Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 85
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Concrete is generally produced using materials such as crushed stone and river sand to the extent of about 80‒90% combined with cement and water. These materials are quarried from natural sources. Their depletion will cause strain on the environment. To prevent this, bottom ash produced at thermal power plants by burning of coal has been utilized in this investigation into making concrete. The experimental investigation presents the development of concrete containing lignite coal bottom ash as fine aggregate in various percentages of 25, 50, and 100. Compressive, split tensile, and flexural strength as part of mechanical properties; acid, sulphate attack, and sustainability under elevated temperature as part of durability properties, were determined. These properties were compared with that of normal concrete. It was concluded from this investigation that bottom ash to an extent of 25% can be substituted in place of river sand in the production of concrete.

Go to article

Authors and Affiliations

T.S. Thandavamoorthy
Download PDF Download RIS Download Bibtex

Abstract

The present study examines some durability aspects of ambient cured bottom ash geopolymer concrete (BA GPC) due to accelerated corrosion, sorptivity, and water absorption. The bottom ash geopolymer concrete was prepared with sodium based alkaline activators under ambient curing temperatures. The sodium hydroxide used concentration was 8M. The performance of BA GPC was compared with conventional concrete. The test results indicate that BA GPC developes a strong passive layer against chloride ion diffusion and provides better protection against corrosion. Both the initial and final rates of water absorption of BA GPC were about two times less than those of conventional concrete. The BA GPC significantly enhanced performance over equivalent grade conventional concrete (CC).

Go to article

Authors and Affiliations

R. Saravanakumar
V. Revathi
Download PDF Download RIS Download Bibtex

Abstract

The paper is focused on the research of ecotoxicological properties of mortar prisms produced with partial cement replacement by ash from energy recovery of municipal waste. Two types of ash were used: ash from incineration and ash from municipal waste gasifi cation. According to the Waste Catalogue, ash is considered other waste, which is non-hazardous and nowadays it is predominantly landfi lled. Negative results of standardized biotests are inevitable precondition for the use of ash for construction products. The results from both biotests (acute toxicity test on aquatic organisms Daphnia magna and growth inhibition test of higher cultivated plants Sinapis alba) confi rmed suitability of cement replacement by ash from energy recovery of municipal waste. Environmental safety of produced mortar prisms is different. Recommended replacement of cement with ash, obtained from municipal waste gasifi cation, is 10% and with ash gained from incineration is 15%. The use of this type of waste in construction industry will lead to the decrease of landfi lled waste. Due to the replacement of cement with waste (from industrial branches) natural resources of raw materials used in the process of cement production are saved.

Go to article

Authors and Affiliations

Jarmila Fialová
Helena Hybská
Dagmar Samešová
Martina Lobotková
Darina Veverková
Download PDF Download RIS Download Bibtex

Abstract

Rare earth elements are characterized by the high risk of their shortage resulting from limited resources. From this reason REE constitute a group of elements of special importance for the European Union. The aim of this study was to evaluate ashes from the burning of coal in fluidized bed boilers as an potential source of REY . Twelve samples of fly ash and bottom ash taken from power plants in Poland were analyzed. Tests have shown that despite some differences in chemical composition, the fly ash and bottom ash from fluidized beds could be classified as the calsialic, low acid type. It was found that fly ashes contained more REY than bottom ashes. Among REY , the light elements (LREY ) had the highest share in the total REY content in both fly ashes and bottom ashes. Heavy elements (HREY ) had the lowest content. The normalized curves plotted for fly ash samples within almost all of their entire range were positioned above the reference level and these curves were of the L-M or H-M type. The content of the individual REY in these samples was even twice as high as in UCC . The normalized curves plotted for bottom ash samples were classified as of L, L-M or H type. They were positioned on the reference level or above it. The content of the individual REY in these samples was the same or up to about 4 times lower than in UCC. It was found that the content of critical elements and of excessive elements in fly ash and bottom ash differs, which has an effect on the value of the outlook coefficient Coutl, and which is always higher in the case of fly ash than in the case of bottom ash. Nevertheless, the computed values of the outlook coefficient Coutl allow both fly ash and bottom ash from fluidized beds to be regarded as promising REY raw materials.
Go to article

Authors and Affiliations

Zdzisław Adamczyk
Joanna Komorek
Małgorzata Lewandowska
Jacek Nowak
Barbara Białecka
Joanna Całusz-Moszko
Agnieszka Klupa
Download PDF Download RIS Download Bibtex

Abstract

The use of biomass in the energy industry is the consequence of ongoing efforts to replace Energy from fossil fuels with energy from renewable sources. However, due to the diversity of the biomass, its use as a solid fuel generates waste with diverse and unstable chemical composition. Waste from biomass combustion is a raw material with a very diverse composition, even in the case of using only one type of biomass. The content of individual elements in fly ash from the combustion of biomass ranges from zero to tens of percent. This makes it difficult to determine the optimal recovery methods. The ashes from the combustion of biomass are most commonly used in the production of building materials and agriculture. This article presents the elemental composition of the most commonly used biomass fuels. The results of the analysis of elemental composition of fly ashes from the combustion of forest and agricultural biomass in fluidized bed boilers used in the commercial power industry were presented. These ashes are characterized by a high content of calcium (12.3–19.4%), silicon (1.2–8.3%), potassium (0.05–1.46%), chlorine (1.1–6.1%), and iron (0.8–6.5%). The discussed ashes contained no sodium. Aluminum was found only in one of the five ashes. Manganese, chromium, copper, nickel, lead, zinc, sulfur, bismuth, titanium and zirconium were found in all of the examined ashes. The analysis of elemental composition may allow for a preliminary assessment of the recovery potential of a given ash.

