Nauki Techniczne

Archives of Electrical Engineering

Zawartość

Archives of Electrical Engineering | 2021 | vol. 70 | No 3

Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Economic dispatch (ED) is an essential part of any power system network. ED is howto schedule the real power outputs from the available generators to get the minimum cost while satisfying all constraints of the network. Moreover, it may be explained as allocating generation among the committed units with the most effective minimum way in accordance with all constraints of the system. There are many traditional methods for solving ED, e.g., Newton-Raphson method Lambda-Iterative technique, Gaussian-Seidel method, etc. All these traditional methods need the generators’ incremental fuel cost curves to be increasing linearly. But practically the input-output characteristics of a generator are highly non-linear. This causes a challenging non-convex optimization problem. Recent techniques like genetic algorithms, artificial intelligence, dynamic programming and particle swarm optimization solve nonconvex optimization problems in a powerful way and obtain a rapid and near global optimum solution. In addition, renewable energy resources as wind and solar are a promising option due to the environmental concerns as the fossil fuels reserves are being consumed and fuel price increases rapidly and emissions are getting higher. Therefore, the world tends to replace the old power stations into renewable ones or hybrid stations. In this paper, it is attempted to enhance the operation of electrical power system networks via economic dispatch. An ED problem is solved using various techniques, e.g., Particle Swarm Optimization (PSO) technique and Sine-Cosine Algorithm (SCA). Afterwards, the results are compared. Moreover, case studies are executed using a photovoltaic-based distributed generator with constant penetration level on the IEEE 14 bus system and results are observed. All the analyses are performed on MATLAB software.
Przejdź do artykułu

