Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 27
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The matrix converter is a new generation of power electronic converters and is an alternative to back-to-back converters in applications that dimensions and weight are important. In this paper, a simple control algorithm for a three-phase asynchronous motor based on a direct torque control technique, which is fed through a three-phase direct matrix converter, is presented. For direct matrix converters, 27 switching modes are possible, which using the predictive control technique and for the different modes of the matrix converter, the motor behavior is estimated at the next sampling interval. Then the objective function is determined and the optimal possible mode is selected. Finally, the best switching mode is applied to the direct matrix converter. In order to evaluate the proposed method, simulation of the system in Matlab/Simulink software environment is performed. The results show the effectiveness of the proposed method.

Go to article

Authors and Affiliations

Vahid Talavat
Sadjad Galvani
Mahdi Hajibeigy
Download PDF Download RIS Download Bibtex

Abstract

The paper is concerned with the presentation and analysis of the Dynamic Matrix Control (DMC) model predictive control algorithm with the representation of the process input trajectories by parametrised sums of Laguerre functions. First the formulation of the DMCL (DMC with Laguerre functions) algorithm is presented. The algorithm differs from the standard DMC one in the formulation of the decision variables of the optimization problem – coefficients of approximations by the Laguerre functions instead of control input values are these variables. Then the DMCL algorithm is applied to two multivariable benchmark problems to investigate properties of the algorithm and to provide a concise comparison with the standard DMC one. The problems with difficult dynamics are selected, which usually leads to longer prediction and control horizons. Benefits from using Laguerre functions were shown, especially evident for smaller sampling intervals.
Go to article

Bibliography

[1] T.L. Blevins, G.K. McMillan, W.K. Wojsznis, and M.W. Brown: Advanced Control Unleashed. The ISA Society, Research Triangle Park, NC, 2003.
[2] T.L. Blevins,W.K.Wojsznis and M.Nixon: Advanced ControlFoundation. The ISA Society, Research Triangle Park, NC, 2013.
[3] E.F. Camacho and C. Bordons: Model Predictive Control. Springer Verlag, London, 1999.
[4] M. Ławrynczuk: Computationally Efficient Model Predictive Control Algorithms: A Neural Network Approach, Studies in Systems, Decision and Control. Vol. 3. Springer Verlag, Heidelberg, 2014.
[5] M. Ławrynczuk: Nonlinear model predictive control for processes with complex dynamics: parametrisation approach using Laguerre functions. International Journal of Applied Mathematics and Computer Science, 30(1), (2020), 35–46, DOI: 10.34768/amcs-2020-0003.
[6] J.M. Maciejowski: Predictive Control. Prentice Hall, Harlow, England, 2002.
[7] R. Nebeluk and P. Marusak: Efficient MPC algorithms with variable trajectories of parameters weighting predicted control errors. Archives of Control Sciences, 30(2), (2020), 325–363, DOI: 10.24425/acs.2020.133502.
[8] S.J. Qin and T.A.Badgwell:Asurvey of industrial model predictive control technology. Control Engineering Practice, 11(7), (2003), 733–764, DOI: 10.1016/S0967-0661(02)00186-7.
[9] J. B. Rawlings and D. Q. Mayne: Model Predictive Control: Theory and Design. Nob Hill Publishing, Madison, 2009.
[10] J.A. Rossiter: Model-Based Predictive Control. CRC Press, Boca Raton – London – New York – Washington, D.C., 2003.
[11] P. Tatjewski: Advanced Control of Industrial Processes. Springer Verlag, London, 2007.
[12] P. Tatjewski: Advanced control and on-line process optimization in multilayer structures. Annual Reviews in Control, 32(1), (2008), 71–85, DOI: 10.1016/j.arcontrol.2008.03.003.
[13] P. Tatjewski: Disturbance modeling and state estimation for offset-free predictive control with state-spaced process models. International Journal of Applied Mathematics and Computer Science, 24(2), (2014), 313–323, DOI: 10.2478/amcs-2014-0023.
[14] P. Tatjewski: Offset-free nonlinear Model Predictive Control with statespace process models. Archives of Control Sciences, 27(4), (2017), 595–615, DOI: 10.1515/acsc-2017-0035.
[15] P. Tatjewski: DMC algorithm with Laguerre functions. In Advanced, Contemporary Control, Proceedings of the 20th Polish Control Conference, pages 1006–1017, Łódz, Poland, (2020).
[16] G. Valencia-Palomo and J.A. Rossiter: Using Laguerre functions to improve efficiency of multi-parametric predictive control. In Proceedings of the 2010 American Control Conference, Baltimore, (2010).
[17] B. Wahlberg: System identification using the Laguerre models. IEEE Transactions on Automatic Control, 36(5), (1991), 551–562, DOI: 10.1109/9.76361.
[18] L. Wang: Discrete model predictive controller design using Laguerre functions. Journal of Process Control, 14(2), (2004), 131–142, DOI: 10.1016/S0959-1524(03)00028-3.
[19] L. Wang: Model Predictive Control System Design and Implementation using MATLAB. Springer Verlag, London, 2009.
[20] R. Wood and M. Berry: Terminal composition control of a binary distillation column. Chemical Engineering Science, 28(9), (1973), 1707–1717, DOI: 10.1016/0009-2509(73)80025-9.
Go to article

Authors and Affiliations

Piotr Tatjewski
1

  1. Warsaw University of Technology, Nowowiejska15/19, 00-665 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Electromagnetic mill installation for dry grinding represents a complex dynamical system that requires specially designed control system. The paper presents model-based predictive control which locates closed loop poles in arbitrary places. The controller performs as gain scheduling prototype where nonlinear model – artificial recurrent neural network, is parameterized with additional measurements and serves as a basis for local linear approximation. Application of such a concept to control electromagnetic mill load allows for stable performance of the installation and assures fulfilment of the product quality as well as the optimization of the energy consumption.