Go to article

Authors and Affiliations

Alicja Uliasz-Bocheńczyk
ORCID: ORCID
Eugeniusz Mokrzycki
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Petrographic and physico-chemical analyses of ashes are carried out on a large scale and presented in numerous scientific papers. The mentioned ashes are obtained from filters and electrostatic precipitators mounted in large industrial installations. The large-scale analysis of the ashes obtained directly from grate furnaces or blast furnaces mounted in low-power boilers started with combating smog and low-stack emissions. The collection of ash samples from household furnaces usually involves the analysis of the combustion of waste in low-power boilers. This is justified in the case of old type boilers, which were designed to use virtually any fuel. Currently, new types of boilers, designed to burn dedicated fuels, are offered on the market. The aim is to use only renewable fuels (biomass) or fossil fuels with high quality parameters, which are more environment-friendly, e.g. eco-pea coal, lignite briquettes, or peat briquettes. The authors of the study focused on examining the ash obtained from boilers for burning wood pellets by performing microscopic analysis of residues after biomass combustion. The above mentioned analysis provides a comprehensive information on the efficiency of the combustion process, the content of contaminants remaining in the ash, and the suitability of ash for other applications. The entire process, from the moment of collecting the samples to the execution of the analysis takes up to 12 hours, which ensures a quick decision on furnace adjustment or fuel change. The ash components were determined based on the results obtained by the Fly-Ash Working Group of the International Committee for Coal and Organic Petrology (ICCP). The mentioned classification has been supplemented with new key elements occurring in ashes resulting from the combustion of wood pellets in household boilers. This allowed determining the percentage content of characteristic components in the tested material, which can be used as a specific benchmark when issuing opinions on the quality and efficiency of the boiler and the combusted pellets.

Go to article

Authors and Affiliations

Zbigniew Jelonek
Adam Nocoń
Iwona Jelonek
Marta Jach-Nocoń
Keywords fly ash REE leaching
Download PDF Download RIS Download Bibtex

Abstract

The aim of the work was to draw attention to the usefulness of the alkaline thermal activation process with sodium hydroxide in the process of rare earth metal leaching (REE), from fly ash with hydrochloric acid and nitric acid(V). The work is a part of the authors’ own research aimed at optimizing the REE recovery process coming from fly ash from hard coal combustion.

The article contains an assessment of the possibility of leaching rare earth metals (REE) from fly ash originating from the combustion of hard coal in one of the Polish power plants. The process was carried out for various samples consisting of fly ash and sodium hydroxide and for different temperatures and reaction times. The process was carried out for samples consisting of fly ash and sodium hydroxide containing respectively 10, 20 and 30% on NaOH by weight in relation to the weight of fly ash. Homogenization of these mixtures was carried out wet, and then they were baked at 408K, 433K and 473K, for a period of three hours. The mixture thus obtained was ground to a particle size of less than 0.1 mm and washed with hot water to remove excessive NaOH. The solid post-reaction residue was digested in concentrated HCl at 373K for 1 hour at a weight ratio fs/fc of 1:10. The results of chemical analysis and scanning microscopic analysis along with EDS analysis and X-ray analysis were used to characterize the physicochemical properties of the tested material.

The results indicated that REE recovery from fly ash strictly depends on heat treatment temperature with NaOH, and an increase in REE recovery from alkaline-activated fly ash along with increasing the amount of NaOH in relation to fly ash mass.

Go to article

Authors and Affiliations

Sylwester Żelazny
Henryk Świnder
ORCID: ORCID
Andrzej Jarosiński
Barbara Białecka
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The galvanic sludges contain a number of toxic heavy metals, potentially mobilized as chemically active ions under environmental conditions as. This study explores the application of fly ash-based geopolymers for the removal of Zn ions from galvanizing sludge. In this study, geopolymers, synthesized via the geopolymerization method, were used to remove Zn from post-galvanized sewage sludge. Two types of geopolymers were used, derived from ash from coal combustion and biomass combustion. Structural, morphological, and surface properties were characterized using FTIR and SEM, respectively. In addition, BET and Langmuir isotherms, along with analyses such as t-Plot and BJH method for porous solids were conducted. The results indicate that the geopolymer derived from coal combustion ash is a more effective sorbent for Zn(II) ions, exhibiting a removal efficiency of 99.9%, compared to 40.7% for the geopolymer derived from biomass combustion ash. The FTIR spectra analysis reveals the presence of bonds between the -OH and/or Si-OH groups on the geopolymers’ surface and the Zn(II) ions. The environmentally and economically advantageous process maximizes the recovery of a valuable component at minimal cost, yielding relatively clean monometallic waste suitable for reuse.
Go to article

Bibliography

[1]. Adewuyi, YG. (2021). Recent Advances in Fly-Ash-Based Geopolymers: Potential on the Utilization for Sustainable Environmental Remediation, ACS Omega, 24, pp. 15532-15542. DOI:10.1021/acsomega.1c00662
[2]. Akono, A.T., Koric, S. & Kriven, W.M. (2019). Influence of pore structure on the strength behavior of particle- and fiber reinforced metakaolin-based geopolymer composites, Cement and Concrete Composites, 104, pp. 103361. DOI:10.1016/j.cemconcomp.2019.103361
[3]. Alehyen, S., Zerzouri, M., el Alouani, M., el Achouri, M. & Taibi M. (2017). Porosity and fire resistance of fly ash based geopolymer. Journal of Materials and Environmental Sciences, 8, pp. 3676-3689
[4]. Ayilara, M.S., Olanrewaju, O.S., Babalola, O.O. & Odeyemi, O. (2020). Waste management through composition: Challenges and Potentials, Sustainability, 12, pp. 4456-4479. DOI:10.3390/su12114456
[5]. Barakat, M.A. (2003). The pyrometallurgical processing of galvanizing zinc ash and flue dust, Journal of Minerals, Metals & Materials Society, 55, pp. 26–29. DOI:10.1007/s11837-003-0100-4
[6]. Bednarik, M., Vondruska, M.& Koutny, M. (2005). Stabilization/solidification of galvanic sludges by asphalt emulsions, Journal of Hazardous Materials, 122, pp. 139-145. DOI:10.1016/j.jhazmat.2005.03.021
[7]. Brylewska, K., Rożek, P., Król, M. & Mozgawa, W. (2018). The influence of dealumination/desilication on structural properties of metakaolin-based geopolymers, Ceramics International, 44, pp. 12853-12861. DOI:10.1016/J.CERAMINT.2018.04.095
[8]. Butenegro, J.A., Bahrami, M., Abenojar, J. & Martínez, M.A. (2021). Recent Progress in Carbon Fiber Reinforced Polymers Recycling: A Review of Recycling Methods and Reuse of Carbon Fibers, Materials, 14, pp. 6401. DOI:10.3390/ma14216401
[9]. Donohue, M.D. & Aranovich, G.L. (1998). Adsorption hysteresis in porous solids, Journal of Colloid and Interface Science, 205, pp. 121-130. DOI:10.1006/jcis.1998.5639
[10]. Dvořák, P. & Jandova, J. (2005). Hydrometallurgical recovery of zinc from hot dip galvanizing ash, Hydrometallurgy, 77, pp. 29-33. DOI:10.1016/j.hydromet.2004.10.007
[11]. Galas, D., Kalembkiewicz, J. & Sitarz-Palczak, E. (2016). Physicochemistry, morphology and leachability of selected metals from post-galvanized sewage sludge from screw factory in Łańcut, SE Poland, Contemporary Trends in Geoscience, 5, pp. 83-91. DOI:10.1515/ctg-2016-0006
[12]. Jha, M.K., Kumar, V.& Singh R.J. (2001). Review of hydrometallurgical recovery of zinc from industrial wastes, Resources, Conservation and Recycling, 33, pp. 1-22. DOI:10.1016/S0921-3449(00)00095-1
[13]. Imtiaz, L., Rehman, S.K.U., Memon, S.A., Khan, M.K. & Javed, M.F. (2020). A review of recent developments and advances in eco-friendly geopolymer concrete, Applied Sciences, 10, pp. 7838-7894. DOI:10.3390/app10217838
[14]. Irisawa, T., Iwamura, R., Kozawa, Y., Kobayashi, S. & Tanabe, Y. (2021). Recycling methods for thermoplastic-matrix composites having high thermal stability in focusing on reuse of the carbon fibers, Carbon, 175, pp. 605. DOI:10.1016/j.carbon.2021.01.042
[15]. Jeyasundar, P.G.S.A., Ali, A. & Zhang, Z. (2020). Waste treatment approaches for environmental sustainability, Microorganisms for Sustainable Environmental and Health, 6, pp. 119-135. DOI:10.1016/B978-0-12-819001-2.00006-1
[16]. Khan, M.N.N., Kuri, J.C. & Sarker, P.K. (2021). Effect of waste glass powder as a partial precursor in ambient cured alkali activated fly ash and fly ash-GGBFS mortars, Journal of Building. Engineering, 34, pp. 101934-101945. DOI:10.1016/j.conbuildmat.2020.120177
[17]. Kriven W.M., Bell J.L. & Gordon M. (2006). Microstructure and Microchemistry of Fully-Reacted Geopolymers and Geopolymer Matrix Composites. In: Bansal, N.P., Singh, J.P., Kriven, W.M., Schneider, H., Advances in Ceramic Matrix Composites IX (pp. 227-250). The American Ceramic Society, Wiley, New York 2006.
[18]. Krishnan, S., Zulkapli, N.S., Kamyab, H., Taib, S.M., Bin Md Din, M.F., Majid, Z.A., Chaiprapat, S., Kenzo, I., Ichikawa, Y., Nasrullah, M., Chelliapan, S. & Othman, N. (2021). Current technologies for recovery of metals from industrial wastes: An overview, Environmental Technology & Innovation, 22, pp.101525. DOI:10.1016/j.eti.2021.101525
[19]. Król, M., Rożek, P., Chlebda ,D. & Mozgawa, W. (2018). Influence of alkali metal cations/type of activator on the structure of alkali-activated fly ash - ATR-FTIR studies, Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy, 198, pp. 33-37. DOI:https://doi.org/10.1016/j.saa.2018.02.067
[20]. Krstić, I., Zec, S., Lazarević, V., Stanisavljević, M. & Golubović, T (2018). Use of sintering to immobilize toxic metals present in galvanic sludge into a stabile glass-ceramic structure, Science of Sintering, 50, pp. 139-147. DOI:10.2298/SOS1802139K
[21]. Kwon, O-S. & Sohn, I.L. (2020). Fundamental thermokinetic study of a sustainable lithium-ion battery pyrometallurgical recycling process, Resources, Conservation and Recycling, 158, pp. 104809. DOI:10.1016/j.resconrec.2020.104809.