Bibliografia

[1] Zee-Lee Gaing, Particle swarm optimization to solving the economic dispatch considering the generator limits, IEEE Trans. Power Syst., vol. 18, pp. 1187–1195 (2003).
[2] Nidul Sinha, Chakrabarti R., Chattopadhyay P.K., Evolutionary programming techniques for economic load dispatch, IEEE Transactions on Evolutionary Computation, vol. 7, iss. 1, pp. 83–94 (2003).
[3] Jeyakumar D., Jayabarathi T., Raghunathan T., Particle swarm optimization for various types of economic dispatch problems, International Journal of Electrical Power Energy System, vol. 36, pp. 42–28 (2006).
[4] Leandro dos Santos Coelho, Chu-Sheng Lee, Solving economic load dispatch problems in power system using chaotic and Gaussian particle swarm optimization approaches, Elsevier, International Journal of Electrical Power and Energy Systems (IJEPES), vol. 30, iss. 5, pp. 297–307 (2008).
[5] Vishnu Prasad, Amita Mahor, Saroj Rangnekar, Economic dispatch using particle swarm optimization: A review, Renewable and Sustainable Energy Reviews, vol. 13, pp. 2134–2141 (2009).
[6] Kumar C., Alwarsamy T., Dynamic Economic Dispatch – A Review of Solution Methodologies, European Journal of Scientific Research, ISSN 1450-216X, vol. 64, no. 4, pp. 517–537 (2011).
[7] Deep K., Bansal J.C., Solving Economic Dispatch Problems with Valve-point Effects using Particle Swarm Optimization, J. UCS, vol. 18, no. 13, pp. 1842–1852 (2012).
[8] Timothy Ganesan, Pandian Vasant, Irraivan Elamvazuthy, A hybrid PSO approach for solving nonconvex optimization problems, Archives of Control Sciences, vol. 22 (LVIII) (2012).
[9] Jie Meng, Geng-yin Li, Shi-jun Cheng, Economic Dispatch for Power Generation System Incorporating Wind and Photovoltaic Power, Applied Mechanics and Materials, vol. 441, pp. 263–267 (2014).
[10] Kumar C., Anbarasan A., Karpagam M., Alwarsamy T., Artificial Intelligent Techniques in Economic Power Dispatch Problems, International Journal of Applied Engineering Research, ISSN 0973-4562, vol. 10, no. 9, pp. 23243–23254 (2015).
[11] Zeinab G. Hassan, Ezzat M., Almoataz Y. Abdelaziz, Solving Unit Commitment and Economic Load Dispatch Problems Using Modern Optimization Algorithms, International Journal of Engineering, Science and Technology, vol. 9, no. 4, pp. 10–19 (2017).
[12] Quande Q., Cheng S., Xianghua C., Solving non-convex/non-smooth economic load dispatch problems via an enhanced particle swarm optimization, Applied Soft Computing, vol. 59, no. 1, pp. 229–242 (2017).
[13] Sanjoy R., The maximum likelihood optima for an economic load dispatch in presence of demand and generation variability, Energy, vol. 147, pp. 915–923 (2018).
[14] Jagat Kishore Pattanaik, Mousumi Basu, Deba Prasad Dash, Dynamic economic dispatch: a comparative study for differential evolution, particle swarm optimization, evolutionary programming, genetic algorithm, and simulated annealing, Pattanaik et al., Journal of Electrical Systems and Information Technology (2019).
[15] Bishwajit Dey, Shyamal Krishna Roy, Biplab Bhattacharyya, Solving multi-objective economic emission dispatch of a renewable integrated microgrid using latest bio-inspired algorithms, Engineering Science and Technology, International Journal 22, pp. 55–66 (2019).
[16] Aissa Benchabira, Mounir Khiat, A hybrid method for the optimal reactive power dispatch and the control of voltages in an electrical energy network, Archives of Electrical Engineering, vol. 68, no. 3, pp. 535–551 (2019).
[17] Patel N., Bhattacharjee K., A comparative study of economic load dispatch using sine cosine algorithm, Scientia Iranica International Journal of Science and Technology, vol. 27, no. 3, pp. 1467–1480 (2020).
[18] Tankut Yalcinoz, Halis Altun, Murat Uzam, Economic dispatch solution using a genetic algorithm based on arithmetic crossover, IEEE Porto Power Tech Proceedings (2001).
[19] Anurag Gupta, Himanshu Anand, Analysis of scheduling of solar sharing for economic/environmental dispatch using PSO, INDICON IEEE (2015).
[20] Hafez A.I., Zawbaa H.M., Emary E., Hassanien A.E., Sine cosine optimization algorithm for feature selection, International Symposium on INnovations in Intelligent SysTems and Applications (INISTA) (2016).
[21] Ajay Wadhawan, Preeti Verma, Sonia Grover, Himanshu Anand, Economic Environmental Dispatch with PV Generation Including Transmission Losses using PSO, IEEE Power India International Conference (PIICON) (2016).
[22] Suid M.H., Ahmad M.A., Ismail M.R.T.R., Ghazali M.R., Irawan A., Tumari M.Z., An Improved Sine Cosine Algorithm for Solving Optimization Problems, IEEE Conference on Systems, Process and Control (ICSPC) (2018).
[23] Jiajun Liu, Bo Song,Ye Li, An Optimum Dispatching for Photovoltaic-thermal Mutual-Complementing Power Plant Based on the Improved Particle Swarm Knowledge Algorithm, IEEE Conference on Industrial Electronics and Applications (ICIEA) (2018).
[24] Kennedy J., Particle swarm optimization, Encyclopedia in Machine Learning, pp. 760–766 (2010).
Przejdź do artykułu

Autorzy i Afiliacje

Abrar Mohamed Hafiz
1
ORCID: ORCID
M. Ezzat Abdelrahman
1
Hesham Temraz
1

  1. Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Egypt
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