Go to article

Authors and Affiliations

Szymon Ogonowski
Dariusz Bismor
ORCID: ORCID
Zbigniew Ogonowski
Download PDF Download RIS Download Bibtex

Abstract

This paper investigates the application of a novel Model Predictive Control structure for the drive system with an induction motor. The proposed controller has a cascade-free structure that consists of a vector of electromagnetics (torque, flux) and mechanical (speed) states of the system. The long-horizon version of the MPC is investigated in the paper. In order to reduce the computational complexity of the algorithm, an explicit version is applied. The influence of different factors (length of the control and predictive horizon, values of weights) on the performance of the drive system is investigated. The effectiveness of the proposed approach is validated by some experimental tests.

Go to article

Authors and Affiliations

Karol Tomasz Wróbel
Krzysztof Szabat
ORCID: ORCID
Piotr Serkies
Download PDF Download RIS Download Bibtex

Abstract

The main goal of estimating models for industrial applications is to guarantee the cheapest system identification. The requirements for the identification experiment should not be allowed to affect product quality under normal operating conditions. This paper deals with ensuring the required liquid levels of the cascade system tanks using the model predictive control (MPC) method. The MPC strategy was extended with the Kalman filter (KF) to predict the system’s succeeding states subject to a reference trajectory in the presence of both process and measurement noise covariances. The main contribution is to use the application-oriented input design to update the parameters of the model during system degradation. This framework delivers the least-costly identification experiment and guarantees high performance of the system with the updated model. The methods presented are evaluated both in the experiments on a real process and in the computer simulations. The results of the robust MPC application for cascade system water levels control are discussed.
Go to article

Authors and Affiliations

Wiktor Jakowluk
1
ORCID: ORCID
Sławomir Jaszczak
2

  1. Bialystok University of Technology, Faculty of Computer Science, Wiejska 45A, 15-351 Białystok, Poland
  2. West Pomeranian University of Technology in Szczecin, Faculty of Computer Science and Information Technology, Żołnierska 49, ˙71-210 Szczecin, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper introduces Extended Identification-Based Predictive Control (EIPC), which is a novel control method developed for the problem of adaptive impact mitigation. The model-based approach utilizing the paradigm of Model Predictive Control is combined with sequential identification of selected system parameters and process disturbances. The elaborated method is implemented in the shock-absorber control system and tested under impact loading conditions. The presented numerical study proves the successful and efficient adaptation of the absorber to unknown excitation conditions as well as to unknown force and leakage disturbances appearing during the process. The EIPC is used for both semi-active and active control of the impact mitigation process, which are compared in detail. In addition, the influence of selected control parameters and disturbance identification on the efficiency of the impact absorption process is assessed. As a result, it can be concluded that an efficient and robust control method was developed and successfully applied to the problem of adaptive impact mitigation.
Go to article

Authors and Affiliations

Cezary Graczykowski
1
ORCID: ORCID
Rami Faraj
1
ORCID: ORCID

  1. Institute of Fundamental Technological Research PAS, Pawi´nskiego 5B, 02-106 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper studies an evacuation problem described by a leader-follower model with bounded confidence under predictive mechanisms. We design a control strategy in such a way that agents are guided by a leader, which follows the evacuation path. The proposed evacuation algorithm is based on Model Predictive Control (MPC) that uses the current and the past information of the system to predict future agents’ behaviors. It can be observed that, with MPC method, the leader-following consensus is obtained faster in comparison to the conventional optimal control technique. The effectiveness of the developed MPC evacuation algorithm with respect to different parameters and different time domains is illustrated by numerical examples.
Go to article

