Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Essential sorts of disinfecting agents and principles of their action have been considered in the paper. Results of research on application of washing-disinfecting liquids, containing silver nano-particles, in meat industry have been presented. It has been established that liquids characterized by very efficient bactericidal and fungicidal properties can be prepared by composition of toxieal ly performing silver nano-particles, some degreasing agents, reducing surface tension, and frothing agents. The listed components eliminate "insulating effect" of fat particles in which bacteria are suspended and facilitate silver nano-particle contact with bacteria and fungi, increasing this way biochemical effect of silver nano-particles.
Go to article

Authors and Affiliations

Michał Konopka
Zygmunt Kowalski
Zbigniew Wzorek
Download PDF Download RIS Download Bibtex

Abstract

In this study, the presence and level of macrolide group antibiotics (tylosin and tilmicosin) were analyzed by the High-Performance Liquid Chromatography (HPLC) method in a total of 126 raw meat samples, including 42 chicken breast and 84 beef neck, available for consumption in the Burdur province (Turkey). The method demonstrated good linearity (R2 > 0.999) over the assayed concentration range (0.10-10 μg/mL). Intra-day and inter-day recoveries were used to express the accuracy of the method at three different levels of 0.5, 1, 2.5 μg/mL. Intraday recoveries and relative standard deviation values ranged from 97.270 (0.054)% to 98.643 (0.061)%, and inter-day recoveries and relative standard deviation values ranged from 97.057 (0.070)% to 98.197(0.042)% for tylosin. Intraday recoveries and relative standard deviation values ranged from 96.360 (0.065)% to 98.153 (0.046)%, and inter-day recoveries and relative standard deviation values ranged from 96.050 (0.058)% to 97.053 (0.096)% for tilmicosin. The limit of detection (LOD) value was calculated as 0.473 μg/kg for tylosin, and 0.481 μg/kg for tilmicosin; the limit of quantification (LOQ) value was calculated as 1.561 μg/kg for tylosin, and 1.587 μg/kg for tilmicosin. In general, tylosin and tilmicosin were determined in the range of 8-256 μg/kg and 30-447 μg/kg, respectively, in chicken breast meat samples; also, they were detected in the range of 36-1209 μg/kg and 30-1102 μg/kg, respectively, in beef neck meat samples. It was also found that the residues of tylosin and tilmicosin in chicken and beef meats from the market were at a much higher level than the acceptable limits specified in the regulations. This creates serious problems in terms of the ecosystem, food technology, and public health, and causes significant economic losses.
Go to article

Bibliography

References:

Akar F (1994) Investigation on various antibiotic residues in chicken meat and liver. Ankara Univ Vet Fak Derg 41: 199-207.
Ammar AM, Abd El-Aziz NK, Gharib AA, Ahmed HK, Lameay AE (2016) Mutations of domain V in 23S ribosomal RNA of macro-lide-resistant Mycoplasma gallisepticum isolates in Egypt. J Infect Dev Ctries 10: 807-813.
Arsic B, Barber J, Čikoš A, Miladenovic M, Stankovic N, Novak P (2018) 16-membered macrolide antibiotics: a review. Int J Antimicrob Agents 51: 283-298.
Arslanbaş E, Şahin S, Kalın R, Moğulkoç MN, Güngör H (2018) Determination of some antibiotic residues by HPLC method in chicken meats prepared for consumption. Erciyes Univ Vet Fak Derg 15: 247-252.
Babapour A, Azami L, Fartashmehr J (2012) Overview of antibiotic residues in beef and mutton in Ardebil, North West of Iran. World Appl Sci J 19: 1417-1422.
Ben Y, Fu C, Hu M, Liu L, Wong MH, Zheng C (2019) Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environ Res 169: 483-493.
Burki TK (2018) Tackling antimicrobial resistance in food-producing animals. Lancet Respir Med 6: 93-94.
CAC-Codex Alimentarius Commission (2018) Maximum residue limits (MRLs) and risk management recommendations (RMRs) for residues of veterinary drugs in foods CX/MRL 2-2018.
Caycı M, Kılıc AS, Oruc HH, Sarıyev R (2019) Screening of veterinary growth-promoting agent and antibacterial residues in beef cattle and broiler meats consumed in Bursa, Turkey. J Res Vet Med 38: 52-58.
Chico J, Rúbies A, Centrich F, Companyó R, Prat MD, Granados M (2008) High-throughput multiclass method for antibiotic residue analysis by liquid chromato- graphy-tandem mass spectrometry. J Chromatogr A 1213: 189-199.
Dimitrova D, Petkov P, Tsoneva D (2012) Tilmicosin residues and determination of the withdrawal period of Tilmovet solutio pro injectioni-bus 30% after single subcutaneous injection to calves. JMAB 15: 256-268.
EC-European Commission (2005) Ban on antibiotics as growth promoters in animal feed enters into effect. IP/05/1687, Brussels.
EC-European Commission (2009) Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Off J Eur Union 2009. L 15/1, Brussels.
EFSA (2021) Maximum levels of cross-contamination for 24 antimicrobialactive substances in non-target feed. Part 6: Macrolides: tilmicosin, tylosin and tylvalosin. EFSA J 19: 6858.
Elsayed M, Elkomy A, Aboubakr M, Morad M (2014) Tissue residues, hematological and biochemical effects of tilmicosin in broiler chicken. Vet Med Int 2014: Article ID 502872.
El Tahir Y, Elshafie EI, Asi MN, Al-Kharousi K, Al Toobi AG, Al-Wahaibi Y, Al-Marzooqi W (2021) Detection of residual antibiotics and their differential distribution in broiler chicken tissues using enzyme-linked immunosorbent assay. Antibiotics 10: 1305.
Falowo AB, Akimoladun OF (2019) Veterinary drug residues in meat and meat products: occurrence, detection and implications. In: Bekoe SO, Saravanan M, Adosraku RK, Ramkumar P K (eds) Veterinary medicine and pharmaceuticals. IntechOpen.
FDA (2020) FDA Title 21-food and drugs chapter I-food and drug administration department of health and human services subchapter e - animal drugs, feeds, and related products part 556 tolerances for residues of new animal drugs in food. [Code of Federal Regu-la
tions][Title 21, Volume 6][Revised as of April 1, 2020][CITE: 21CFR556.
Ghanjaoui ME, Mandil A, Ait Sidi Mou A, Slimani R (2020) High performance liquid chromatography quality control. IJAC 8: 160-169.
Harris SJ, Cormican M, Cummins E (2012) Antimicrobial residues and antimicrobial-resistant bacteria: impact on the microbial environment and risk to human health-a review. Hum Ecol Risk Assess 18: 767-809.
ICH (2005) Validation of analytical procedures: text and methogology Q2 (R1). In: International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. IFPMA, Geneva, Switzerland, pp 1-13.
Jayalakshmi K, Paramasivam M, Sasikala M, Tamilam TV, Sumithra A (2017) Review on antibiotic residues in animal products and its impact on environments and human health. J Entomol Zool Stud 5: 1446-1451.
Khaniki GJ, Aghaee EM, Sadighara P (2018) Chemicals and drugs residue in meat and meat products and human health concerns. J Food Safe Hyg 4: 1-7.
Kolanovic BS, Bilandzic N, Varenina I, Bozic D (2014) Tylosin content in meat and honey samples over a two-year perıod in Croatia. J Im-munoassay Immunochem 35: 37-47.
Landová P, Vávrová M (2017) A new method for macrolide antibiotics determination in wastewater from three different wastewater treatment plants. Acta Chim Slov 10: 47-53.
Lemli B, Derdák D, Laczay P, Kovács D, Kunsági-Máté S (2018) Noncovalent interaction of tilmicosin with bovine serum albumin. Mole-cules 23: 1915.
Lewicki J, Reeves PT, Swan GE (2009) Tylosin. http://www.fao.org/fileadmin/user_upload/vetdrug/docs/6-2009-tylosin.pdf.
Liu C, Shen X, Yang D, Zhang X, Zong Z, Wang W, Bao E (2013) Study on residue depletion of tilmicosin phosphate in swine tissues. J China Agric Univ 4: 134-140.
Liu Z, Chen J, Zhao S, Pang Y, Shen X, Lei H, Li X (2022) Immunochromatographic assays based on three kinds of nanoparticles for the rapid and highly sensitive detection of tylosin and tilmicosin in eggs. Mikrochim Acta 189: 42.
Manaia CM (2017) Assessing the risk of antibiotic resistance transmission from the environment to humans: non-direct proportionality be-tween abundance and risk. Trends Microbiol 25: 173-181.
Manyi-Loh C, Mamphweli S, Meyer E, Okoh A (2018) Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules 23: 795.
Martinez JL (2009) The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc Biol Sci 276: 2521-2530.
OIE (2019) OIE list of antimicrobial agents of veterinary importance. World Organisation for Animal Health, 75017 Paris, France.
Qiao M, Ying GG, Singer AC, Zhu YG (2018) Review of antibiotic resistance in China and its environment. Environ Int 110: 160-172.
Soliman AM, Sedeik M (2016) Pharmacokinetics and tissue residues of tylosin in broiler chickens. Pharmacol Pharm 7: 36-42.
Song Y, Song S, Liu L, Kuang H, Guo L, Xu C (2016) Simultaneous detection of tylosin and tilmicosin in honey using a novel immunoassay and immunochromatographic strip based on an innovative hapten. Food Agric Immunol 27: 314-328.
Tao Y, Yu G, Chen D, Pan Y, Liu Z, Wei H, Peng D, Huang L, Wang Y, Yuan Z (2012) Determination of 17 macrolide antibiotics and avermectins residues in meat with accelerated solvent extraction by liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 897: 64-71.
Tasci F, Secilmis Canbay H, Doganturk M (2021) Determination of antibiotics and their metabolites in milk by liquid chromatography-tandem mass spectrometry method. Food Control 127: 108147.
TFC (2017) Turkish food codex regulation on classification of pharmacological active substances that can be found in animal foods and max-imum residue limits. Official Gazette, 7 Mar 2017 Tuesday, No: 30000.
Treiber FM, Beranek-Knauer H (2021) Antimicrobial residues in food from animal origin-a review of the literature focusing on products collected in stores and markets worldwide. Antibiotics 10: 534.
Trott DJ, Turnidge J, Kovac JH, Simjee S, Wilson D, Watts J (2021) Comparative macrolide use in humans and animals: should macrolides be moved off the World Health Organisation’s critically important antimicrobial list? J Antimicrob Chemother 76: 1955-1961.
Yamaguchi T, Okihashi M, Harada K, Konishi Y, Uchida K, Do MH, Bui HD, Nguyen TD, Nguyen PD, Chau VV, Dao KT, Nguyen HT, Kajimura K, Kumeda Y, Bui CT, Vien MQ, Le NH, Hirata K, Yamamoto Y (2015) Anti- biotic residue monitoring results for pork, chicken, and beef samples in Vietnam in 2012-2013. J Agric Food Chem 63: 5141-5145.
Yaneva Z, Georgieva N, Koinarski V, Petrova D (2015) Rapid RP-HPLC method with PDA detection for tylosin determination in liquid samples. Trakia J Sci 13: 309-314.
Yipel M, Tekeli İO, Kürekçi C (2018) Multi-class antibiotic residue screening of chicken muscle by LC-MS/MS. FÜ Sağ Bil Vet Derg 32: 99-10.
Zhu L, Cao X, Xu Q, Su J, Li X, Zhou W (2018) Evaluation of the antibacterial activity of tilmicosin-SLN against Streptococcus agalactiae: In vitro and in vivo studies. Int J Nanomedicine 13: 4747-4755.
Go to article

Authors and Affiliations

M. Gürel Yücel
1
H. Seçilmiş
2
F. Taşçı
1

  1. Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, 15030, Istiklal Campus, Burdur, Turkey
  2. Department of Chemistry, Faculty of Arts and Science, Burdur Mehmet Akif Ersoy University, 15030, Istiklal Campus, Burdur, Turkey
Download PDF Download RIS Download Bibtex

Abstract

This work reports on cadmium and lead contaminations in the edible snail Helix pomatia harvested in Poland. One hundred and 24 samples of Helix pomatia meat collected from seven provinces (voivodeships) of Poland were analyzed for their trace metal levels by graphite furnace atomic absorption spectrometry (GFAAS). The research was conducted in 2 stages. The 1st stage analyzed snail meat prior to any further technological treatment (raw meat). In the 2nd stage, the trace element levels were measured in meat subjected to technological treatment (processed meat). The trace element contents in raw meat samples ranged from 0.06 mg kg-1 to 0.22 mg kg-1 for Cd and from 0.06 mg kg-1 to 0.18 mg kg-1 for Pb. The analyses revealed an increase in the cad- mium content from 0.12 mg kg-1 to 0.18 mg kg-1 in thermally treated snail meat and no changes in lead concentration during the two-stage heat treatment. Regulation (EC) 1881/2006 does not specify the Cd and Pb residue limits in meat of terrestrial edible snails. The limits are set for in- vertebrate aquatic organisms meat (i.e. shellfish, mollusc, cephalopod) and range from 0.5 mg/kg to 1.5 mg/kg of tissue fresh weight for Pb and from 0.5 mg kg -1 to 1 mg kg-1 for Cd (EU Commis- sion 2006). The results demonstrate that the land snail Helix pomatia has a tendency to bioaccu- mulate trace elements, and the cooking process is likely to affect (increase) the Cd content in the snail meat.

Go to article

Authors and Affiliations

M. Ziomek
Ł. Drozd
A. Chałabis-Mazurek
K. Szkucik
W. Paszkiewicz
J. L. Valverde Piedra
Z. Bełkot
M. Maćkowiak-Dryka
M. Gondek
P. Knysz
Download PDF Download RIS Download Bibtex

Abstract

In Agricultural and Industrial Works FARMUTIL HS at Śmiłów were "cleaner production" program has been pul in practice, elimination of odors occurring during production of the meal and bone meal is of vital importance. Conccnlrations and emissions of lola! dust, organic substances in form of gas and vapors (as total organic carbon), hydrogen chloride, fluorine chloride, sulphur and nitrogen dioxides, carbon monoxide, heavy metals, polychlorinatcd dibcnzodioxins and dibcnzofurans were measured al emitters of the piani for thermal disposal of odors from the production of the meat and bone meal. The results of measurements and analyses of the composition of the flue gas emitted lo the atmosphere revealed that the concentration of harmful chemical compounds was low, lower than the permissible values defined in the standards.
Go to article

Authors and Affiliations

Zygmunt Kowalski
Anna Maślanka
Ewa Surowiec
Download PDF Download RIS Download Bibtex

Abstract

This study aimed to evaluate the impact of betaine (Bet) and protected calcium butyrate (PCB) supplementation individually and together on the performance, carcass traits, blood biochemistry, and meat quality of growing Japanese quails ( Coturnix coturnix Japonica) from 1 to 42 days old. 144 one-day-old unsexed Japanese quails were randomly assigned to four dietary treatments with six replicates each. All birds were fed a maize-soybean meal diet for 42 days. The control group received no feed additives, while the treatment groups received 1.2 g/kg Bet, 1.0 g/kg PCB, or a combination of both in their diets. The results indicated that Bet and PCB supplementation individually and together did not differ performance, relative weights of heart, gizzard, proventriculus, bursa of Fabricius and pancreas, water holding capacity (WHC), cooking loss (CL), blood biochemical values except for glucose and triglyceride. Bet supplementation significantly increased relative liver weights, while PCB supplementation decreased glucose levels in serum. Moreover, carcass yield was increased and triglyceride value in blood serum, malondialdehyde (MDA), and the pH levels of breast meats both on the 1st and 30st day of post-mortem were decreased in all treatment groups. Therefore, based on these results, the combination of betaine and butyrate improves both carcass yield and meat quality in growing Japanese quails. More research is needed to determine the impact of betaine and butyrate on the structure of amino acids in meat, antioxidant enzyme activity, and the immune system in poultry.
Go to article

Bibliography


  1. Abd El‐Wahab A, Mahmoud RE, Ahmed MF, Salama MF (2019) Effect of dietary supplementation of calcium butyrate on growth performance, carcass traits, intestinal health and pro‐inflammatory cytokines in Japanese quails. Anim Physiol Anim Nutr 103: 1768-1775.
  2. Abudabos AM, Suliman GM, Al-Owaimer AN, Sulaiman AR, Alharthi AS (2021) Effects of nano emulsified vegetable oil and betaine on growth traits and meat characteristics of broiler chickens reared under cyclic heat stress. Animals 11:1911.
  3. Al-Abdullatif AA, Al-Sagan AA, Hussein EO, Saadeldin IM, Suliman GM, Azzam MM, Al-Mufarrej SI, Alhotan RA (2021) Betaine could help ameliorate transport associated water deprivation stress in broilers by reducing the expression of stress-related transcripts and modulating water channel activity. Ital J Anim Sci 20:14-25.
  4. Al-Sagan AA, Al-Yemni AH, Abudabos AM, Al-Abdullatif AA, Hussein EO (2021) Effect of different dietary betaine fortifications on performance, carcass traits, meat quality, blood biochemistry, and hematology of broilers exposed to various temperature patterns. Animals 11: 1555.
  5. Carpenter KJ, Clegg KM (1956) The metabolizable energy of poultry feeding stuffs in relation to their chemical composition. J Sci Food Agric 7: 45-51.
  6. Chamba F, Puyalto M, Ortiz A, Torrealba H, Mallo JJ, Riboty R (2014) Effect of partially protected sodium butyrate on performance, digestive organs, intestinal villi and E. coli development in broilers chickens. Int J Poult Sci 13: 390-396.
  7. Chen R, Yang M, Song YD, Wang RX, Wen C, Liu Q, Zhou YM, Zhuang S (2022) Effect of anhydrous betaine and hydrochloride betaine on growth performance, meat quality, postmortem glycolysis, and antioxidant capacity of broilers. Poult Sci 101: 101687.
  8. Czerwiński J, Højberg O, Smulikowska S, Engberg RM, Mieczkowska A (2012) Effects of sodium butyrate and salinomycin upon intestinal microbiota, mucosal morphology and performance of broiler chickens. Arch Anim Nutr 66: 102-116.
  9. Dawood MA, Eweedah NM, Elbialy ZI, Abdelhamid AI (2020) Dietary sodium butyrate ameliorated the blood stress biomarkers, heat shock proteins, and immune response of Nile tilapia (Oreochromis niloticus) exposed to heat stress. J Therm Biol 88: 102500.
  10. Deepa K, Purushothaman MR, Vasanthakumar P, Sivakumar K (2017) Serum biochemical parameters and meat quality influenced due to supplementation of sodium butyrate in broiler chicken. Int J Livest Res 7: 108-116.
  11. Egbuniwe IC, Uchendu CN, Obidike IR (2021) Ameliorative effects of betaine and ascorbic acid on endocrine and erythrocytic parameters of sexually-maturing female Japanese quails during the dry season. J Therm Biol 96: 102812.
  12. El-Bahr SM, Shousha S, Khattab W, Shehab A, El-Garhy O, El-Garhy H, Mohamed S, Ahmed-Farid O, Hamad A, Sabike I (2021) Impact of dietary betaine and metabolizable energy levels on profiles of proteins and lipids, bioenergetics, peroxidation and quality of meat in Japanese quail. Animals 11: 117.
  13. Elnesr SS, Ropy A, Abdel-Razik AH (2019) Effect of dietary sodium butyrate supplementation on growth, blood biochemistry, haematology and histomorphometry of intestine and immune organs of Japanese quail. Animal 13: 1234-1244.
  14. Esteve-Garcia E, Mack S (2000) The effect of dl-methionine and betaine on growth performance and carcass characteristics in broilers. Anim Feed Sci Technol 87: 85-93.
  15. Gümüş E, Küçükersan S, Bayraktaroğlu AG, Sel T (2021) Effect of dietary supplementation of some natural antioxidants and coated calcium butyrate on carcass traits, some serum biochemical parameters, lipid peroxidation in meat and intestinal histomorphology in broilers. Ankara Univ Vet Fak Derg 68: 237-244.
  16. Jiang Y, Zhang W, Gao F, Zhou G (2015) Micro-encapsulated sodium butyrate attenuates oxidative stress induced by corticosterone exposure and modulates apoptosis in intestinal mucosa of broiler chickens. Anim Prod Sci 55: 587.
  17. Leeson S, Namkung H, Antongiovanni M, Lee EH (2005) Effect of butyric acid on the performance and carcass yield of broiler chickens. Poult Sci 84: 1418-1422.
  18. Liu J, Song R, Su S, Qi N, Li Q, Xie Z, Yu S (2022) Betaine promotes fat accumulation and reduces injury in Landes Goose hepatocytes by regulating multiple lipid metabolism pathways. Animals 12: 1530.
  19. Mátis G, Petrilla J, Kulcsár A, van den Bighelaar H, Boomsma B, Neogrády Z, Fébel H (2019) Effects of dietary butyrate supplementation and crude protein level on carcass traits and meat composition of broiler chickens. Arch Anim Breed 62: 527-536.
  20. National Research Council (1994) Nutrient Requirements of Poultry, 9th ed., The National Academies Press, Washington DC.
  21. Pascual A, Trocino A, Birolo M, Cardazzo B, Bordignon F, Balarin C, Carraro L, Xiccato G (2020) Dietary supplementation with sodium butyrate: growth, gut response at different ages, and meat quality of female and male broiler chickens. Ital J Anim Sci 19: 1134-1145.
  22. Pillai PB, Fanatico AC, Beers KW, Blair ME, Emmert JL (2006) Homocysteine remethylation in young broilers fed varying levels of methionine, choline, and betaine. Poult Sci 85: 90-95.
  23. Rama Rao SV, Raju MV, Panda AK, Saharia P, Sunder GS (2011) Effect of supplementing betaine on performance, carcass traits and immune responses in broiler chicken fed diets containing different concentrations of methionine. Asian-Australas J Anim Sci 24: 662-669.
  24. Rice EM, Aragona KM, Moreland SC, Erickson PS (2019) Supplementation of sodium butyrate to postweaned heifer diets: Effects on growth performance, nutrient digestibility, and health. J Dairy Sci 102: 3121-3130.
  25. Shihab MA, Olgun O, Abdulqader AF (2020) The effect of supplementation of sodium butyrate to diets with different levels of metabolic energy contents on performance, carcass and some blood parameters in growing quails. Journal of Bahri Dagdas Animal Research 9: 79-87.
  26. Su SY, Dodson MV, Li XB, Li QF, Wang HW, Xie Z (2009) The effects of dietary betaine supplementation on fatty liver performance, serum parameters, histological changes, methylation status and the mRNA expression level of Spot14α in Landes goose fatty liver. Comp Biochem Physiol A Mol Integr Physiol 154: 308-314.
  27. Uzunoğlu K, Yalçın S (2019) Effects of dietary supplementation of betaine and sepiolite on performance and intestinal health in broilers. Ankara Univ Vet Fak Derg 66: 221-229.
  28. Yang M, Chen R, Song YD, Zhou YM, Liu Q, Zhuang S (2022a) Effects of dietary betaine supplementation on growth performance, meat quality, muscle fatty acid composition and antioxidant ability in slow-growing broiler chickens. Br Poult Sci 63: 351-359.
  29. Yang Q, Chen B, Robinson K, Belem T, Lyu W, Deng Z, Ramanathan R, Zhang G (2022b) Butyrate in combination with forskolin alleviates necrotic enteritis, increases feed efficiency, and improves carcass composition of broilers. J Animal Sci Biotechnol 13: 3.
  30. Yin F Yu H, Lepp D, Shi X, Yang X, Hu J, Leeson S, Yang C, Nie S, Hou Y, Gong J (2016) Transcriptome analysis reveals regulation of gene expression for lipid catabolism in young broilers by butyrate glycerides. Plos One 11: e0160751.
  31. Zeb A, Ullah F (2016) A simple spectrophotometric method for the determination of thiobarbituric acid reactive substances in fried fast foods. J Anal Chem 2016: 9412767.
  32. Zhang W, Jiang Y, Zhu QM, Gao F, Dai S, Chen JC, Zhou G (2011a) Sodium butyrate maintains growth performance by regulating the immune response in broiler chickens. Br Poult Sci 52: 292-301.
  33. Zhang W, Gao F, Zhu QM, Zhou G, Jiang Y, Dai S (2011b) Dietary sodium butyrate alleviates the oxidative stress induced by corticosterone exposure and improves meat quality in broiler chickens. Poult Sci 90: 2592-2599.
Go to article

Authors and Affiliations

E. Gümüş
1
B. Sevim
2
O. Olgun
3
S. Küçükersan
4

  1. Department of Veterinary, Eskil Vocational School, Aksaray University, Şehit Recep Bozdağ Cad., 68800 Eskil, Aksaray, Turkey
  2. Department of Food Processing, Technical Sciences Vocational School, Aksaray University, Hacılar Harmanı Mah, 12. Bulvar No:2, Merkez, 68100 Aksaray, Turkey
  3. Department of Animal Science, Faculty of Agriculture, Selçuk University, Alaeaddin Keykubat Yerleşkesi, 42130, Selcuklu, Konya, Turkey
  4. Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University, Zübeyde Hanım Mahallesi Şehit Ömer Halisdemir Bulvarı No: 9/C, 06070, Altındağ, Ankara, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Listeria monocytogenes is a ubiquitous microorganism that is isolated from a variety of sources such as soil, water, decaying vegetation, sewage, animal feeds, silage, farm environments and food-processing environments. This study aimed to determine the prevalence, serogroups, biofilm formation, virulence factor genes, and genetic relationships of L. monocytogenes strains isolated from beef meat and meat contact surfaces obtained from a slaughterhouse in Burdur, Turkey. In this study, a total of 179 beef meat and meat contact surface samples were analyzed for the presence of L. monocytogenes by polymerase chain reaction (PCR). Out of a total of 179 beef meat and meat contact surface samples, 83 (46.37%) were found to be contaminated with L. monocytogenes, with the highest incidence (53.01%) occurring in beef meat. In the present study, most of the isolated strains belonged to serogroups IIB and IVB (lineage I). The L. monocytogenes strain also contained monoA-B, prfA, plcA, plcB, mpl, hlyA, actA, gtcA, dltA, Fri, flaA, InlA, InlC, InlJ, and iap genes. Biofilm formation was not determined in the tested samples at pH 5.5 and different temperatures (4°C, 10°C, 25°C, and 37°C). However, strong biofilm formation was observed in 6.45% (2/31) of the strains at pH 7.0 after 48 h incubation at 37°C, and in 3.22% (1/31) of the strains at pH 7.0 after 48 h incubation at 4°C and 10°C. Pulsed-field gel electrophoresis (PFGE) results showed that L. monocytogenes isolates were clonally related, and cross-contamination was present. In addition, PFGE results also revealed that AscI had more distinguishing power than the ApaI restriction enzyme. These results indicate that L. monocytogenes detected from meat and meat contact surfaces in the slaughterhouse pose a potential risk to public health.
Go to article

Bibliography

1. Abachin E, Poyart C, Pellegrini E, Milohanic E, Fiedler F, Berche P, Trieu-Cuot P (2002) Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol Microbiol 43: 1-14.
2. Agostinho Davanzo EF, Dos Santos RL, Castro VH, Palma JM, Pribul BR, Dallago BS, Fuga B, Medeiros M, Titze de Almeida SS, da Costa HM, Rodrigues DD, Lincopan N, Perecmanis S, Santana AP (2021) Molecular characterization of Salmonella spp. and Listeria monocytogenes strains from biofilms in cattle and poultry slaughterhouses located in the federal District and State of Goia´s, Brazil. PLoS One 16: e0259687.
3. Andrade JC, João AL, Alonso CS, Barreto AS, Henriques AR (2020) Genetic subtyping, biofilm-forming ability and biocide suscepti-bility of Listeria monocytogenes strains isolated from a ready-to-eat food industry. Antibiotics (Basel) 9: 416.
4. Arslan S, Baytur S (2019) Prevalence and antimicrobial resistance of Listeria species and subtyping and virulence factors of Listeria monocytogenes from retail meat. J Food Saf 39: e12578.
5. Ayaz ND, Cufaoglu G (2016) Listeria monocytogenes as a foodborne pathogen: Biocontrol in foods using lytic bacteriophages. J Clin Microbiol Biochem Technol 2: 035-039.
6. Bubert A, Köhler S, Goebel W (1992) The homologous and heterologous regions within the iap gene allow genus- and species-specific identification of Listeria spp. by polymerase chain reaction. Appl Environ Microbiol 58: 2625-2632.
7. Bubert A, Riebe J, Schnitzler N, Schönberg A, Goebel W, Schubert P (1997) Isolation of catalase-negative Listeria monocytogenes strains from listeriosis patients and their rapid ıdentification by anti-p60 antibodies and/or PCR. J Clin Microbiol 35: 179-183.
8. Bubert A, Sokolovic Z, Chun SK, Papatheodorou L, Simm A, Goebel W (1999) Differential expression of Listeria monocytogenes virulence genes in mammalian host cells. Mol Gen Genet 261: 323-336.
9. Boukili M, Filali FR, Lafkih N, Bouymajane A, Sefiani M, Moumni M (2020) Prevalence, characterization and antimicrobial resistance of Listeria monocytogenes isolated from beef meat in Meknes city, Morocco. Germs 10: 74-80.
10. Çadırcı Ö, Gücükoğlu A, Terzi GG, Uyanık T, Alişarlı M (2018) The existence of Listeria monocytogenes in a cattle slaughterhouse and identification of serotypes by mPCR. Ankara Univ Vet Fak Derg 65: 305-311.
11. CDC (2017) Standard Operating Procedure for PulseNet PFGE of Listeria monocytogenes. https://www.cdc.gov/pulsenet/pdf/listeria-pfge-protocol-508c.pdf
12. Chavant P, Martinie B, Meylheuc T, Bellon-Fontaine MN, Hebraud M (2002) Listeria monocytogenes LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. Appl Environ Microbiol 68: 728-737.
13. Chen M, Cheng J, Zhang J, Chen Y, Zeng H, Xue L, Lei T, Pang R, Wu S, Wu H, Zhang S, Wei X, Zhang Y, Ding Y, Wu Q (2019) Isolation, potential virulence, and population diversity of Listeria monocytogenes from meat and meat products in China. Front Microbiol 10: 946.
14. Cherifi T, Arsenault J, Pagotto F, Quessy S, Côté JC, Neira K, Fournaise S, Bekal S, Fravalo P (2020) Distribution, diversity and per-sistence of Listeria monocytogenes in swine slaughterhouses and their association with food and human listeriosis strains. PLoS One 15: e0236807.
15. Coban A, Pennone V, Sudagidan M, Molva C, Jordan K, Aydin A (2019) Prevalence, virulence characterization, and genetic related-ness of Listeria monocytogenes isolated from chicken retail points and poultry slaughterhouses in Turkey. Braz J Microbiol 50: 1063-1073.
16. Costa M, Pracca G, Sucari A, Galli L, Ibargoyen J, Gentiluomo J, Brusa V, Zugazua MM, Figueroa Y, Londero A, Roge A, Silva H, Der Ploeg CV, Signorini M, Oteiza JM, Leotta GA (2020) Comprehensive evaluation and implementation of improvement actions in bovine abattoirs to reduce pathogens exposure. Prev Vet Med 176: 104933.
17. Demaître N, Van Damme I, De Zutter L, Geeraerd AH, Rasschaert G, De Reu K (2020) Occurrence, distribution and diversity of Lis-teria monocytogenes contamination on beef and pig carcasses after slaughter. Meat Sci 169: 108177.
18. Doumith M, Buchrieser C, Glaser P, Jacquet C, Martin P (2004) Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. J Clin Microbiol 42: 3819-3822.
19. Dussurget O, Dumas E, Archambaud C, Chafsey I, Chambon C, Hébraud M, Cossart P (2005) Listeria monocytogenes ferritin protects against multiple stresses and is required for virulence. FEMS Microbiol Lett 250: 253-261.
20. Furrer B, Candrian U, Hoefelein C, Luethy J (1991) Detection and identification of Listeria monocytogenes in cooked sausage products and in milk by in vitro amplification of haemolysin gene fragments. J Appl Bacteriol 70: 372-379.
21. Graves LM, Hunter SB, Ong AR, Schoonmaker-Bopp D, Hise K, Kornstein L, DeWitt WE, Hayes PS, Dunne E, Mead P, Swaminathan B (2005) Microbiological aspects of the investigation that traced the 1998 outbreak of listeriosis in the United States to contaminated hot dogs and establishment of molecular subtyping-based surveillance for Listeria monocytogenes in the PulseNet Network. J Clin Microbiol 43: 2350-2355.
22. Hellström S (2011) Contamination routes and control of Listeria monocytogenes in food production. Academic dissertation. University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland. SBN 978-952-10-7109-6 (PDF)
23. Hitchins AD, Jinneman K, Chen Y (2022) Chapter 10: Detection of Listeria monocytogenes in foods and environmental samples, and enumeration of Listeria monocytogenes in foods. In: Food and Drug Administraiton Bacteriological Analytical Manual (BAM), Food and Drug Administraiton. https://www.fda.gov/food/laboratory-methods-food/bamchapter-10-detection-listeria-monocytogenes-foods-andenvironmental-samples-and-enumeration
24. Iglesias MA, Kroning IS, Decol LT, de Melo Franco BD, da Silva WP (2017) Occurrence and phenotypic and molecular characteriza-tion of Listeria monocytogenes and Salmonella spp. in slaughterhouses in southern Brazil. Food Res Int 100: 96-101.
25. ISO (2017) International Organization for Standardization, EN ISO 11290-1:2017. Microbiology of the food chainHorizontal method for the detection and enumeration of Listeria monocytogenes and of Listeria spp. Part 1: Detection method. https://www.iso.org/obp/ui/#iso:std:iso: 11290:-1:ed-2:v1:en
26. Jang YS, Moon JS, Kang HJ, Bae D, Seo KH (2021) Prevalence, characterization, and antimicrobial susceptibility of Listeria monocytogenes from raw beef and slaughterhouse environments in Korea. Foodborne Pathog Dis 18: 419-425.
27. Jaradat ZW, Schutze GE, Bhunia AK (2002) Genetic homogeneity among Listeria monocytogenes strains from infected patients and meat products from two geographic locations determined by phenotyping, ribotyping and PCR analysis of virulence genes. Int J Food Microbiol 76: 1-10.
28. Jennison AV, Masson JJ, Fang NX, Graham RM, Bradbury MI, Fegan N, Gobius KS, Graham TM, Guglielmino CJ, Brown JL, Fox EM (2017) Analysis of the Listeria monocytogenes population structure among isolates from 1931 to 2015 in Australia. Front Microbiol 8: 603.
29. Kayode AJ, Igbinosa EO, Okoh AI (2019) Overview of listeriosis in the Southern African Hemisphere-Review. J Food Saf 40: e12732.
30. Kyoui D, Takahashi H, Miya S, Kuda T, Kimura B (2014) Comparison of the major virulence-related genes of Listeria monocytogenes in Internalin A truncated strain 36-25-1 and a clinical wild-type strain. BMC Microbiol 14: 15.
31. Leimeister-Wachter M, Domann E, Chakraborty T (1991) Detection of a gene encoding a phosphatidylinositolspecific phospholipase C that is co-ordinately expressed with listeriolysin in Listeria monocytogenes. Mol Microbiol 5: 361-366.
32. Li X, Shi X, Song Y, Yao S, Li K, Shi B, Sun J, Liu Z, Zhao W, Zhao C, Wang J (2022) Genetic diversity, antibiotic resistance, and virulence profiles of Listeria monocytogenes from retail meat and meat processing. Food Res Int 162: 112040.
33. Liu D, Ainsworth AJ, Austin FW, Lawrence ML (2004) Use of PCR primers derived from a putative transcriptional regulator gene for species-specific determination of Listeria monocytogenes. Int J Food Microbiol 91: 297-304.
34. Liu D, Lawrence ML, Ainsworth AJ, Austin FW (2008) Genotypic identification. In: Liu D (ed) Handbook of Listeria monocytogenes, 1st ed., Boca Raton: CRC Press, Taylor & Francis Group, pp 169-202.
35. Liu D, Lawrence ML, Austin FW, Ainsworth AJ (2007) A multiplex PCR for species- and virulence-specific determination of Listeria monocytogenes. J Microbiol Methods 71: 133-140.
36. Mazaheri T, Ripolles-Avila C, Hascoët AS, Rodríguez-Jerez JJ (2020) Effect of an enzymatic treatment on the removal of mature Listeria monocytogenes biofilms: A quantitative and qualitative study. Food Control 114: 107266.
37. Neves E, Lourenco A, Silva AC, Coutinho R, Brito L (2008) Pulsed-field gel electrophoresis (PFGE) analysis of Listeria monocytogenes isolates from different sources and geographical origins and representative of the twelve serovars. Syst Appl Microbiol 31: 387-392.
38. Nishibori T, Cooray K, Xiong H, Kawamura I, Fujita M, Mitsuyama M (1995) Correlation between the presence of virulence-associated genes as determined by PCR and actual virulence to mice in various strains of Listeria spp. Microbiol Immunol 39: 343-349.
39. Oevermann A, Zurbriggen, A Vandevelde M (2010) Rhombencephalitis caused by Listeria monocytogenes in humans and ruminants: a zoonosis on the rise? Interdiscip Perspect Infect Dis 2010: 632513.
40. Oh H, Kim S, Lee S, Lee H, Ha J, Lee J, Choi Y, Choi KH, Yoon Y (2018) Prevalence, serotype diversity, genotype and antibiotic resistance of Listeria monocytogenes isolated from carcasses and human in Korea. Korean J Food Sci Anim Resour 38: 851-865.
41. Olaimat AN, Al-Holy MA, Shahbaz HM, Al-Nabulsi AA, Abu Ghoush MH, Osaili TM, Ayyash MM, Holley RA (2018) Emergence of antibiotic resistance in Listeria monocytogenes isolated from food products: a comprehensive review. Compr Rev Food Sci Food Saf 17: 1277-1292.
42. Orsi RH, den Bakker HC, Wiedmann M (2011) Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. Int J Med Microbiol 301: 79-96.
43. Orsi RH, Wiedmann M (2016) Characteristics and distribution of Listeria spp., including Listeria species newly described since 2009. Appl Microbiol Biotechnol 100: 5273-5287.
44. Papatzimos G, Kotzamanidis C, Kyritsi M, Malissiova E, Economou V, Giantzi V, Zdragas A, Hadjichristodoulou C, Sergelidis D (2022) Prevalence and characteristics of Listeria monocytogenes in meat, meat products, food handlers and the environment of the meat processing and the retail facilities of a company in Northern Greece. Lett Appl Microbiol 74: 367-376.
45. Penesyan A, Paulsen IT, Kjelleberg S, Gillings MR (2021) Three faces of biofilms: a microbial lifestyle, a nascent multicellular organism, and an incubator for diversity. NPJ Biofilms and Microbiomes, 7: 80.
46. Poimenidou SV, Dalmasso M, Papadimitriou K, Fox EM, Skandamis PN, Jordan K (2018) Virulence gene sequencing highlights similarities and differences in sequences in Listeria monocytogenes Serotype 1/2a and 4b strains of clinical and food origin from 3 different geographic locations. Front Microbiol 9: 1103.
47. Promadej N, Fiedler F, Cossart P, Dramsi S, Kathariou S (1999) Cell wall teichoic acid glycosylation in Listeria monocytogenes serotype 4b requires gtcA, a novel, serogroup-specific gene. J Bacteriol 181: 418-425.
48. Sahin S, Mogulkoç MN, Kalın R (2020) Prevalence and serotype distribution of Listeria monocytogenes isolated from retail raw meats. J Fac Vet Med Erciyes Univ 17: 22-27.
49. Slama RB, Miladi H, Chaieb K, Bakhrouf A (2013) Survival of Listeria monocytogenes cells and the effect of extended frozen storage (-20°C) on the expression of its virulence gene. Appl Biochem Biotechnol 170: 1174-1183.
50. Soni DK, Singh M, Singh DV, Dubey SK (2014) Virulence and genotypic characterization of Listeria monocytogenes isolated from vegetable and soil samples. BMC Microbiol 14: 241.
51. Sudagidan M, Cavusoglu C, Bacakoglu F (2008) Investigation of the virulence genes in methicillin-resistant Staphylococcus aureus strains isolated from biomaterial surfaces. Mikrobiyol Bul 42: 29-39.
52. Teixeira LA, Carvalho FT, Vallim DC, Pereira RC, Neto AC, Vieira BS, Carvalho RC, Figueiredo EE (2020) Listeria monocytogenes in export-approved beef from Mato Grosso, Brazil: prevalence, molecular characterization and resistance to antibiotics and disinfectants. Microorganisms 8: 18.
53. Vasquez-Boland JA, Kocks C, Dramsi S, Ohayon H, Geoffroy C, Mengaud J, Cossart P (1992) Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread. Infect Immun 60: 219-230.
54. Yan H, Neogi SB, Mo Z, Guan W, Shen Z, Zhang S, Li L, Yamasaki S, Shi L, Zhong N (2010) Prevalence and characterization of an-timicrobial resistance of foodborne Listeria monocytogenes isolates in Hebei province of Northern China, 2005-2007. Int J Food Mi-crobiol 144: 310-316.
55. Yucel N, Citak S, Onder M (2005) Prevalence and antibiotic resistance of Listeria species in meat products in Ankara, Turkey. Food Microbiol 22: 241-245.
56. Zhang H, Wang J, Chang Z, Liu X, Chen W, Yu Y, Wang X, Dong Q, Ye Y, Zhang X (2021) Listeria monocytogenes contamination characteristics in two ready-to-eat meat plants from 2019 to 2020 in Shanghai. Front Microbiol 12: 729114.
Go to article

Authors and Affiliations

F. Tasci
1
M. Sudagidan
2
O. Yavuz
2
A. Soyucok
3
A. Aydin
4

  1. Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, 15030, Istiklal Campus, Burdur, Turkey
  2. Scientific and Technology Application and Research Center, Burdur Mehmet Akif Ersoy University, Burdur, 15030, Istiklal Campus, Burdur, Turkey
  3. Department of Food Processing, Food Agriculture and Livestock Vocational School, Burdur Mehmet Akif Ersoy University, 15030, Istiklal Campus, Burdur, Turkey
  4. Department of Food Hygiene and Technology, Faculty of Veterinary Medicine,Istanbul University-Cerrahpasa, 34320, Avcilar, Istanbul, Turkey

This page uses 'cookies'. Learn more