In this paper an attempt has been made towards the design and evaluation of a solar parabolic trough collector (PTC) system integrated with a conventional oil boiler (COB) to increase the energy utilization effectiveness and reduce the environmental emission of the existing conventional oil boiler in the Kombolcha textile factory, in Ethiopia. The factory uses 8500 ton/annum of heavy fuel oil to generate 26 ton/hour of pressurized hot water at 140°C temperature which causes an increase in greenhouse gas emissions, so the solar parabolic trough collector hot water generation system will be an appropriate solution for this application. Based on the available annual solar radiation, estimates of the solar fraction, solar energy unit price and system pay-back period have been carried out. The proposed system has the potential to save 1055.9 ton/year of fuel oil. The unit cost of PTC solar energy is estimated to be 0.0088 $/kWh and the payback period of the plant is five years. Since the unit price of oil energy (0.0424 $/kWh) is much greater than the unit price of solar energy by a substantial margin (0.033 $/kWh) in Ethiopia, therefore the water heating system by
a solar parabolic trough collector is a feasible alternative to heating by a conventional oil boiler.
Przejdź do artykułu

Bibliografia

[1] Sharew Anteneh, Solar Energy Assessment in Ethiopia: Modelling and Measurement, Addis Ababa, Ethiopia, vol. 12, iss. 4, pp. 135–145 (2007).
[2] Mekuannint Mesfin, Modelling, Simulation and Performance Evaluation of Parabolic Trough Solar Collector Power Generation System, Addis Ababa University, vol. 12, iss. 4, pp. 65–75 (2009).
[3] Robert A., Parabolic Trough Solar Technology, Encyclopedia of Sustainability Science and Technology, Meyers (ed.) (2012), DOI: 10.1007/978-1-4419-0851-3.
[4] Derese T. Nega, Getachew S. Tibba et al., Software Development for Design, Simulation and Sizing of Parabolic Trough Solar Thermal Power Plant (EthioSolA), Proceedings of the IEEE (2015).
[5] Yahusa I., Rufai Y.A., Tanimu L., Design Construction and Testing of Parabolic Solar Oven, vol. 12, iss. 4 (2016), DOI: 10.4172/2168-9873.1000212.
[6] Alhassan Salami Tijani, Ashraf M.S., Bin Roslan, Simulation Analysis of Thermal Losses of Parabolic trough Solar Collector in Malaysia Using Computational Fluid Dynamics, Procedia Technology 15, pp. 842–849 (2014).
[7] Caiyan Qin, Joong Bae Kim et al., Comparative Analysis of Direct-Absorption Parabolic-Trough Solar Collectors Considering Concentric Nanofluid Segmentation, vol. 44, iss. 5, pp. 4015–4025 (2020), DOI: 10.1002/Er.5165.
[8] Zhiyong Wu, Shidong Li et al., Three-dimensional numerical study of heat transfer characteristics of parabolic trough receiver, Applied Energy, vol. 113, pp. 902–911 (2014).
[9] Hachicha A.A., Rodríguez I., Capdevila R., Oliva A., Heat transfer analysis and numerical simulation of a parabolic trough solar collector, Applied Energy, vol. 111, pp. 581–592 (2013).
[10] Bellos E., Tzivanidis C., Antonopoulos K.A., A Detailed Working Fluid Investigation for Solar Parabolic Trough Collectors, Applied Thermal Engineering, vol. 114, pp. 374–386 (2017).
[11] Badreddine El Ghazzani, Diego Martinez Plaza et al., Thermal Plant Based on Parabolic Trough Collectors for Industrial Process Heat Generation in Morocco, Renewable Energy, vol. 113, pp. 1261–1275 (2017).
[12] Dagim Kebede, Design and analysis of solar thermal system for hot water supply to Minilk hospital new building, Addis Ababa University, vol. 8, iss. 1, pp. 5–14 (2016).
[13] Environmental and Energy Study Institute (EESI), Solar Thermal Energy for Industrial Uses (2011).
[14] El Jai M-C., Chalqi F-Z., A Modified Model for Parabolic Trough Solar Receiver, American Journal of Engineering Research (AJER), e-ISSN: 2320-0847 p ISSN: 2320-0936, vol. 2, iss. 5, pp. 200–211 (2019).
[15] Mutlak F.A.A., Baha T. Chiad, Naseer K. Kasim, Design and Fabrication of Parabolic Trough Solar Collector for Thermal Energy Applications, Republic of Iraq Ministry of Higher Education and Scientific Research University of Baghdad College of Science, vol. 2, iss. 1, pp. 165–175 (2011).
[16] https://www.nationsonline.org/oneworld/map/google_map_ethiopia.htm, accessed 20/11/2018.
[17] Michael Geyer, Eckhard Lüpfert et al., EUROTROUGH Parabolic Trough Collector Developed for Cost Efficient Solar Power Generation, https://www.researchgate.net/publication/282858870 (2015).
[18] Michael Geyer, Eckhard Lupfert et al., EUROTROUGH Parabolic Trough Collector Developed for Cost Efficient Solar Power Generation, 11th SolarPACES International Symposium on Concentrated Solar Power and Chemical Energy Technologies (2002).
[19] Lourdes A. Barcia, Rogelio Peon Menendez et al., Dynamic Modelling of the Solar Field in Parabolic Trough Solar Power Plants, Energies Published; eISSN 1996-1073, vol. 8, no. 12, pp. 13361–13377 (2015).
[20] Holman J.P., Heat Transfer Tenth Edition, Department of Mechanical Engineering Southern Methodist University (eBook) (2010).
[21] Christos Tzivanidis, Evangelos Bellos, The use of parabolic trough collectors for solar cooling – A case study for Athens climate, Case Studies in Thermal Engineering, vol. 8, pp. 403–413 (2016).
[22] Allouhi A., Benzakour Amine M., Kousksou T., Jamil A., Lahrech K., Yearly performance of lowenthalpy parabolic trough collectors in MENA region according to different sun-tracking strategies, Applied Thermal Engineering, vol. 128, pp. 1404–1419 (2018).
[23] Addisu Bekele, Large Scale Application of Solar Water Heating System in Ethiopia, Addis Ababa University (2007).
[24] Yidnekachew Messele, Thermal Analysis, Design and Experimental Investigation of Parabolic Trough Solar Collector, Addis Ababa University (2012).
[25] Duffie J.A., Beckman W.A., Solar Engineering of Thermal Processes, 4th Edition, ISBN: 978-0-470- 87366-3 (2013).
[26] Abhishek Saxena, Ghanshyam Srivastava, Potential and Economics of Solar Water Heating, MIT International Journal of Mechanical Engineering, vol. 2, no. 2, pp. 97–104 (2012).
[27] Dejen Assefa, Techno-Economic Assessment of Parabolic Trough Steam Generation for Hospital, Addis Ababa University, vol. 9, iss. 2, pp. 35–39 (2011).
Przejdź do artykułu