Bibliography

[1] H. Abdelgawad and B. Abdulhai: Emergency evacuation planning as a network design problem: A critical review. Transportation Letters: The International Journal of Transportation Research, 1 (2009), 41–58, DOI: 10.3328/TL.2009.01.01.41-58.
[2] R. Alizadeh: A dynamic cellular automaton model for evacuation process with obstacles, Safety Science, 49(2), (2011), 315–323, DOI: 10.1016/j.ssci.2010.09.006.
[3] R. Almeida, E. Girejko, L. Machado, A.B. Malinowska, and N. Mar- tins: Application of predictive control to the Hegselmann-Krause model, Mathematical Methods in the Applied Sciences, 41(18), (2018), 9191–9202, DOI: 10.10022Fmma.5132.
[4] B. Aulbach and S. Hilger: A unified approach to continuous and discrete dynamics, ser. Colloq. Math. Soc. Janos Bolyai, vol. 53, North-Holland, Amsterdam, 1990.
[5] H. Bi and E. Gelenbe: A survey of algorithms and systems for evacuating people in confined spaces, Electronics, 2019 8(6), (2019), 711, DOI: 10.3390/electronics8060711.
[6] V.D. Blondel, J.M. Hendrickx, and J.N. Tsitsiklis: On Krause’s multiagent consensus model with state-dependent connectivity, IEEE Transactions on Automatics Control, vol. 54(11), (2009), 2586–2597, DOI: 10.1109/TAC.2009.2031211.
[7] V.D. Blondel, J.M. Hendrickx, and J.N. Tsitsiklis: Continuous-time average-preserving opinion dynamics with opinion-dependent communications, SIAM Journal on Control and Optimization, vol. 48(8), (2010), 5214–5240, DOI: 10.1137/090766188.
[8] M. Bohner and A. Peterson: Dynamic equations on time scales, Boston, MA: Birkhäuser Boston, 2001.
[9] R.M. Colombo and M. D. Rosini: Pedestrian flows and non-classical shocks, Mathematical Methods in the Applied Sciences, 28(13), (2005), 1553–1567, DOI: 10.1002/mma.624.
[10] E. Girejko, L. Machado, A.B. Malinowska, and N. Martins: Krause’s model of opinion dynamics on isolated time scales, Mathematical Methods in the Applied Sciences, 39 (2016), 5302–5314, DOI: 10.1002/mma.3916.
[11] R. Hegselmann and U. Krause: Opinion dynamics and bounded confidence models, analysis, and simulation, Journal of Artificial Societies and Social Simulation, 5(3), (2002), http://jasss.soc.surrey.ac.uk/5/3/2.html.
[12] D. Helbing and P. Molnar: Social force model for pedestrian dynamics, Physical Review E, 51(5), (1995), 4282–4286, DOI: 10.1103/Phys-RevE.51.4282.
[13] R. Hilscher and V. Zeidan:Weak maximum principle and accessory problem for control problems on time scales, Nonlinear Analysis, 70(9), (2009), 3209–3226, DOI: 10.1016/j.na.2008.04.025.
[14] L. Huang, S.C.Wong, M. Zhang, C.-W. Shu, andW.H.K. Lam: Revisiting Hughes’ dynamics continuum model for pedestrian flow and the development of an efficient solution algorithm, Transportation Research Part B: Methodological, 43(1), (2009), 127–141, DOI: 10.1016/j.trb.2008.06.003.
[15] R.L. Hughes: A continuum theory for the flow of pedestrians, Transportation Research Part B: Methodological, 36(6), (2002), 507–535, DOI: 10.1016/S0191-2615(01)00015-7.
[16] R. Lohner: On the modeling of pedestrian motion, Applied Mathematical Modeling, 34(2), (2010), 366–382, DOI: 10.1016/j.apm.2009.04.017.
[17] S.J. Qin and T.A. Badgwell: An Overview of Nonlinear Model Predictive Control Applications, Allgöwer F., Zheng A. ed., ser. Nonlinear Model Predictive Control. Progress in Systems and Control Theory. Birkhäuser, Basel, 2000, vol. 26, pp. 369–392.
[18] S. Wojnar, T. Poloni, P. Šimoncic, B. Rohal’-Ilkiv, M. Honek (and) J. Csambál: Real-time implementation of multiple model based predictive control strategy to air/fuel ratio of a gasoline engine. Archives of Control Sciences, 23(1), (2013), 93–106.
[19] S. Daniar, M. Shiroei and R. Aazami: Multivariable predictive control considering time delay for load-frequency control in multi-area power systems. Archives of Control Sciences, 26(4), (2016), 527–549, DOI: 10.1515/acsc-2016-0029.
[20] Y. Yang, D.V. Dimarogonas, and X. Hu: Optimal leader-follower control for crowd evacuation, Proc. 52nd IEEE Conf. Decision Control (CDC), (2013), 2769–2774, DOI: 10.1109/CDC.2013.6760302.
[21] Z. Zainuddin and M. Shuaib: Modification of the decision-making capability in the social force model for the evacuation process, Transport Theory and Statistical Physics, 39(1), (2011), 47–70, DOI: 10.1080/00411450.2010.529979.
[22] H.-T. Zhang, M.Z. Chen, G.-B. Stan, and T. Zhou: Ultrafast consensus via predictive mechanisms, Europhysics Letters, 83, (2008), no. 40003.
[23] H.-T. Zhang, M.Z. Chen, G.-B. Stan, T. Zhou, and J.M.Maciejowski: Collective behaviour coordination with predictive mechanisms, IEEE Circuits Systems Magazine, 8, (2008) 67–85, DOI: 10.1109/MCAS.2008.928446.
[24] L. Zhang, J. Wang, and Q. Shi: Multi-agent based modeling and simulating for evacuation process in stadium, Journal of Systems Science and Complexity, 27(3), (2014), 430–444, DOI: 10.1007/s11424-014-3029-5.
[25] Y. Zheng, B. Jia, X.-G. Li, and N. Zhu: Evacuation dynamics with fire spreading based on cellular automaton, Physica A: Statistical Mechanics and Its Applications, 390(18-19), (2011), 3147–3156, DOI: 10.1016/j.physa.2011.04.011.
Go to article

Authors and Affiliations

Ricardo Almeida
1
Ewa Girejko
2
ORCID: ORCID
Luís Machado
3 4
Agnieszka B. Malinowska
2
ORCID: ORCID
Natália Martins
1

  1. Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810–193 Aveiro, Portugal
  2. Faculty of Computer Science, Bialystok University of Technology, 15-351 Białystok, Poland
  3. Institute of Systems and Robotics, DEEC – UC, 3030-290 Coimbra, Portugal
  4. Department of Mathematics, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
Download PDF Download RIS Download Bibtex

