, carrier test, and carrier test with simul- taneous exposure to UV light. The total bactericidal activity against selected foodborne pathogens was already observed at a concentration of 0.1% and the efficiency was significantly increased by the use of UV radiation. A novel disinfectant based on the combination of HP with CA appears to be a suitable binary formulation for potential use in the food sector.

Go to article

Authors and Affiliations

J. Výrostková
M. Pipová
B. Semjon
P. Jevinová
I. Regecová
J. Maľová
Download PDF Download RIS Download Bibtex

Abstract

In the last decade, atmospheric plasma has been used to treating bacterial infections in humans due to its bactericidal effects; however, its efficacy in dogs is unclear. This study evaluated the in vitro bactericidal efficacy of atmospheric plasma on Staphylococcus pseudinter- medius and Pseudomonas aeruginosa, two of the most important bacterial agents isolated from canine pyodermas. Three isolates each of S. pseudintermedius and P. aeruginosa obtained from dogs with pyoderma were subjected to atmospheric plasma. The isolates from the control group were not exposed to plasma, while those from the treatment groups were exposed to plasma for 15 (7.5 J/cm2), 30 (15 J/cm2), 60 (30 J/cm2), or 90 (45 J/cm2) seconds. After each treatment, a reduction in colony formation was observed. Bacterial viability was evaluated using the LIVE/ DEAD® BacLight™ Bacterial Viability Kit. The antibacterial effects were evaluated with Image J software and significance was assessed statistically in comparison to the control group. The bactericidal effect of atmospheric plasma against both bacteria increased significantly in a time-dependent manner. These results demonstrate the bactericidal capacity of atmospheric plasma, and suggest that it could serve as an alternative treatment method for canine pyoderma. Further studies are needed to evaluate the safety and efficacy of atmospheric plasma in dogs.

Go to article

Authors and Affiliations

S. Bae
D. Lim
D. Kim
J. Jeon
T. Oh

This page uses 'cookies'. Learn more