Autorzy i Afiliacje

Mustefa Jibril Taha
1
Fiseha Bogale Kibret
2
Venkata Ramayya
3
Balewgize Amare Zeru
4

  1. Control Engineering, Dire Dawa University, Ethiopia
  2. Sustainable Energy Engineering, Kombolcha Institue of Technology (KIoT), Wollo University, P.O.Box 208, Kombolcha, Ethiopia
  3. Sustainable Energy Engineering, Jimma Institue of Technology (JiT), Jimma University, Ethiopia
  4. Thermal Engineering, Jimma Institue of Technology (JiT), Jimma University, Ethiopia

Instrukcja dla autorów

ARCHIVES OF ELECTRICAL ENGINEERING (AEE) (previously Archiwum Elektrotechniki), quarterly journal of the Polish Academy of Sciences is OpenAccess, publishing original scientific articles and short communiques from all branches of Electrical Power Engineering exclusively in English. The main fields of interest are related to the theory & engineering of the components of an electrical power system: switching devices, arresters, reactors, conductors, etc. together with basic questions of their insulation, ampacity, switching capability etc.; electrical machines and transformers; modelling & calculation of circuits; electrical & magnetic fields problems; electromagnetic compatibility; control problems; power electronics; electrical power engineering; nondestructive testing & nondestructive evaluation.