Abstract

One of the main problems of multivariable cost functions in model predictive control is the choice of weighting factors. Two finite control set model predictive control algorithms, applied to the three-phase active rectifier with an LCL filter, are described in the paper. The investigated algorithms, i.e. PCicuc and PCigicuc, implement multivariable approaches applying line (grid) current, capacitor voltage and converter current. The main problem dealt with in the paper is the choice of optimum values of the cost function weighting factors. The values of the factors calculated using the method proposed in the paper are very close to the values represented by the lowest THDi of the line current. Moreover, simulations verifying the equations used in the prediction of controlled values, i.e. line current, capacitor voltage and converter current, are presented. Both simulation and experimental results are presented to verify effectiveness of the investigated control strategies under change of the load (P = 5 kW and 2.5 kW), during transient states, under unbalanced and balanced line voltage.

Go to article

Authors and Affiliations

P. Falkowski
A. Sikorski
K. Kulikowski
M. Korzeniewski
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes a practical tuning of closed loops with model based predictive control. The data assumed to be known from the process is the result of the bump test commonly applied in industry and known in engineering as step response data. A simplified context is assumed such that no prior know-how is required from the plant operator. The relevance of this assumption is very realistic in the context of first time users, both for industrial operators and as educational competence of first hand student training. A first order plus dead time is approximated and the controller parameters immediately follow by heuristic rules. Analysis has been performed in simulation on representative dynamics with guidelines for the various types of processes. Three single-input-single-output experimental setups have been used with no expert users available in different locations – both educational and industrial – these setups are representative for practical cases: a variable time delay dominant system, a non-minimum phase system and an open loop unstable system. Furthermore, in a multivariable control context, a train of separation columns has been tested for control in simulation, followed by experimental tests on a laboratory system with similar dynamics, i.e. a sextuple coupled water tank system. The results indicate the proposed methodology is suitable for hands-on tuning of predictive control loops with some limitations on performance and multivariable process control.

Go to article

Authors and Affiliations

C. Ionescu
D. Copot
Download PDF Download RIS Download Bibtex

Abstract

Model predictive control (MPC) algorithms brought increase of the control system performance in many applications thanks to relatively easily solving issues that are hard to solve without these algorithms. The paper is focused on investigating how to further improve the control system performance using a trajectory of parameters weighting predicted control errors in the performance function of the optimization problem. Different shapes of trajectories are proposed and their influence on control systems is tested. Additionally, experiments checking the influence of disturbances and of modeling uncertainty on control system performance are conducted. The case studies were done in control systems of three control plants: a linear non- minimumphase plant, a nonlinear polymerization reactor and a nonlinear thin film evaporator. Three types of MPC algorithms were used during research: linear DMC, nonlinear DMC with successive linearization (NDMC–SL), nonlinear DMC with nonlinear prediction and linearization (NDMC–NPL). Results of conducted experiments are presented in greater detail for the control system of the polymerization reactor, whereas for the other two control systems only the most interesting results are presented, for the sake of brevity. The experiments in the control system of the linear plant were done as preliminary experiments with the modified optimization problem. In the case of control system of the thin film evaporator the researched mechanisms were used in the control system of a MIMO plant showing possibilities of improving the control system performance.

Go to article

Authors and Affiliations

Robert Nebeluk
Piotr Marusak
Download PDF Download RIS Download Bibtex

Abstract

The primary objective of this paper is the custom design of an effective, yet relatively easyto- implement, predictive control algorithm to maintain normoglycemia in patients with type 1 diabetes. The proposed patient-tailorable empirical model featuring the separated feedback dynamics to model the effect of insulin administration and carbohydrate intake was proven to be suitable for the synthesis of a high-performance predictive control algorithm for artificial pancreas.Within the introduced linear model predictive control law, the constraints were applied to the manipulated variable in order to reflect the technical limitations of insulin pumps and the typical nonnegative nature of the insulin administration. Similarly, inequalities constraints for the controlled variable were also assumed while anticipating suppression of hypoglycemia states during the automated insulin treatment. However, the problem of control infeasibility has emerged, especially if one uses too tight constraints of the manipulated and the controlled variable concurrently. To this end, exploiting the Farkas lemma, it was possible to formulate the helper linear programming problem based on the solution of which this infeasibility could be identified and the optimality of the control could be restored by adapting the constraints. This adaptation of constraints is asymmetrical, thus one can force to fully avoid hypoglycemia at the expense of mild hyperglycemia. Finally, a series of comprehensive in-silico experiments were carried out to validate the presented control algorithm and the proposed improvements. These simulations also addressed the control robustness in terms of the intersubject variability and the meal announcements uncertainty.
Go to article

Authors and Affiliations

Martin Dodek
1
Eva Miklovicová
1

  1. Institute of Robotics and Cybernetics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

Glass production has a great industrial importance and is associated with many technological challenges. Control related problems concern especially the last part of the process, so called glass conditioning. Molten glass is gradually cooled down in a long ceramic channels called forehearths during glass conditioning. The glass temperature in each zone of the forehearth should be precisely adjusted according to the assumed profile. Due to cross-couplings and unmeasured disturbances, traditional control systems based on PID controllers, often do not ensure sufficient control quality. This problem is the main motivation for the research presented in the paper. A Model Predictive Control algorithm is proposed for the analysed process. It is assumed the dynamic model for each zone of the forehearth is identified on-line with the Modulating Functions Method. These continuous-time linear models are subsequently used for two purposes: for the predictive controller tuning, measurable disturbances compensation and for a static set point optimisation. Proposed approach was tested using Partial Differential Equation model to simulate two adjacent zones of the forehearth. The experimental results proved that it can be successfully applied for the aforementioned model.
Go to article

