Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Modern drives with Permanent Magnet Synchronous Motors (PMSMs) require both efficient control structure to ensure excellent dynamics and effective diagnostic algorithms to detect the motor faults that can occur. This paper shows the combination of both mentioned aspects – the direct-axis based signals of the Field Oriented Control (FOC) structure are proposed as diagnostic signals to allow diagnosing the interturn short-circuit failure that can appear inside stator windings. The amplitudes of second order harmonics are selected as the fault indicators. Different modelling methods are analysed and compared in detail in this paper: an analytical mathematical model, a Finite Element Method (FEM)- based model and next verified using a laboratory setup. The results obtained using all the mentioned models proved that the proposed fault indices are increasing significantly with the number of shorted turns and are independent on the load torque level.
Go to article

Authors and Affiliations

Mateusz Krzysztofiak
1
ORCID: ORCID
Tomasz Zawilak
1
ORCID: ORCID
Grzegorz Tarchała
1
ORCID: ORCID

  1. Wrocław University of Science and Technology, Department of Electrical Machines, Drives and Measurements, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

Necessary and sufficient conditions for the reachability and observability of the positive electrical circuits composed of resistors, coils, condensators and voltage sources are established. Definitions of the input-decoupling zeros, output-decoupling zeros and input-output decoupling zeros of the positive electrical circuits are proposed. Some properties of the decoupling zeros of positive electrical circuits are discussed.

Go to article

Authors and Affiliations

Tadeusz Kaczorek
Download PDF Download RIS Download Bibtex

Abstract

Main topic of the paper is a problem of designing the input-output decoupling controllers for nonholonomic mobile manipulators. We propose a selection of output functions in much more general form than in [1,2]. Regularity conditions guaranteeing the existence of the input-output decoupling control law are presented. Theoretical considerations are illustrated with simulations for mobile manipulator consisting of RTR robotic arm mounted atop of a unicycle which moves in 3D-space.

Go to article

Authors and Affiliations

A. Mazur
Download PDF Download RIS Download Bibtex

Abstract

The longitudinal automatic carrier landing system (ACLS) control law is designed based on nonlinear dynamic inversion (NDI), which can reject air wake, decouple lateral states, and track the dynamic desired touchdown point (DTP). First of all, the nonlinear landing model of F/A−18 aircraft in the final approach is established, in which the parameters of the aerodynamic, control surfaces, and limited states are acquired. Second, the strategy of tracking the desired longitudinal trajectory through pitch angle control is adopted. The automatic power compensation system (APCS), pitch angle rate, pitch angle, and vertical position control loops are developed based on the adaptive NDI. The stable analysis and the principal description are derived in detail. Deck motion compensation (DMC) algorithm is designed by frequency response method. Third, the control parameters are optimized through the genetic algorithm. A fitness function integrated with velocity, angle of attack (AOA), pitch rate, pitch angle, and vertical position of the aircraft are proposed. Finally, integrated simulations are conducted on a semi-physical simulation platform. The results indicate that the adopted automatic landing control law can achieve both excellent performance and the ability to reject the air wake and lateral coupling.
Go to article

Bibliography

  1.  M. Ryota and S. Shinji, “Modeling of pilot landing approach control using stochastic switched linear regression model”, J. Aircr. 47(5), 1554–1558 (2010).
  2.  J. Tian, Y. Dai, H. Rong, and T.D. Zhao, “Hybrid safety analysis method based on SVM and RST: An application to carrier landing of aircraft”, Saf. Sci. 80, 56–65 (2015).
  3.  L.P. Wang, Q.D. Zhu, Z. Zhang, and R. Dong. “Modeling pilot behaviors based on discrete–time series during carrier-based aircraft landing”, J. Aircr. 53(6), 1922–1931 (2016).
  4.  J.M. Urnes and R.K. Hess, “Development of the F/A 18A automatic carrier landing system”, J. Guid. 8(3), 289-295 (1985).
  5.  Z.Y. Guan, Y.P. Ma, and Z.W. Zheng, “Prescribed performance control for automatic carrier landing with disturbance”, Nonlinear Dyn. 94(2), 1335–1349 (2018).
  6.  Z.Y. Zhen, S.Y. Jiang, and K. Ma, “Automatic carrier landing control for unmanned aerial vehicles based on preview control and particle filtering”, Aerosp. Sci. Technol. 81, 99–107 (2018).
  7.  Z.Y. Zhen, S.Y. Jiang, and J. Jiang, “Preview control and particle filtering for automatic carrier landing”, IEEE Trans. Aerosp. Electron. Syst. 54(6), 2662–2674 (2018).
  8.  R. Lungu and M. Lungu, “Design of automatic landing systems using the H-inf control and the dynamic inversion”, J. Dyn. Syst. Meas. Control- Trans. ASME. 138(2), 1–5 (2016).
  9.  R. Lungu and M. Lungu, “Automatic Landing system using neural networks and radio-technical subsystems”, Chin. J. Aeronaut. 30(1), 399–411 (2017).
  10.  M. Lungu and R. Lungu, “Automatic control of aircraft lateraldirectional motion during landing using neural networks and radio-technical subsystems”, Neurocomputing. 171, 471–481 (2016).
  11.  Q. Bian, B. Nener, T. Li, and X.M. Wang, “Multimodal control parameter optimization for aircraft longitudinal automatic landing via the hybrid particle swarm-BFGS algorithm”, Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng. 233(12), 4482–4491 (2019).
  12.  F.Y. Zheng, Z.Y. Zhen, and H.J. Gong, “Observer-based backstepping longitudinal control for carrier-based UAV with actuator faults”, J. Syst. Eng. Electron. 28(2), 322–337 (2017).
  13.  Z.Y. Zhen, C.J. Yu, and S.Y. Jiang, “Adaptive super-twisting control for automatic carrier landing of aircraft”, IEEE Trans. Aerosp. Electron. Syst. 56(2), 987–994 (2020).
  14.  Z.Y. Zhen, G. Tao, and C.J. Yu, “A multivariable adaptive control scheme for automatic carrier landing of UAV”, Aerosp. Sci. Technol. 92, 714–721 (2019).
  15.  L.P. Wang, Z. Zhang, Q.D. Zhu, and R. Dong, “Longitudinal automatic carrier landing system guidance law using model predictive control with an additional landing risk term”, Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng. 233(3), 1–17 (2019).
  16.  L.P. Wang, Z. Zhang, and Q.D. Zhu, “Automatic Flight Control Design Considering Objective and Subjective Risks during Carrier Landing”, Proc. Inst. Mech. Eng. Part I-J Syst Control Eng. 234(4), 446–461 (2020).
  17.  L.P. Wang, Z. Zhang, Q.D. Zhu, X.W. Jiang, “Lateral autonomous carrier-landing control with high-dimension landing risks consideration”, Aircr. Eng. Aerosp. Technol. 92(6), 837– 850 (2020).
  18.  T. Woodbury and J. Valasek, “Synthesis and flight test of an automatic landing controller using quantitative feedback theory”, J. Guid. Control Dyn. 39(9), 1994–2010 (2016).
  19.  B. Xu, D.W. Wang, Y.M. Zhang, and Z.K. Shi, “DOB-based neural control of flexible hypersonic flight vehicle considering wind effects”, IEEE Trans. Ind. Electron. 64(11), 8676–8685 (2017).
  20.  D. Gawel, M. Nowak, H. Hausa, and R. Roszak, “New biomimetic approach to the aircraft wing structural design based on aeroelastic analysis”, Bull. Pol. Ac.: Tech. 65(5), 741–750 (2017).
  21.  J.N. Li and H.B. Duan, “Simplified brain storm optimization approach to control parameter optimization in F/A 18 automatic carrier landing system”, Aerosp. Sci. Technol. 42, 187–195 (2015).
  22.  R. Dou and H.B. Duan, “Levy flight based pigeon-inspired optimization for control parameters optimization in automatic carrier landing system”, Aerosp. Sci. Technol. 61, 11–20 (2017).
  23.  K. Lu and C.S. Liu, “A L-1 adaptive control scheme for UAV carrier landing using nonlinear dynamic inversion”, Int. J. Aerosp. Eng. 1–9 (2019).
  24.  M. Brodecki and K. Subbarao. Autonomous formation flight control system using in-flight sweet-spot estimation. J. Guid. Control Dyn. 38(6), 1083–1096 (2015).
  25.  H. Bouadi, F.M. Camino, and D. Choukroun, “Space–Indexed Control for Aircraft Vertical Guidance with Time Constraint”, J. Guid. Control Dyn. 37(4), 1103–1113 (2014).
  26.  P.K. Menon, S.S. Vaddi, and P. Sengupta, “Robust landingguidance law for impaired aircraft”, J. Guid. Control Dyn. 35(6), 1865−1877 (2012).
  27.  W.H. Chen, “Nonlinear Disturbance observer-enhanced dynamic inversion control of missiles”, J. Guid. Control Dyn. 26(1), 161–166 (2003).
  28.  I. Hameduddin and A.H. Bajodah, “Nonlinear generalised dynamic inversion for aircraft manoeuvring control”, Int. J. Control. 85(4), 437–450 (2012).
  29.  R. Lungu and M. Lungu, “Design of automatic landing systems using the H-inf control and the dynamic inversion”, J. Dyn. Syst. Meas. Control- Trans. ASME. 138(2), 1–5 (2016).
  30.  M. Lungu and R. Lungu, “Landing auto-pilots for aircraft motion in longitudinal plane using adaptive control laws based on neural networks and dynamic inversion”, Asian J. Control. 19(1), 302–315 (2017).
  31.  R. Lungu and M. Lungu, “Automatic control of aircraft in lateral-directional plane during landing”, Asian J. Control. 18(2), 433–446 (2016).
  32.  A. Chakraborty, P. Seiler, and G. J. Balasz, “Applications of linear and nonlinear robustness analysis techniques to the F/A-18 flight control laws”, AIAA Guidance, Navigation, and Control conference. Chicago, USA, 2009, pp.10–13.
  33.  A. Chakraborty, P. Seiler, and G. J. Balas, “Susceptibility of F/A 18 flight controllers to the falling-leaf mode: nonlinear analysis”, J. Guid. Control Dyn. 34(1), 57–72 (2011).
  34.  J.M. Urnes, and R.K. Hess, “Development of the F/A-18A Automatic Carrier Landing System”, J. Guid. 8(3), 289–295 (1985).
Go to article

Authors and Affiliations

Lipeng Wang
1
ORCID: ORCID
Zhi Zhang
1
Qidan Zhu
1
Zixia Wen
2

  1. College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, 150001, China
  2. AVIC Xi’an Flight Automatic Control Research Institute, Xi’an, 710065, China
Download PDF Download RIS Download Bibtex

Abstract

In the paper an approach to design of multipurpose control systems is considered. It is presented an universal and efficient algorithm for synthesis of multipurpose control system for proper, invertible and right-invertible multi-input multi-output dynamic (MIMO) plants which can be both unstable and/or non-minimumphase. The developed control systems feature both dynamic (either block or row-by-row) decoupling and arbitrary closed-loop pole placement and zero steady-state errors for regulation or tracking processes in presence of (non-diminishing) disturbances.

Go to article

Authors and Affiliations

S. Bańka
P. Dworak
Download PDF Download RIS Download Bibtex

Abstract

This work presents the results acquired during simulation studies done for a 3D free-floating satellite behaviour with input-output decoupling approach. The research object is a free-floating satellite with a 3 DoF rigid 3D manipulator where a noise disturbance was introduced. Different approaches are used to compensate the noise influence. Systems using a visual aid to determine the position of manipulator joints are not ideal and introduce some uncertainties. What is more, determining the position from joints encoders is not error-free while computing angular velocity from numerical differentiation introduces even greater disturbance to the system. A couple of scenarios were investigated where state of the manipulator, including its position and velocity, was disturbed with homogeneous noise. Also the control inputs of the manipulator were disturbed. Simulation results show that the biggest impact on the control quality has a scenario where the satellite’s state has been disturbed with additive noise.

Go to article

Authors and Affiliations

W. Domski
A. Mazur

This page uses 'cookies'. Learn more