Manuscript submission:

All manuscripts should be submitted electronically on Editorial System.

Submission of paper to the Archives of Electrical Engineering is understood to imply that the article is original, unpublished and is not being considered for publication elsewhere. All articles will be reviewed. Since 2013, Authors wishing to use the facility of colour printing should consult the editors.

Template:

Microsoft Word is recommended as a standard word processor to prepare the paper to the AEE journal. If you use the LaTex format, please transfer your document to Microsoft Word and then use Template AEE.

While editing your paper, make sure that all the mathematical characters (symbols, identifiers, variables, vectors, axis marks, etc.) have the required shape, thickness, and slant kept throughout the whole article. The same appearance of a given mathematic character must be retained regardless of its place (text, equations, tables or figures).

The articles that don’t conform to the above will not be processed and published.

The reviewing process:

Each paper submitted for publication in Archives of Electrical Engineering is subjected to the following review procedure:

a) the paper is reviewed by the editor in chief or guest editor for general suitability for publication in AEE

b) if it is judged suitable two reviewers are selected and a double blind peer review process takes place

c) based on the recommendations of the reviewers, the editor then decides whether the paper should be accepted in its present form, revised or rejected

d) the author(s) is(are) informed by e-mail on the results of the reviewing procedure.

The papers are published on average within 3 months after acceptance.

Requirements for preparation of manuscripts:

The manuscript submitted for publication should have no less than 12 pages and no more than 16 pages. In the case of the manuscript longer than 16 pages, please contact the AEE Editorial Board before submitting your paper. The manuscripts, written in UK English, should be typed using Template AEE according to the following instructions and should include: a title page with the title of a manuscript, a short title; abstract; key words, text; list of references. A DOI number as well as received and revised data will be completed by Editor. When you open Template.doc, select "Print Layout" from the "View" menu in the menu bar (View > Print Layout). Then type over sections of Template.doc or cut and paste from another document and then use markup styles (Home > Styles). For example, the style at this point in the document is "main text").

All papers submitted for publication are assessed on the basis of the mutual anonymity rule as to the names of reviewers and authors. Authors' names and affiliations should not appear in the attached text/tables/figures.

If English is not your first language, ask an English-speaking colleague to proofread your manuscript. The manuscripts that fail to meet basic standards of literacy are likely to be immediately declined or after the language assessment, sent to the authors for linguistic improvement.

The manuscripts are published on average within 3 months after their acceptance.

Do not change the font sizes or line spacing to squeeze more text into a limited number of pages. Leave some open space around your figures.

The AEE journal publishes an ORCID for all authors. You will need a registered ORCID in order to submit your paper for peer review. ORCID registration is free and only takes a minute. Please note that ORCIDs will be added in the course of the author's proofreads.

Text:

The pages must be numbered consecutively. Articles should be divided into numbered sections, and if necessary subsections, preferably: Introduction, Material, Methods, Results, Conclusion and References. Any special characters (e.g. Greek, script, etc.) should be named in the margin where the character first occurs in the text. Names of species are to be accentuated with wavy underlining (italics). Equations should be numbered serially (1), (2), ... on the right side of the page. Footnotes should be avoided, if required, they should be used only for brief notes which do not fit well into the text. Figures and tables have to be included into the text. If table is typed on a separate page its position in the text should be marked. Abbreviations should be explained when they first appear in the text.

Math:

Please use the MathML editor as well as MathType editor to build an equation in your manuscript.

Equations:

Equations should be typed within the text, centred, and should be numbered consecutively throughout the text. Their numbers should be typed in parentheses, flush right. Equations should be referred to in text, e.g. (1), except at the beginning of a sentence: "Equation (1) is ...". All symbols appearing in equations have to be defined in the text, before or just after the equation.