[22]. Letcher, R.M.b& Vallero, D.A. (2019). Waste. A Handbook for Management, 2, pp. 585-630. DOI:10.1016/B978-0-12-381475-3.10034-8
[23]. Li, M., Xu, J. & Li, B. (2018). Analysis of development of hazardous waste disposal technology in China, IOP Conf. Series: Earth and Environmental Science, 178, pp. 1-7. DOI:10.1088/1755-1315/178/1/012027
[24]. Luo, X., Liu, G., Xia, Y., Chen, L., Jiang, Z., Zheng, H. & Wang, Z. (2017). Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta China, Journal of Soil and Sediments, 17, pp. 780-789. DOI:10.1007/s11368-016-1361-1
[25]. Luukkonen, T., Runtti, H., Niskanen, M., Tolonen, E., Sarkkinen, M., Kemppainen, K.,Rämö, J. & Lassi, U. (2016). Simultaneous removal of Ni(II), As(III), and Sb(III) from spiked mine effluent with metakaolin and blast-furnace-slag geopolymers, Journal of.Environmental Management, 166, pp. 579-588. DOI:10.1016/j.jenvman.2015.11.007
[26]. Luz, C.A., Rocha, J.C., Cheriaf, M. & Pera, ,J. (2009). Valorization of galvanic sludge in sulfoaluminate cement, Construction and Building Materials, 23, pp. 595-601. DOI:10.1016/j.conbuildmat.2008.04.004
[27]. Makisha, N. & Yunchina, M. (2017). Methods and solutions for galvanic waste water treatment, MATEC Web of Conferences, 106, pp. 1-6. DOI:10.1051/matecconf/201710607016
[28]. Nanda, S. & Berruti, F. (2021). Municipal solid waste management and landfilling technologies: a review, Environmental Chemical Letter, 19, pp. 1433-1456. DOI:10.1007/s10311-020-01100-y
[29]. Pu, S., Duan, P., Yan, C. & Ren, D. (2016). Influence of sepiolite addition on mechanical strength and microstructure of fly ash-metakaolin geopolymer paste. Advanced Powder Technology,27, pp. 2470-2477. DOI:10.1016/j.apt.2016.09.002
[30]. Riaz, M., Bing Chen, A., Aminul Haque, M. & Shah, S.F.A. (2020). Utilization of industrial and hazardous waste materials to formulate energy-efficient hygrothermal biocomposites, Journal of Cleaner Production, 250, pp. 119469. DOI:10.1016/j.jclepro.2019.119469
[31]. Rossini, G. & Bernardes, A.M. (2006). Galvanic sludge metals recovery by pyrometallurgical and hydrometallurgical treatment, Journal of Hazardous Materials, 131, pp. 210-216. DOI:10.1016/j.jhazmat.2005.09.035.
[32]. Rudnik, E. (2019). Investigation of industrial waste materials for hydrometallurgical recovery of zinc, Minerals Engineering,139, pp. 105871. DOI:10.1016/j.mineng.2019.105871
[33]. Rybak, J., Gorbatyuk, S.M., Bujanovna-Syuryun, K.C., Khairutdinov, A., Tyulyaeva, Y. & Makarov, P.S. (2021). Utilization of Mineral Waste: A Method for Expanding the Mineral Resource Base of a Mining and Smelting Company, Metallurgist, 64, pp. 851-861. DOI:10.1007/s11015-021-01065-5
[34]. Sanito, R.C., Bernuy-Zumaeta, M., You, S-J. & Wang Y-F. (2022). A review on vitrification technologies of hazardous waste, Journal of Environmental Management, 316, pp. 115243. DOI:10.1016/j.jenvnman.2022.115243
[35]. Sinha, S., R. Choudhari, R., Mishra, D., Shekhar, S., Agrawal, A. & Sahu, K.K. (2020). Valorisation of waste galvanizing dross: Emphasis on recovery of zinc with zero effluent strategy, Journal of Environmental Management, 256, pp. 109985. DOI:10.1016/j.jenvman.2019.109985
[36]. Sitarz–Palczak, E.; Kalembkiewicz, J. & Galas, D. (2019). Comparative study on the characteristics of coal fly ash and biomass ash geopolymers, Archives of Environmental Protection 45, pp. 126-135. DOI:10.24425/aep.2019.126427
[37]. Stepanov, S., Morozov, N., Morozova, N., Ayupov, D., Makarov, D. & Baishev, D. (2016). Efficiency of Use of Galvanic Sludge in Cement Systems, Procedia Engineering, 165, pp.1112-1117. DOI:10.1016/j.proeng.2016.11.827
[38]. Świerk, K., Bielicka, A., Bojanowska, I. & Maćkiewicz, Z. (2007). Investigation of Heavy Metals Leaching from industrial wastewater sludge, Polish Journal of Environmental Studies, 16, pp. 447-451.
[39]. Šćiban, M., Radetić, B., Kevrešan, Z. & Klašnja, M. (2007). Adsorption of heavy metals from electroplating wastewater by wood sawdust, Bioresource Technology, 98, pp. 402-409. DOI:10.1016/j.biortech.2005.12.014
[40]. Toledo, M., Siles, J.A., Gutierrez, M.C. & Martin, M.A. (2018). Monitoring of the composting process of different agroindustrial waste: influence of the operational variables on the odorous impact, Waste Management, 76, pp. 266-274. DOI:10.1016/j.wasman.2018.03.042
[41]. Ugwu, E.I. & Agunwamba, J.C. (2020). A review on the applicability of activated carbon derived from plant biomass in adsorption of chromium, copper, and zinc from industrial wastewater, Environmental Monitoring and Assessment, 192, pp. 240-252. DOI:10.1007/s10661-020-8162-0
[42]. Yang, J., Firsbach, F. & Sohn, I.L. (2022). Pyrometallurgical processing of ferrous slag “co-product” zero waste full utilization: A critical review, Resources, Conservation and Recycling, 178, pp. 106021. DOI:10.1016/j.resconrec.2021.106021
[43]. Zehua, J., Liya, S. & Yuansheng, P. (2020). Synthesis and toxic metals (Cd, Pb, and Zn) immobilization properties of drinking water treatment residuals and metakaolin-based geopolymers, Materials Chemistry and Physics, 242, pp. 1-9. DOI:10.1016/j.matchemphys.2019.122535
Go to article

Authors and Affiliations

Elżbieta Sitarz-Palczak
1
ORCID: ORCID

  1. Rzeszow University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The problem of of the use of fly ash still constitutes a research and exploration area for scientists. This is due to the fact that, 6,000,000 Mg of coal combustion by-products (CCB) are storage on landfills yearly in Poland alone. One of the potential directions of using fly ash is to use it as a substrate in hydrothermal syntheses of mesoporous materials (synthetic zeolites). Zeolites are aluminosilicates with a spatial structure. Due to their specific structure they are characterized by a number of specific properties among others molecular-sieve, ion-exchange and catalytic that can be used in engineering and environmental protection. So far, the synthesis has been carried out using coal combustion by-products such as fly ash or microsphere. The article analyzes whether separation from the fly ash of the appropriate fraction (below 63 μm) will affect the formation of zeolite grains. The syntheses were carried out using class F fly ash and the fraction separated from it, which was obtained by sieving the ash through a 63 μm sieve. Chemical (XRF) and mineralogical (XRD, SEM-EDS) analyzes were carried out for substrates as well as the obtained reaction products. In the case of substrates, the analysis did not show any significant differences between the ash and the separated fraction. However, in products after synthesis (Na-X zeolite with a small amount of Na-P1 zeolite, and small amounts of quartz and unreacted aluminosilicate glass - mullite) higher aluminum and sodium contents were observed from the separated fraction, with a lower calcium and potassium content. A small proportion of illite was observed on the diffraction curve of the zeolite from the fraction. Observations of grain morphology showed no differences in formation. Based on the conducted analyzes, it can be stated that, considering the economics of the synthesis process, the separation of fine fractions from the fly ash does not affect the quality of the synthesis process.

Go to article

Authors and Affiliations

Dorota Czarna-Juszkiewicz
Piotr Kunecki
Rafał Panek
Magdalena Wdowin
Download PDF Download RIS Download Bibtex

Abstract

This study focused on the reclamation of ash from incineration process and development of new artificial lightweight aggregate (LWA) that have comparable properties with existing natural coarse aggregate. The main objective of this study is to examine potential use of recycled municipal solid waste incineration (MSWI) ash as raw material in LWA production with a method of cold-bonded pelletization. Two types of incineration ash which is bottom ash (BA) and fly ash (FA) were collected from Cameron Highland Incineration Plant, Malaysia. The properties of BA and FA are studied by means of X-Ray Fluorescence (XRF) and microstructure of these ashes were inspected using Scanning Electron Microscope (SEM). The properties of BALA and FALA produced in this study is examined including loose bulk density, water absorption and aggregate impact value (AIV). From the results of both types of artificial LWA, the lowest loose bulk density of BALA is BALA50 with 564.14 kg/m3 and highest is at 831.19 kg/m3. For FALA50, lowest loose bulk density is 573.64 kg/m3 and highest is 703.35 kg/m3. Water absorption of BALA and FALA is quite similar with one another in with the value of 23.8% and 22.6%, respectively. Generally, FALA have better qualities of LWA comparing with BALA with lower bulk density and water absorption and can be categorized as strong aggregate. In summary, reclamation and reutilization of incinerator ash has generated acceptable qualities for artificial LWA. Both types of BA and FA shown a great potential to be recycled as additional materials in artificial aggregate production.
Go to article

Authors and Affiliations

Norlia Mohamad Ibrahim
1 2
ORCID: ORCID
Roshazita Che Amat
1 2
ORCID: ORCID
Mustaqqim Abdul Rahim
1
ORCID: ORCID
Nur Liza Rahim
1 2
ORCID: ORCID
Abdul Rahim Abdul Razak
3
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP), Faculty of Civil Engineering Technology, Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Center of Excellence Geopolymer and Green Technology, Perlis, Malaysia
  3. Universiti Malaysia Perlis (UniMAP), Faculty of Electrical Engineering Technology, Perlis, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

The reduction of mercury emissions in currently existing coal-based power plant solutions by each method i.e. preliminary, primary and secondary (consisting of introducing coal into the combustion chamber and then removing mercury from the combustion gases arising from the combustion process) does not solve the problem of achieving the required limits by power plants. Therefore, the need has arisen to look for new, effective solutions.

The results presented in the work concern the analysis of environmental benefits for the use of zeolites obtained from by-products of coal combustion such as fly ash (from hard coal and lignite) in technologies for removing gaseous forms of mercury. The tested zeolites were silver-modified X-type structures. The reference material in the considerations was active carbon impregnated with bromine – a commercially available sorbent on the market.

The article considers environmental benefits resulting from the use of tested zeolites taking the product life cycle, sorbent efficiency and the possibility of its regeneration compared to activated carbon (AC/Br) into account. The LCA analysis was performed taking the estimated material and energy balances of the manufacturing processes into account. When comparing the production process of type X zeolite materials on the processing line and activated carbons in the amount necessary to capture 375 g Hg from exhaust gases, the LCA analysis showed that zeolites contribute to a lower potential impact on the environment. The advantage is that 5 times less zeolite sorbent than activated carbons is needed to capture the same amount of mercury. In addition, zeolite materials can be regenerated, which extends their life time

Go to article

Authors and Affiliations

Łukasz Lelek
Magdalena Wdowin
ORCID: ORCID
Rafał Panek
Download PDF Download RIS Download Bibtex

Abstract

This work presents results of the release of polycyclic aromatic hydrocarbons (PAH) from granules composed of fly ashes, which are the product of hard and coal combustion and sewage sludge. 3 types of granulates by a weight ratio of ash to sludge 3:7 and 1: 1 were used. The research of PAH leaching was conducted within a simulated period of 24 months, with the examination of PAH washing out every three months. The highest amounts of PAH (297 - 330 μg/kg dw.) were obtained_from granulates containing 7 parts by weights of sewage sludge (3 times higher in comparison with the granulate containing ash and sludge in ratio of I: 1 ). The maximum PAH release from all the examined granulates took place in the 9th month of the research. Benzo(k)fluoranthene revealed the highest fraction (67.4-76.0%) of all examined compounds.
Go to article

Authors and Affiliations

Czesława Rosik-Dulewska
ORCID: ORCID
Urszula Karwaczyńska
Tomasz Ciesielczuk
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Fly ash which has been separated from the flue gas stream as a result of fossil fuels combustion constitutes a huge amount of waste generated worldwide. Due to environmental problems, many directions of their rational use have been developed. Various attempts to convert fly ash into sorption materials, mainly synthetic zeolites, are conducted successfully. In this paper, an attempt was made to convert fly ash from lignite combustion from one of the Polish power plants, using alkaline hydrothermal synthesis. The primary phases in the fly ash were: quartz, gehlenite, mullite, hematite, feldspar, lime, anhydrite, occasionally grains of ZnO phase and pyrrhotite, glass and unburned fuel grains. As a result of hydrothermal synthesis a material containing new phases – pitiglianoite and tobermorite was obtained. Among the primary ash constituents, only gehlenite with an unburned organic substance, on which tobermorite with crystallized pitiglianoite was present. As a result of detailed testing of products after synthesis, it was found that among the tested grains:

• two populations can be distinguished – grains containing MgO and Fe2O3 as well as grains

containing Fe2O3 or MgO or containing none of these components,

• the main quantitative component was pitiglianoite,

• pitiglianoite was present in larger amounts in grains containing Fe2O3 or MgO or in the absence of both components than in grains in which Fe2O3 and MgO were found.

The results of the study indicate that in post-synthesis products, the contribution of components were as follows: pitiglianoite – 39.5% mas., tobermorite – 54% mas., gehlenite – 3% mas. and organic substance – 3.5% mas.

Go to article

Authors and Affiliations

Barbara Białecka
ORCID: ORCID
Zdzisław Adamczyk
ORCID: ORCID
Magdalena Cempa
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Flexible and rigid road pavement deteriorates over time and needs high-performance patching repair materials. Cold mix asphalt patching is an easy and inexpensive repair material to repair potholes and other damaged roads. However, the repaired road pavement fails because it doesn’t have adequate compressive and bonding strength to the substrate. Thus, this research uses high-performance geopolymer repair materials to patch against road pavement potholes substrate. Geopolymer repair materials could improve the bonding strength, making them suitable for road repair purposes. For making geopolymer repair materials, the main materials used were high calcium aluminosilicate source materials such as fly ash, sodium hydroxide, sodium silicate, and water. This study tested the compressive and bonding strength of geopolymer repair materials after 1, 7, 14, and 28 days. This study found that the compressive strength of 90 g of alkali activator was the highest, at 37.0 MPa. The bonding strength improved gradually from day 1 to day 14, and then considerably on day 28. The compressive strength and bonding strength both increase in direct proportion to the amount of alkali activator present. Alkali activator is optimal at 90 grams for compressive strength and bonding strength of geopolymer repair materials.
Go to article

Authors and Affiliations

W.W.A. Zailani
1
ORCID: ORCID
N.M. Apandi
1
ORCID: ORCID
M.M.A. Abdullah
2
ORCID: ORCID
M.F.M. Tahir
2
ORCID: ORCID
I Nengah Sinarta
3
Komang Ayu Ni Agustini
3
ORCID: ORCID
S. Abdullah
1
ORCID: ORCID

  1. Universiti Teknologi MARA, College of Engineering, School of Civil Engineering, 40450 Shah Alam, Selangor, Malaysia
  2. Universiti Malaysia Perlis, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), 01000 Kangar, Perlis, Malaysia
  3. Warmadewa University, Faculty of Engineering and Planning, Den Pasa r, 80239, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Interface shear strength between geomembranes with various textures, which are used for carrying out the artificial sealing of waste disposal, and compacted fly ash/bottom ash mix, was determined in the paper. The tests were conducted in a classical direct shear apparatus, with the use of a modified cylindrical box. The box was equipped with an additional part, which enabled interaction testing between compacted waste and HOPE geomembrane, It was found that interface strength estimation docs not depend on sample compaction. Only geomcmbranc structure has an effect on shear strength between waste sample and geomembrane. In the case of geomembranes with diverse structure greater values of interface friction angle are obtained, and for smooth geomembranc - greater values of adhesion.
Go to article

Authors and Affiliations

Katarzyna Zabielska-Adamska
Download PDF Download RIS Download Bibtex

Abstract

In the process of determining the content of impurities, including fossil fuels, crude oil, coke, pitch, plastics, glass, slag, rust, metals, and rock dust, in charcoal and wood briquettes via microscopic examination, the question of the use of ashes from the combustion of grill fuels (taking the scale of the new national sport into account, commonly referred to as „weekend grilling”) was raised. Another reason for addressing this issue was the question regarding the use of organic additives to acidified soil (mineral) fertilizers submitted by one of the clients of the bituminous coal and reservoir rocks analysis laboratory. In addition, the manufacturer of gardening soil has also expressed an interest in an unconventional deacidifying agent; the introduction of a new product with a unique ingredient is considered as a chance to stand out from the competition. A review of the literature shows that attempts to use ashes obtained from the biomass combustion in power boilers have been made. However, due to the biomass composition and additives and pollutants used in biomass for energy purposes, the production of such mixtures has been dropped. Based on the data from numerous samples of grill fuel, which meet the requirements regarding the content of impurities set out in the PN-EN 1860-2 standard, the question of the possible use of ash obtained from charcoal and wood briquette grilling as a component for use in the production of acidified soil (mineral) fertilizers was discussed. The article will present the amount of material obtained based on the statistical sales of barbecue fuels based on the experimentally calculated ash mass resulting from the combustion of 1 kg of starting material. In addition, a logistic proposal for obtaining ash from individual grill users will be developed. On the day of the submission of the present work, the results of the chemical analysis of charcoal and wood briquettes subjected to the gasification process have not yet been obtained. However, based on the microscopic analysis, it can be concluded that the content of impurities in the examined samples is highly unlikely to prevent the use of the mentioned ashes in agriculture.

Go to article

Authors and Affiliations

Zbigniew Jelonek
Download PDF Download RIS Download Bibtex

Abstract

Increasing environmental pressure against waste disposal, particularly fine waste surface storage and concern about mining damages have resulted in an increase in the popularity of a fly ash, tailing and binding agent mixture used as compaction grout of roof fall rocks in a gob area of longwalls. Backfilling of voids forming as a result of exploitation with the fall of roof with mixtures containing fine-grained industrial wastes is a common practice in coal mines. It is aimed at achieving numerous technological and ecological advantages as well as at controlling mining hazards. Research on hydraulic transport of fine-grained slurry conducted to date focused mainly on issues related to the analysis of the conditions related to pipeline transportation. The processes concerning the propagation of mixtures within the gob, on the other hand, remain largely unknown. The process of flow of fine-grained slurry through the caving is subject to a series of factors related, among other things, with the properties of the applied wastes and mixtures, the characteristics of the gob as well as the variability of these properties during the flow through the gob and in time. Due to the lack of sufficient knowledge pertaining to the changes taking place in the gob and in the slurry while it penetrates the gobs, no methods allowing for the design and optimization of the gob grouting process have been established so far. The paper presents the selected results of laboratory tests regarding the flow of ash and water mixtures in a model of a gob, pertaining to two selected types of fly ash produced in hard coal combustion, particularly concerning the impact of the type of the ash and the density of the slurry on the effectiveness of the gob grouting process.

Go to article

Authors and Affiliations

Marcin Krzysztof Popczyk
Rafał Jendruś
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Based on laboratory tests of selected properties of secondary waste (ashes and dusts) from municipal waste incineration plants, the possibility of recovering some properties of waste in the process of filling the post-mining voids in the salt mine was assessed. The furnace bottom ash and the waste from the flue gas treatment from one of the national incineration plants were examined. The grain curves of dry waste and the density of the prepared mixtures were characterized. Twelve variants of the compositions of ash-based mixtures with varying proportions of the individual components were considered, taking into account both fresh water and brine. For each variant of the composition, the amount of redundant liquid appeared as well as the time of solidifying of the mixture to a certain strength and the compressibility values obtained. Considering the possibility of transporting mixtures in mines by means of pipelines at relatively long distances, and allowing the filling of large salt chambers to be filled and evenly filled, flow parameters were determined. In addition, the permeability of solidified waste samples was investigated, showing the potential for reducing the strength of the waste mass due to the action of water or brine. The technical feasibility of eliminating redundant liquid in the binding process has been confirmed, which is particularly important in salt mines. Preliminary values for the amount of binder (5%÷10%) to be added to the mixtures to obtain the specified strength properties of the artificially formed mass at Rc = 0.5 MPa. Attention was paid to the important practical aspect resulting from the rapid increase of this type of waste in the comming years in Poland and at the same time vast potential for their use in salt mining, where we have a huge capacity of salt chambers available.

Go to article

Authors and Affiliations

Krzysztof Skrzypkowski
Waldemar Korzeniowski
Katarzyna Poborska-Młynarska
Download PDF Download RIS Download Bibtex

Abstract

This study presents the results of concentrations of rare earth elements and yttrium (REY ), uranium (U), and thorium (Th) in ashes from combustion/co-combustion of biomass (20%, 40%, and 60% share) from the agri-food industry (pomace from apples, walnut shells, and sunflower husks) and hard coal. The study primarily focuses on ashes from the co-combustion of biomass and hard coal, in terms of their potential use for the recovery of rare earth elements (REE ), and the identification of the sources of these elements in the ashes. Research methods such as ICP-MS (inductively coupled plasma mass spectrometry), XRD (X-ray diffraction), and SEM -EDS (scanning electron microscopy with quantitative X-ray microanalysis) were used. The total average content of REY in ash from biomass combustion is 3.55–120.5 mg/kg, and in ash from co-combustion, it is from 187.3 to 73.5 mg/kg. The concentration of critical REE in biomass combustion ash is in the range 1.0–38.7 mg/kg, and in cocombustion ash it is 23.3–60.7 mg/kg. In hard-coal ash, the average concentration of REY and critical REY was determined at the level of 175 and 45.3 mg/kg, respectively. In all samples of the tested ashes, a higher concentration of Th (0.2–14.8 mg/kg) was found in comparison to U (0.1–6 mg/kg). In ashes from biomass and hard-coal combustion/co-combustion, the range of the prospective coefficient (Coutl) is 0.66–0.82 and 0.8–0.85, respectively, which may suggest a potential source for REE recovery. On the basis of SEM -EDS studies, yttrium was found in particles of ashes from biomass combustion, which is mainly bound to carbonates. The carriers of REY , U, and Th in ashes from biomass and hard-coal co-combustion are phosphates (monazite and xenotime), and probably the vitreous aluminosilicate substance.
Go to article

Authors and Affiliations

Joanna Adamczyk
1
Danuta Smołka-Danielowska
1
ORCID: ORCID
Arkadiusz Krzątała
1
Tomasz Krzykawski
1

  1. University of Silesia, Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The cenospheres are formed during the mineral transformation stage in coal combustion. Their content in fly ashes from the combustion of different types of coals varies over a rather wide range from 0.01 to 35.6 wt.%. The cenospheres has three main elements, silicon, aluminium and iron, the oxides of which account for about 89% of the material. Mineralogical analysis using XRD shows that as-received cenospheres mainly contain mullite and quartz as main mineralogical phases. The size of cenospheres varies between 5 and 500 [...], as the most common dimension is 20-300 [...]. The cenospheres are characterized by a low bulk density (0.2-0.8 g/cm3) and can be easily separated by gravitational methods in the form of a concentrate in aqueous media or collected from a water surface of lagoons intended for storage of ash and slag waste. The unique properties of these hollow microspheres make them amenable for wide applications. For example the cenospheres can be used to produce various lightweight construction products, including lightweight cements and aggregates in lightweight concrete.

Go to article

Authors and Affiliations

Elżbieta Haustein
Bernard Quant
Download PDF Download RIS Download Bibtex

Abstract

Fly ashes from the combustion of lignite coal are suitable materials for the creation of suspensions in which CO2 is bound by mineral carbonation. Considering their limited economic uses, mineral sequestration, as a stage of the CCS technology in lignite coal power plants, can be a way of recycling them. Mineral sequestration of CO2 was researched using fly ashes from the combustion of lignite coal in the Pątnów power plant, distinguished by a high content of CaO and free CaO. Research into phase composition confirmed the process of carbonation of the whole calcium hydroxide contained in pure suspensions. The degree of CO2 binding was determined on the basis of thermogravimetric analysis. A rise in the content of CaCO3 was found in the suspensions after subjecting them to the effects of carbon dioxide. Following carbonation the pH is lowered. A reduction in the leaching of all pollutants was discovered in the studied ashes. The results obtained were compared to earlier research of ashes from the same power plant but with a different chemical composition. Research confirmed that water suspensions of ashes from the combustion of lignite coal in the Pątnów power plant are distinguished for a high degree of carbonation.

Go to article

Authors and Affiliations

Alicja Uliasz-Bocheńczyk
Download PDF Download RIS Download Bibtex

Abstract

Deposits used as fertilizer bring to soil both biogens necessary for plant growth and other ingredients such as metals. including heavy metals. Knowledge of quantities and rate in which heavy metals are to be released to soil from granulates is important because of their toxic influence on plants (in the case of high metals concentration). This paper presents results of investigation of elution of Cu. Zn, Ni, Cd, Pb. and Cr from granulates prepared from municipal sewage sludge, hard coal ash and brown coal ash. Elution to water solution was carried out in static conditions with single-stage and tree-stage extraction. Heavy metal a component of sludge-ash granulates eluted in various quantities, i.e. from trace for cadmium to 9.26-9.53 mg/kg of d.m. for zinc. Among the soluble forms of metals the most mobile are (in decreasing sequence): Cu > Pb> Zn> Ni in granulates containing brown coal ash and Cu> Pb> Ni> Zn in granulates contain hard coal ash.
Go to article

Authors and Affiliations

Czesława Rosik-Dulewska
ORCID: ORCID
Katarzyna Głowala
Urszula Karwaczyńska
Jolanta Robak
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of preliminary tests obtained from the analysis of ash coming from the combustion of various types of waste in household furnaces. The aim of this work was to examine the infl uence of various types of waste burned in household furnaces on the elemental composition of the generated ash. As part of the research, analyses of ash generated from the incineration of mixed waste, plastics, wood, textiles, rubber waste and paper were made. The content of selected metal ions: Mn, Cu, Mo, Zn, Cd, Tl, Cr, Co, Ni, As, Sn, Sb, Pb, V was determined in the tested samples, according to PN-EN ISO 17294-2: 2016-11 standard. The highest concentrations of zinc were found in the large-sized waste, rubber and textile ash samples and highest concentrations of copper were found in the plastic and paper ash samples. The highest concentrations for elements such as copper, lead, cobalt and chromium were recorded for samples of rubber and large-sized waste containing e.g. varnished furniture boards. The obtained results showed that depending on the waste incinerated, the content of selected metals was signifi cantly diff erent, and the highest concentrations were noted for samples of large-sized waste, waste from segregated plastics and waste from rubbers.

Go to article

Authors and Affiliations

Joanna Poluszyńska
1

  1. Łukasiewicz Research Network – Institute of Ceramics and Building Materials, Opole, Poland
Download PDF Download RIS Download Bibtex

Abstract

For ages, concrete has been used to construct underwater structures. Concrete laying underwater is a very complex procedure important to the success or failure of underwater projects. This paper elucidates the influence of alkali activator ratios on geopolymers for underwater concreting; focusing on the geopolymer concrete synthesized from fly ash and kaolin activated using sodium hydroxide and sodium silicate solutions. The geopolymer mixtures were designed to incorporate multiple alkali activator ratios to evaluate their effects on the resulting geopolymers’ properties. The fresh concrete was molded into 50 mm cubes in seawater using the tremie method and tested for its engineering properties at 7 and 28 days (curing). The control geopolymer and underwater geopolymers’ mechanical properties, such as compressive strength, water absorption density, and setting time were also determined. The differences between the control geopolymer and underwater geopolymer were determined using phase analysis and functional group analysis. The results show that the geopolymer samples were optimally strengthened at a 2.5 alkali activator ratio, and the mechanical properties of the control geopolymer exceeded that of the underwater geopolymer. However, the underwater geopolymer was determined to be suitable for use as underwater concreting material as it retains 70% strength of the control geopolymer.
Go to article

Authors and Affiliations

Fakhryna Hannanee Ahmad Zaidi
1
ORCID: ORCID
Romisuhani Ahmad
1 2
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
3 2
ORCID: ORCID
Wan Mastura Wan Ibrahim
1 2
ORCID: ORCID
Ikmal Hakem Aziz
3 2
ORCID: ORCID
Subaer Junaidi
4
ORCID: ORCID
Salmabanu Luhar
5 2
ORCID: ORCID

  1. Universiti Malaysia Perlis, Faculty of Engineering Technology, Sungai Chuchuh, 02100 Padang Besar, Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Geopolymer & Green Technology, Centre of Excellence (CEGeoGTech), Perlis, Malaysia
  3. Universiti Malaysia Perlis, Faculty of Chemical Engineering Technology, Taman Muhibbah, 02600 Jejawi, Arau, Perlis, Malaysia
  4. Universitas Negeri Makassar, Geopolymer & Green Material Group, Physics Department, FMIPA, Indonesia
  5. Frederick Research Center, P.O Box 24729, 1303 Nicosia, Cyprus

This page uses 'cookies'. Learn more