Authors and Affiliations

Michał Drapała
1
Witold Byrski
1

  1. Department of Automatic Control and Robotics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The low frequency ripple of the input side current of the single-phase inverter will reduce the efficiency of the power generation system and affect the overall performance of the system. Aiming at this problem, this paper proposes a two-modal modulation method and its MPC multi-loop composite control strategy on the circuit topology of a single-stage boost inverter with a buffer unit. The control strategy achieves the balance of active power on both sides of AC and DC by controlling the stable average value of the buffer capacitor voltage, and provides a current reference for inductance current of the DC input side. At the same time, the MPC controller uses the minimum inductor current error as the cost function to control inductor current to track its reference to achieve low frequency ripple suppression of the input current. In principle, it is expounded that the inverter using the proposed control strategy has better low frequency ripple suppression effect than the multi-loop PI control strategy, and the conclusion is proved by the simulation data. Finally, an experimental device of a single-stage boost inverter using MPC multi-loop composite control strategy is designed and fabricated, and the experimental results show that the proposed research scheme has good low frequency ripple suppression effect and strong adaptability to different types of loads.
Go to article

Authors and Affiliations

Haiyang Liu
1
Yiwen Chen
1
Sixu Luo
1
ORCID: ORCID
Jiahui Jiang
2
ORCID: ORCID
Haojun Jian
3

  1. Fujian Key Laboratory of New Energy Generation and Power Conversion, Fuzhou University, China
  2. College of Electrical Engineering, Qingdao University, China
  3. State Grid Fujian Electric Power Co., Ltd. China
Download PDF Download RIS Download Bibtex

Abstract

The neutral point clamped (NPC) three-level grid-tied converter is the key equipment connecting renewable energy and power grids. The current sensor fault caused by harsh environment may lead to the split of renewable energy. The existing sensor fault-tolerant methods will reduce the modulation ratio index of the converter system. To ensure continuous operation of the converter system and improve the modulation index, a model predictive control method based on reconstructed current is proposed in this paper. According to the relationship between fault phase current and a voltage vector, the original voltage vector is combined and classified. To maintain the stable operation of the converter and improve the utilization rate of DC voltage, two kinds of fault phase current are reconstructed with DC current, normal phase current and predicted current, respectively. Based on reconstructed three-phase current, a current predictive control model is designed, and a model predictive control method is proposed. The proposed method selects the optimal voltage vector with the cost function and reduces time delay with the current reconstruction sector. The simulation and experimental results showthat the proposed strategy can keep the NPC converter running stably with one AC sensor, and the modulation index is increased from 57.7% to 100%.
Go to article

Authors and Affiliations

Yanyan Li
1
ORCID: ORCID
Han Xiao
1
Nan Jin
1
ORCID: ORCID
Guanglu Yang
1 2

  1. College of Electrical and Information Engineering, Zhengzhou University of Light Industry, China
  2. Nanyang Cigarette Factory, China Tobacco Henan Industrial Co., Ltd., China
Download PDF Download RIS Download Bibtex

Abstract

Maritime Autonomous Surface Ships (MASS) perfectly fit into the future vision of merchant fleet. MASS autonomous navigation system combines automatic trajectory tracking and supervisor safe trajectory generation subsystems. Automatic trajectory tracking method, using line-of-sight (LOS) reference course generation algorithm, is combined with model predictive control (MPC). Algorithm for MASS trajectory tracking, including cooperation with the dynamic system of safe trajectory generation is described. It allows for better ship control with steady state cross-track error limitation to the ship hull breadth and limited overshoot after turns. In real MASS ships path is defined as set of straight line segments, so transition between trajectory sections when passing waypoint is unavoidable. In the proposed control algorithm LOS trajectory reference course is mapped to the rotational speed reference value, which is dynamically constrained in MPC controller due to dynamically changing reference trajectory in real MASS system. Also maneuver path advance dependent on the path tangential angle difference, to ensure trajectory tracking for turns from 0 to 90 degrees, without overshoot is used. All results were obtained with the use of training ship in real–time conditions.
Go to article

Authors and Affiliations

Anna Miller
1
ORCID: ORCID

  1. Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia, Poland
Download PDF Download RIS Download Bibtex

Abstract

Today’s electricity management mainly focuses on smart grid implementation for better power utilization. Supply-demand balancing, and high operating costs are still considered the most challenging factors in the smart grid. To overcome this drawback, a Markov fuzzy real-time demand-side manager (MARKOV FRDSM) is proposed to reduce the operating cost of the smart grid system and maintain a supply-demand balance in an uncertain environment. In addition, a non-linear model predictive controller (NMPC) is designed to give a global solution to the non-linear optimization problem with real-time requirements based on the uncertainties over the forecasted load demands and current load status. The proposed MARKOV FRDSM provides a faster scale power allocation concerning fuzzy optimization and deals with uncertainties and imprecision. The implemented results show the proposed MARKOV FRDSM model reduces the cost of operation of the microgrid by 1.95%, 1.16%, and 1.09% than the existing method such as differential evolution and real coded genetic algorithm and maintains the supply-demand balance in the microgrid.
Go to article

Authors and Affiliations

G. K. Jabash Samuel
1
ORCID: ORCID
M. S. Sivagama Sundari
2
R. Bhavani
3
A. Jasmine Gnanamalar
4

  1. Department of Electrical and Electronics Engineering, Rohini College of Engineering and Technology, Kanyakumari, India
  2. Department of Electrical and Electronics Engineering, Amrita College of Engineering and Technology, Nagercoil, India
  3. Department of Electrical and Electronics Engineering, Mepco Schlenk Engineering College, Sivakasi-626004, India
  4. Department of Electrical and Electronics Engineering, PSN College of Engineering and Technology, Anna University, India
Download PDF Download RIS Download Bibtex

Abstract

As nonlinear optimization techniques are computationally expensive, their usage in the real-time era is constrained. So this is the main challenge for researchers to develop a fast algorithm that is used in real-time computations. This work proposes a fast nonlinear model predictive control approach based on particle swarm optimization for nonlinear optimization with constraints. The suggested algorithm divide and conquer technique improves computing speed and disturbance rejection capability, demonstrating its suitability for real-time applications. The performance of this approach under constraints is validated using a highly nonlinear fast and dynamic real-time inverted pendulum system. The solution presented through work is computationally feasible for smaller sampling times and it gives promising results compared to the state of art PSO algorithm
Go to article

Authors and Affiliations

Supriya P. Diwan
1
Shraddha S. Deshpande
2

  1. Government College of Engineering, Karad-415124, Maharashtra, India
  2. Walchand College of Engineering, Sangli-416415, Maharashtra, India
Download PDF Download RIS Download Bibtex

Abstract

The model predictive control (MPC) technique has been widely applied in a large number of industrial plants. Optimal input design should guarantee acceptable model parameter estimates while still providing for low experimental effort. The goal of this work is to investigate an application-oriented identification experiment that satisfies the performance objectives of the implementation of the model. A- and D-optimal input signal design methods for a non-linear liquid two-tank model are presented in this paper. The excitation signal is obtained using a finite impulse response filter (FIR) with respect to the accepted application degradation and the input power constraint. The MPC controller is then used to control the liquid levels of the double tank system subject to the reference trajectory. The MPC scheme is built based on the linearized and discretized model of the system to predict the system’s succeeding outputs with reference to the future input signal. The novelty of this model-based method consists in including the experiment cost in input design through the objective function. The proposed framework is illustrated by means of numerical examples, and simulation results are discussed.

Go to article

Authors and Affiliations

W. Jakowluk
M. Świercz
Download PDF Download RIS Download Bibtex

Abstract

This paper presents simulation and laboratory test results of an implementation of an infinite control set model predictive control into a three-phase AC/DC converter. The connection between the converter and electric grid is made through an LCL filter, which is characterized by a better reduction of grid current distortions and smaller (cheaper) components in comparison to an L-type filter. On the other hand, this type of filter can cause strong resonance at specific current harmonics, which is efficiently suppressed by the control strategy focusing on the strict control input filter capacitors voltage vector. The presented method links the benefits of using linear control methods based on a space vector modulator and the nonlinear ones, which result in excellent control performance in a steady state as well as in a transient state.

Go to article

Authors and Affiliations

K. Dmitruk
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an analysis and simulation studies of three-phase matrix converter with GaN HEMT bidirectional switches with predictive control of grid currents and converter output currents. Two methods of grid currents shaping are described and compared. The first method is based on calculations of instantaneous grid reactive power and the second one uses the active power of the load. The analyzed converter works with the resistive-inductive load, and from the grid side the LC filter with damping resistor has been used.

Go to article

Authors and Affiliations

K. Nowaszewski
A. Sikorski
Download PDF Download RIS Download Bibtex

Abstract

Due to the coexistence of continuity and discreteness, energy management of a multi-mode power split hybrid electric vehicle (HEV) can be considered a typical hybrid system. Therefore, the hybrid system theory is applied to investigate the optimum energy distribution strategy of a power split multi-mode HEV. In order to obtain a unified description of the continuous/discrete dynamics, including both the steady power distribution process and mode switching behaviors, mixed logical dynamical (MLD) modeling is adopted to build the control-oriented model. Moreover, linear piecewise affine (PWA) technology is applied to deal with nonlinear characteristics in MLD modeling. The MLD model is finally obtained through a high level modeling language, i.e. HYSDEL. Based on the MLD model, hybrid model predictive control (HMPC) strategy is proposed, where a mixed integer quadratic programming (MIQP) problem is constructed for optimum power distribution. Simulation studies under different driving cycles demonstrate that the proposed control strategy can have a superior control effect as compared with the rule-based control strategy.
Go to article

Bibliography

  1.  J.J. Hu, B. Mei, H. Peng, and X.Y. Jiang, “Optimization design and analysis for a single motor hybrid powertrain configuration with dual planetary gears”, Appl. Sci. 9(4), 707 (2019).
  2.  S.H. Wang, S. Zhang, D.H. Shi, X.Q. Sun, and J.Q. He, “Research on instantaneous optimal control of the hybrid electric vehicle with planetary gear sets”, J. Braz. Soc. Mech. Sci. Eng. 41(1), 51 (2019).
  3.  J. Kim, J. Kang, Y. Kim, T. Kim, B. Min, and H. Kim, “Design of power split transmission: design of dual mode power split transmission”, Int. J. Automot. Technol. 11(4), 565‒571 (2010).
  4.  F. Wang, J. Zhang, X. Xu, Y.F. Cai, Z.G. Zhou, and X.Q. Sun, “New method for power allocation of multi-power sources considering speed-up transient vibration of planetary power-split HEVs driveline system”, Mech. Syst. Sig. Process. 128, 1‒18 (2019).
  5.  J.M. Miller, “Hybrid electric vehicle propulsion system architectures of the E-CVT type”, IEEE Trans. Power Electron. 21(3), 756‒767 (2006).
  6.  D.H. Shi, S.H. Wang, P. Pisu, L. Chen, R.C. Wang, and R.G. Wang, “Modeling and optimal energy management of a power split hybrid electric vehicle”, Sci. China Technol. Sci. 60(5), 1‒13 (2017).
  7.  J.D. Wishart, L. Zhou, and Z. Dong, “Review, modelling and simulation of two-mode hybrid vehicle architecture”, Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Nevada, USA, 2007, pp. 1091‒1112.
  8.  L. Chen, F.T. Zhu, M.M. Zhang, Y. Huo, C.L. Yin, and H. Peng, “Design and analysis of an electrical variable transmission for a series– parallel hybrid electric vehicle”, IEEE Trans. Veh. Technol. 60(5), 2354‒2363 (2011).
  9.  P. Aishwarya and O.B. Hari, “A review of optimal energy management strategies for hybrid electric vehicle”, Int. J. Veh. Tech. 160510 (2014).
  10.  B.L.C. Cezar and O. Alexandru, “A dynamic programming control strategy for HEV”, Appl. Mech. Mater. 263, 541‒544 (2013).
  11.  J. Park, “Development of equivalent fuel consumption minimization strategy for hybrid electric vehicles”, Int. J. Automot. Technol. 13(5), 835‒843 (2012).
  12.  D.H. Shi, P. Pisu, and L. Chen, “Control design and fuel economy investigation of power split HEV with energy regeneration of suspension”, Appl. Energy. 182, 576‒589 (2016).
  13.  T. Tarczewski, M. Skiwski, L.J. Niewiara, and L.M. Grzesiak, “High-performance PMSM servo-drive with constrained state feedback position controller”, Bull. Pol. Acad. Sci. Tech. Sci. 66(1), 49‒58 (2018).
  14.  H. Borhan, A. Vahidi, A.M. Phillips, M.L. Kuang, I.V. Kolmanovsky, and S.D. Cairano, “MPC-based energy management of a power-split hybrid electric vehicle”, IEEE Trans. Control Syst. Technol. 20(3), 593‒603 (2012).
  15.  A. Babiarz, A. Czornik, J. Klamka, and M. Niezabitowski, “The selected problems of controllability of discrete-time switched linear systems with constrained switching rule”, Bull. Pol. Acad. Sci. Tech. Sci. 63(3), 657‒666 (2015).
  16. [6]  S.G. Olsen and G.M. Bone, “Model-based control of three degrees of freedom robotic bulldozing”, J. Dyn. Syst. Meas. Control. 136(136), 729‒736 (2014).
  17.  X.Q. Sun, Y.F. Cai, S.H. Wang, X. Xu, and L. Chen, “Optimal control of intelligent vehicle longitudinal dynamics via hybrid model predictive control”, Rob. Auton. Syst. 112, 190‒200 (2019).
  18.  S.G. Olsen and G.M. Bone, “Development of a hybrid dynamic model and experimental identification of robotic bulldozing”, J. Dyn. Syst. Meas. Control. 135(2), 450‒472 (2013).
  19.  F.T. Zhu, L. Chen, and C.L. Yin, “Design and analysis of a novel multimode transmission for a hev using a single electric machine”, IEEE Trans. Veh. Technol. 62(3), 1097‒1110 (2013).
  20.  R.J. Zhang and Y.B. Chen, “Control of hybrid dynamical systems for electric vehicles”, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148), Arlington, VA, USA, 2001, pp. 2884‒2889.
  21.  J. Lygeros, S. Sastry, and C. Tomlin, Hybrid Systems: foundations, advanced topics and applications, University of California, Berkeley, 2012.
  22.  X.Q. Sun, Y.F. Cai, S.H. Wang, X.Xu, and L. Chen, “Piecewise affine identification of tire longitudinal properties for autonomous driving control based on data-driven”, IEEE Access 6, 47424‒47432 (2018).
  23.  A. Bemporad, A. Garulli, S. Paoletti, and A. Vicino, “A bounded-error approach to piecewise affine system identification”, IEEE Trans. Autom. Control. 50(10), 1567‒1580 (2005).
  24.  G. Ferrari-Trecate, M. Muselli, and D. Liberati, “A clustering technique for the identification of piecewise affine systems”, Automatica. 39(2), 205‒217 (2003).
  25.  F.D. Torrisi and A. Bemporad, “Hysdel-a tool for generating computational hybrid models for analysis and synthesis problems”, IEEE Trans. Control Syst. Technol. 12(2), 235‒249 (2004).
  26.  M. Abdullah and M. Idres, “Constrained model predictive control of proton exchange membrane fuel cell”, J. Mech. Sci. Technol. 28(9), 3855‒3862 (2014).
  27.  D. Jolevski and O. Bego, “Model predictive control of gantry/bridge crane with anti-sway algorithm”, J. Mech. Sci. Technol. 29(2), 827‒834 (2015).
  28.  G. Ripaccioli, A. Bemporad, F. Assadian, C. Dextreit, S.D. Cairano, and I.V. Kolmanovsky, “Hybrid modeling, identification, and predictive control: An application to hybrid electric vehicle energy management”, International conference on hybrid systems computation and control(HSCC), San Francisco, CA, USA, 2009, pp. 321‒335.
  29.  A. Bemporad and D. Mignone, “Miqp.m: a matlab function for solving mixed integer quadratic programs version 1.02 user guide”, ETH–Swiss Federal Institute of Technology, ETHZ–ETL, (2000).
  30.  M. Tutuianu et al., “Development of the World-wide harmonized Light duty Test Cycle (WLTC) and a possible pathway for its introduction in the European legislation”, Transp. Res. Part D Transp. Environ. 40, 61‒75 (2015).
  31.  N. Kim, S.W. Cha, and H. Peng, “Optimal equivalent fuel consumption for hybrid electric vehicles”, IEEE Trans. Control Syst. Technol. 20(3), 817‒825 (2011).
Go to article

Authors and Affiliations

Shaohua Wang
1
Sheng Zhang
1
Dehua Shi
1 2 3
Xiaoqiang Sun
1
Tao Yang
3
ORCID: ORCID

  1. Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China
  2. Vehicle Measurement, Control and Safety Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
  3. Jiangsu Chunlan Clean Energy Research Institute Co., Ltd., Taizhou 225300, China
Download PDF Download RIS Download Bibtex

Abstract

Quadcopter unmanned aerial vehicle is a multivariable, coupled, unstable, and underactuated system with inherent nonlinearity. It is gaining popularity in various applications and has been the subject of numerous research studies. However, modelling and controlling a quadcopter to follow a trajectory is a challenging issue for which there is no unique solution. This study proposes an optimal hybrid quadcopter control with MPC-based backstepping control for following a reference trajectory. The outer-loop controller (backstepping controller) regulates the quadcopter’s position, whereas the inner-loop controller (Model Predictive Control) regulates its attitude. The translational and rotational dynamics of the quadcopter are analyzed utilizing the Newton-Euler method. After that, the backstepping controller (BC) is created, which is a recurrent control method according to Lyapunov’s theory that utilizes a genetic algorithm (GA) to choose the controller parameters automatically. In order to apply a linear control technique in the presence of nonlinearities in the quadcopter dynamics, Linear Parameter Varying (LPV) Model Predictive Control (MPC) structure is developed. Simulation validated the dynamic performance of the proposed optimal hybrid MPC-based backstepping controller of the quadcopter in following a given reference trajectory. The simulations demonstrate the fact that using a command control input in trajectory tracking, the proposed control algorithm offers suitable tracking over the assigned position references with maximum appropriate tracking errors of 0.1 m for the �� and �� positions and 0.15 m for the �� position.
Go to article

Authors and Affiliations

Solomon C. Nwafor
1
ORCID: ORCID
Joy N. Eneh
2
ORCID: ORCID
Mmasom I. Ndefo
2
ORCID: ORCID
Oluchi C. Ugbe
3
ORCID: ORCID
Henry I. Ugwu
2
ORCID: ORCID
Ozoemena Ani
4
ORCID: ORCID

  1. Department of Mechatronic Engineering,Univeristy of Nigeria, Nsukka, Enugu State, Nigeria
  2. Department of Electronicand Computer Engineering, University of Nigeria, Nsukka, Enugu State, Nigeria
  3. Department of Electrical Engineering, Universityof Nigeria, Nsukka, Enugu State, Nigeria
  4. Department of Mechatronic Engineering and DepartmentofAgricultural and Bioresources Engineering,Univeristy of Nigeria, Nsukka, Enugu State, Nigeria
Download PDF Download RIS Download Bibtex

Abstract

In the finite control set model predictive control (FCS-MPC) strategy of the grid-tied inverter, the current ripple (CR) affects the selection of optimal voltage vectors, which leads to the increase of output current ripples. In order to solve this problem, this paper proposes a CR reduction method based on reference current compensation (RCC) for the FCS-MPC strategy of grid-tied inverters. Firstly, the influence of the CR on optimal voltage vector selection is analyzed. The conventional CR prediction method is improved, which uses inverter output voltage and grid voltage to calculate current ripples based on the space state equation. It makes up for the shortcomings that the conventional CR prediction method cannot predict in some switching states. The improved CR method is more suitable for the FCS-MPC strategy. In addition, the differences between the two cost functions are compared through visual analysis. It is found that the sensitivity of the square cost function to small errors is better than that of the absolute value function. Finally, the predicted CR is used to compensate the reference current. The compensated reference current is substituted into the square cost function to reduce the CR. The experimental results show that the proposed method reduces the CR by 47.3%. The total harmonic distortion (THD) of output current is reduced from 3.86% to 2.96%.
Go to article

Authors and Affiliations

Nan Jin
1
ORCID: ORCID
Wuchuang Fan
1
Jie Fang
1
Jie Wu
1
Yongpeng Shen
1

  1. Zhengzhou University of Light Industry, College of Electrical and Information Engineering, China

This page uses 'cookies'. Learn more