If the symbols are written in Times New Roman use italic fonts. Symbols of vectors and matrices should be written in bold fonts. Do not italicize Greek fonts and mathematical symbols like e.g.: the derivative symbol d, max, min, etc. The indices of symbols that are indices themselves should be written in a clear manner.

Note that the equation is centered using a center tab stop. Please keep the same font in the formulas and text.

Unit Symbols, Abbreviations:

Define abbreviations and acronyms the first time they are used in the text, even after they have been defined in the abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, and rms do not have to be defined. Do not use abbreviations in the title or heads unless they are unavoidable.

Si units are recommended for use in formulas, drawings and tables., for example the SI unit for magnetic field strength H is A/m. Apply the center dot to separate compound units.

Do not mix complete spellings and abbreviations of units: "Wb/m2" or "webers per square meter," not "webers/m2." Spell units when they appear in text: "...a few henries…", not "...a few H…".

Use a zero before decimal points: "0.25," not ".25." Use "cm3," not "cc."

Unit Symbols, SI Prefixes as well as Abbreviations should be writing in accordance with the IEEE standard

Tables, figures (illustrations) and captions:

The illustrations (line diagrams and photographs) should be suitable for direct reproduction. The lettering as well the details should have proportional dimensions to maintain their legibility after the usual reduction. All illustrations should be numbered consecutively (Fig. X). Tables are numbered with Arabic numerals.

All figures, figure captions, and tables in the text must be inserted into the correct places.

Figures, photos, tables or other parts of a manuscript that have previously appeared in another publication or are not the property of the authors must be properly acknowledged in the manuscript. Permission to republish these items must be obtained by the corresponding author from a person or institution holding the copyright, usually the publisher.

Authors are requested to send all drawings used in the article in additional files. Create a separate file for each image. Images should be submitted in a bitmap format (.jpeg) or/and in a vector format (.eps, .pdf or .cdr). Each file must be saved according to the number in the original article, e.g.: FIG1.JPG, FIG2.EPS, or FIG3.PDF. Bitmap illustrations must be “flattened”, which means no additional layers, for example, covering old descriptions.

Photographs, colour, and greyscale figures should be at least at a resolution of 400 dpi.

All colour figures should be generated in the RGB or CMYK colour space, while greyscale images in the greyscale colour space.

When preparing your figures/graphics etc., we suggest the use of the Arial 8 point font for axis numbers and Arial 9 point font for axis names. Figures/graphics etc. can be prepared in one of two proposed ways - see Template AEE.

Tables are numbered with Arabic numerals. Use 9 point Times New Roman for the title of the table and 9 point Times New Roman for the filling of the table (9 in the case of symbols with subscripts).

AEE journal allows an author to publish color figures in e-version at no charge, and automatically convert them to grayscale for print versions. Authors wishing to use the facility of color printing should consult the editors.

Conclusions:

A conclusion might elaborate on the importance of the work or suggest applications and extensions. Although a conclusion may review the main points of the manuscript, do not replicate the abstract as the conclusion.

References:

References in text must be numbered consecutively by Arabic numerals placed in square brackets. Please make sure that you use full names of journals i.e. Archives of Electrical Engineering. Please ensure that all references in the Reference list are cited in the text and vice versa.

Please provide name(s) and initials of author(s), the title of the manuscript, editors (if any), the title of the journal or book, a volume number, the page range, and finally the year of publication in brackets.

You can use the rules presented on the site: IEEE standard.

Examples of the ways in which references should be cited are given below:

Journal manuscript

[1] Author1 A., Author2 A., Title of paper, Title of periodical, vol. x, no. x, pp. xxx-xxx (YEAR).

example

[1] Steentjes S., von Pfingsten G., Hombitzer M., Hameyer K., Iron-loss model with consideration of minor loops applied to FE-simulations of electrical machines, IEEE Transactions on Magnetics. vol. 49, no. 7, pp. 3945-3948 (2013).

[2] Idziak P., Computer Investigation of Diagnostic Signals in Dynamic Torque of Damaged Induction Motor, Electrical Review (in Polish), to be published.

[3] Cardwell W., Finite element analysis of transient electromagnetic-thermal phenomena in a squirrel cage motor, submitted for publication in IEEE Transactions on Magnetics.

Conference manuscript

[4] Author A., Title of conference paper, Unabbreviated Name of Conf., City of Conf., Country of Conf., pp. xxx-xxx (YEAR).

example

[4] Popescu M., Staton D.A., Thermal aspects in power traction motors with permanent magnets, Proceedings of XXIII Symposium Electromagnetic Phenomena in Nonlinear Circuits, Pilsen, Czech Republic, pp. 35-36 (2016).

Book, book chapter and manual

[5] Author1 A., Author2 A.B., Title of book, Name of the publisher (YEAR).

example

[5] Zienkiewicz O., Taylor R.L., Finite Element method, McGraw-Hill Book Company (2000).

Patent

[6] Author1 A., Author2 A., Title of patent, European Patent, EP xxx xxx (YEAR).

example

[6] Piech Z., Szelag W., Elevator brake with magneto-rheological fluid, European Patent, EP 2 197 774 B1 (2011).

Thesis

[7] Author A., Title of thesis, PhD Thesis, Department, University, City of Univ. (YEAR).

example

[7] Driesen J., Coupled electromagnetic-thermal problems in electrical energy transducers, PhD Thesis, Faculty of Applied Science, K.U. Leuven, Leuven (2000).

For on electronic forms

[8] Author A., Title of article, in Title of Conference, record as it appears on the copyright page], © [applicable copyright holder of the Conference Record] (copyright year), doi: [DOI number].

example

[8] Kubo M., Yamamoto Y., Kondo T., Rajashekara K., Zhu B., Zero-sequence current suppression for open-end winding induction motor drive with resonant controller,in IEEE Applied Power Electronics Conference and Exposition (APEC), © APEC (2016), doi: 10.1109/APEC.2016.7468259

Website

[9] http://www.aee.put.poznan.pl, accessed April 2010.

Proofs:

Authors will receive proofs for correction, which should be returned promptly. All joint contributions must indicate the name and address of the authors to whom proofs should be sent.

Fees for printing the papers in Archives of Electrical Engineering:

AEE is published in Open Access, which means that all articles are available on the internet to all users immediately upon publication free of charge for the readers. Authors will be asked to a declaration that they are ready to cover the costs of printing their article.

The fee for the publication of an article in the AEE journal is 200 Euro.

Abstracting & Indexing:

Archives of Electrical Engineering is covered by the following services:

  • Arianta
  • Baidu Scholar
  • BazTech
  • Celdes
  • CNKI Scholar (China National Knowledge Infrastucture)
  • CNPIEC
  • DOAJ
  • EBSCO - TOC Premie
  • EBSCO (relevant databases)
  • EBSCO Discovery Service
  • Elsevier - Compendex
  • Elsevier - Engineering Village
  • Elsevier - SCOPUS
  • Genamics JournalSeek
  • Google Scholar
  • ICI Journals Master List
  • Inspec
  • J-Gate
  • Naviga (Softweco)
  • POL-Index
  • Primo Central (ExLibris)
  • ProQuest - Advanced Technologies Database with Aerospace
  • ProQuest - Electronics and Communications Abstracts
  • ProQuest - Engineering Journals
  • ProQuest - High Tech Research Database
  • ProQuest - Illustrata: Technology
  • ProQuest - SciTech Journals
  • ProQuest - Technology Journals
  • ProQuest - Technology Research Database
  • SCImago (SJR)
  • Summon (Serials Solutions/ProQuest)
  • TDOne (TDNet)
  • TEMA Technik und Management
  • Thomson Reuters - Emerging Sources Citation Index
  • Ulrich's Periodicals Directory/ulrichsweb
  • WorldCat (OCLC)

Preparation of manuscript for Archives of Electrical Engineering (AEE)

AEE License to publish

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji