Domengès, B., Celis, M.M., Moisy, F., Lacaze, J. & Tonn, B. (2021). On the role of impurities on spheroidal graphite degeneracy in cast irons. Carbon. 172, 529-541 https://doi.org/10.1016/J.CARBON.2020.10.030.
Valle, N., Theuwissen, K., Sertucha, J. & Lacaze, J. (2012). Effect of various dopant elements on primary graphite growth. IOP Conference Series: Materials Science and Engineering. 27(1), 012026, 1-6. https://doi.org/10.1088/1757-899X/27/1/012026.
Mrvar, P., Petrič, M. & Terčelj, M. (2023). Thermal fatigue of spheroidal graphite cast iron. TMS Annual Meeting & Exhibition. 406-415. https://doi.org/10.1007/978-3-031-22524-6_37.
Fourlakidis, V., Hernando, J.C., Holmgren, D. & Diószegi, A. (2023). Relationship between thermal conductivity and tensile strength in cast irons. International Journal of Metalcasting. 17, 2862-2867. https://doi.org/10.1007/s40962-023-00970-6.
Wang, L., Liu, H., Huang, C., Yuan, Y., Yao, P., Huang, J. & Han, Q. (2023). A methodology to predict thermal crack initiation region of tool for high-speed milling compacted graphite iron based on three-dimensional transient thermal stress field model. The International Journal of Advanced Manufacturing Technology. 125, 2065-2075. https://doi.org/10.1007/s00170-023-10832-4.
Coffin, L.F. & Wesley, R.P. (1954). Apparatus for study of effects of cyclic thermal stresses on ductile metals. Journal of Fluids Engineering. 76, 923-930. https://doi.org/10.1115/1.4015019.
Seifert, T. & Riedel, H. (2010). Mechanism-based thermomechanical fatigue life prediction of cast iron. Part I: Models. International Journal of Fatigue. 32, 1358-1367. https://doi.org/10.1016/J.IJFATIGUE.2010.02.004.
Amaro, R.L., Antolovich, S.D., Neu, R.W., Fernandez-Zelaia, P. & Hardin, W. (2012). Thermomechanical fatigue and bithermal–thermomechanical fatigue of a nickel-base single crystal superalloy. International Journal of Fatigue. 42, 165-171. https://doi.org/10.1016/J.IJFATIGUE.2011.08.017.
Boto, F., Murua, M., Gutierrez, T., Casado, S., Carrillo, A., & Arteaga, A. (2022). Data driven performance prediction in steel making. Metals. 12(2), 172, 1-19. https://doi.org/10.3390/met12020172.
Li, W., Chen, H., Guo, J., Zhang, Z., Wang, Y. (2022). Brain-inspired multilayer perceptron with spiking neurons. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 18-24 June 2022 (pp. 773-783). https://doi.org/10.1109/CVPR52688.2022.00086. New Orleans, LA, USA: IEEE.
Shu, X., Zhang, S., Li, Y. & Chen, M. (2022). An anomaly detection method based on random convolutional kernel and isolation forest for equipment state monitoring. Eksploatacja i Niezawodność – Maintenance and Reliability. 24(4), 758-770. https://doi.org/10.17531/EIN.2022.4.16.
Wu, X., Kang, H., Yuan, S., Jiang, W., Gao, Q. & Mi, J. (2023). Anomaly detection of liquid level in mold during continuous casting by using forecasting and error generation. Applied Sciences. 13(13), 7457, 1-16. https://doi.org/10.3390/app13137457.
Liu, F.T., Ting, K.M., Zhou, Z.H. (2008). Isolation forest. In Proceedings - IEEE International Conference on Data Mining, ICDM, 15-19 December 2008 (pp. 413-422). https://doi.org/10.1109/ICDM.2008.17.
Seliya, N., Abdollah Zadeh, A., Khoshgoftaar, T.M. (2021). A literature review on one-class classification and its potential applications in big data. Journal of Big Data. 8, 1-31 https://doi.org/10.1186/s40537-021-00514-x.
Abhik, R. & Xaviora, M. (2014). Evaluation of properties for Al.-SiC reinforced metal matrix composite for brake pads. Procedia Engineering. 97, 941-950. DOI: 10.1016/j.proeng.2014.12.370.
Zakaria, H.M. (2014). Microstructural and corrosion behavior of Al/SiC metal matrix composites. Ain Shams Engineering Journal. 5(3), 831-838. https://doi.org/10.1016/j.asej.2014.03.003.
Singla, M., Dwivedi, D., Singh, L. & Chavla, V. (2009). Development of aluminum based silicon carbide particulate metal matrix composite. Journal of Minerals and Materials Characterization and Engineering. 8(6), 455-467. DOI: 10.4236/jmmce.2009.86040.
Nuruzzaman, D., Praveen, R. & Raghuraman, S. (2016). Processing and mechanical properties of aluminum- silicon carbide metal matrix composites. IOP Conference Series: Materials Science and Engineering. 114(1), 012123, 11-17. DOI: 10.1088/1757-899X/114/1/012123.
Baisane, V. P., Sable, Y. S., Dhobe, M. M. & Sonawane, P. M. (2015). Recent development and challenges in processing of ceramics reinforced Al matrix composite through stir casting process: A Review. International Journal of Engineering and Applied Sciences. 2(10), 257814.
Taha, M.A. & Zawrah M.F. (2017). Effect of nano ZrO2 on strengthening and electrical properties of Cu- matrix nanocomposites prepared by mechanical alloying, Ceramics International. 43(15), 12698-12704. DOI: 10.1016/j.ceramint.2017.06.153.
Samal, C.P., Parihar, J.S. & Chaira, D, (2013). The effect of milling and sintering techniques on mechanical properties of Cu-graphite metal matrix composite prepared by powder metallurgy route. Journal of Alloys and Compounds. 569, 95-101, DOI: doi.org/10.1016/j.jallcom.2013.03.122.
Wang, C., Lin, H., Zhang, Z. & Li W. (2018). Fabrication, interfacial characteristics and strengthening mechanism of ZrB2 microparticles reinforced Cu composites prepared by hot pressing sintering. Journal of Alloys and Compounds. 748, 546-552. https://doi.org/10.1016/j.jallcom.2018.03.169.
Kumar, G., Rao, C. & Selvaraj, N. (2011). Mechanical and tribological behavior of particulate reinforced aluminum metal matrix composites- a review. Journal of Minerals and Materials Characterization and Engineering. 10(1), 59-91. DOI: 10.4236/jmmce.2011.101005.
Leszczyńska-Madej, B. (2013). The effect of sintering temperature on microstructure and properties of Al-SiC composites. Archives of Metallurgy and Materials. 58(1), 43-48. DOI: 10.2478/v10172-012-0148-7.
Kargul, M. & Konieczny, M. (2020). Fabrication and characteristics of copper-intermetallics composites. Archives of Foundry Engineering. 20(3), 25-30. 10.24425/afe.2020.133325.
Krüger, C. & Mortensen, A. (2013). In situ copper- alumina composites. Materials Science and Engineering: A. 585, 396-407. https://doi.org/10.1016/j.msea.2013.07.074.
Sulima, I., Kowalik, R., Stępień, M. & Hyjek, P. (2024). Effect of ZrB2 content on properties of copper matrix composite. Materials. 17(24), 6105. https://doi.org/10.3390/ma17246105.
Chakthin, S., Morakotjinda, M., Yodkaew, T., Torsangtum, N., Krataithong, R., Siriphol, P., Coovattanachai, O., Vetayanugul, B., Thavarungkul, N., Poolthong, N. & Tongsri, R. (2008). Influence of carbides on properties of sintered Fe-base composites. Journal of Metals, Materials and Minerals. 18(2), 67-70.
Bandura, L., Franus, M., Panek, R., Woszuk, A. & Franus W. (2015). Characterization of zeolites and their use as adsorbents of petroleum substances. Przemysł Chemiczny. 94(3). DOI: 10.15199/62.2015.3.11. (in Polish).
Król, M., Mozgawa, W. & Pichór W. (2008). Application of clinoptilolite to heavy metal cations immobilization and to obtaining autoclaved building materials. Materiały Ceramiczne. 60(2), 71-80. (in Polish).
Łach, M. (2010). Structure of metal matrix composites with an addition of tuff. Archives of Foundry Engineering. 10(3), 135-140.
Łach, M., Mikuła, J. & Hebda M. (2016). Thermal analysis of the by-products of waste combustion. Journal of Thermal Analysis and Calorimetry. 125(3), 1035-1045. DOI: 10.1007/s10973-016-5512-9.
Mikuła, J., Łach, M. & Kowalski J.S. (2015). Copper matrix composites reinforced with volcanic tuff. Metalurgija. 54(1), 143-146.
Ciciszwili, G.W., Andronikaszwili, G.N., Kirow Ł.D. (1990). Zeolity naturalne. Warszawa: WNT.
Gottardi, G., & Galli, E. (1985). Zeolites of the heulandite group. In Natural zeolites (pp. 256-305). Berlin, Heidelberg: Springer Berlin Heidelberg.
Nanbin, H., Dianyue, G., Bekkum, H., Flanigen, E., Jacobs, P. & Jansen J. (2001). Introduction to Zeolite Science and Practice. New York: Elsevier.
Kocich, R., Opela, P. & Marek, M. (2023). Influence of structure development on performance of copper composites processed via intensive plastic deformation. Materials. 16(13), 4780. https://doi.org/10.3390/ma16134780.
Kargul, C., Konieczny, M. & Borowiecka-Jamrozek J. (2018). The effect of the addition of zeolite particles on the performance characteristics of sintered copper matrix composites. Tribologia. 282(6), 51-62. DOI: 10.5604/01.3001.0012.8421.
Borowiecka-Jamrozek, J. & Depczyński W. (2017). The effect of the addition of zeolite on the properties of a sintered copper-matrix composite. In 26th International Conference on Metallurgy and Materials, 24th - 26th May 2017. Brno, Czech Republic.
Kumar, K., Kumar, L. & Gill, H. (2024). Role of carbide-based thermal-sprayed coatings to prevent failure for boiler steels: a review. Journal of Failure Analysis and Prevention. 24(4), 1628-1663. DOI:10.1007/s11668-024-01974-y.
Rodolpho, V., Silveira, L., Cruz, J. & Pukasiewicz, A. (2023). Cavitation resistance of FeMnCrSi coatings processed by different thermal spray processes. Hybrid Advances. 5, 100125, 1-18. DOI: 10.1016/j.hybadv.2023.100125.
Cheng, F.T., Shi, P. & Man, H.C. (2001). Correlation of cavitation erosion resistance with indentation-derived properties for a NiTi alloy. Scripta Materialia. 45(9), 1083-1089. https://doi.org/10.1016/S1359-6462(01)01143-5.
Stachowiak, G.B. & Stachowiak, G.W. (2010). Tribological characteristics of WC-based claddings using a ball-cratering method. International Journal of Refractory Metals and Hard Materials. 28(1), 95-105. https://doi.org/10.1016/j.ijrmhm.2009.07.015.
Murthy, J.K.N. & Venkataraman, B. (2006). Abrasive wear behaviour of WC–CoCr and Cr3C2–20(NiCr) deposited by HVOF and detonation spray processes. Surface and Coatings Technology. 200(8), 2642-2652, https://doi.org/10.1016/j.surfcoat.2004.10.136.
Yang, X., Zhang, J. & Li, G. (2016). Cavitation erosion behaviour and mechanism of HVOF-sprayed NiCrBSi–(Cr3C2–NiCr) composite coatings. Surface Engineering. 34(3), 211-219. https://doi.org/10.1080/02670844.2016.1258770.
Matikainen, V., Koivuluoto, H. & Vuoristo, P. (2020). A study of Cr3C2-based HVOF-and HVAF-sprayed coatings: Abrasion, dry particle erosion and cavitation erosion resistance. Wear. 446-447, 203188, 1-11. https://doi.org/10.1016/j.wear.2020.203188.
Silveira, L.L., Pukasiewicz, A.G.M., de Aguiar, D.J.M., Zara, A.J. & Björklund, S. (2019). Study of the corrosion and cavitation resistance of HVOF and HVAF FeCrMnSiNi and FeCrMnSiB coatings. Surface and Coatings Technology. 374, 910-922. https://doi.org/10.1016/j.surfcoat.2019.06.076.
Nowakowska, M., Łatka, L., Sokołowski, P., Szala, M., Toma, F. & Walczak, M. (2022). Investigation into microstructure and mechanical properties effects on sliding wear and cavitation erosion of Al2O3–TiO2 coatings sprayed by APS, SPS and S-HVOF. Wear. 508-509, 204462, 1-15. https://doi.org/10.1016/j.wear.2022.204462.
Odhiambo, J.G., Li, W., Zhao, Y. & Li, C. (2019). Porosity and its significance in plasma-sprayed coatings. Coatings. 9(7), 460, 1-19. https://doi.org/10.3390/coatings9070460.
Sun, P., Fang, Z.Z., Zhang, Y. & Xia Y. (2017). Review of the methods for production of spherical Ti and Ti alloy powder. JOM: the journal of the Minerals, Metals & Materials Society. 69, 1853-1860. DOI: https://doi.org/10.1007/s11837-017-2513-5.
Matikainen, V., Koivuluoto, H., Vuoristo, P., Schubert, J. & Houdková, Š. (2018). Effect of nozzle geometry on the microstructure and properties of HVAF-sprayed WC-10Co4Cr and Cr3C2-25NiCr coating. Journal od Thermal Spray Technology. 27(4), 680-694. DOI: 10.1007/s11666-018-0717-z.
Houdková, Š., Zahálka, F., Kašparová, M. & Berger, L.M. (2011). Comparative study of thermally sprayed coatings under different types of wear conditions for hard chromium replacement. Tribology Letters. 43(2), 139-154. DOI: 10.1007/s11249-011-9791-9.
Lugscheider, E., Barimani, C., Eckert, P. & Eritt, U. (1996). Modeling of the APS plasma spray process. Computational Materials Science. 7(1-2), 109-114. https://doi.org/10.1016/S0927-0256(96)00068-7.
Wang, J., Wang, L., Lu, H., Du, J., Qi, X., Lu, L., Zhao, Y., Liu, Z. & Meng, W. (2025). Enhanced erosion resistance of Cr3C2-TiC-NiCrCoMo coatings: experimental and numerical investigation of erosion mechanisms. Coatings. 15(3), 294, 1-25. DOI: 10.3390/coatings15030294.
Houdková, Š., Česánek, Z., Smazalová, E. & Lukáč, F. (2018). The high-temperature wear and oxidation behavior of CrC-based HVOF coatings. Journal of Thermal Spray Technology. 27(1), 179-195. DOI: 10.1007/s11666-017-0637-3.
Padture, N.P., Gell, M., Jordan, E.H. (2002). Thermal barrier coatings for gas-turbine engine applications. Science. 296(5566), 280-284. DOI: 10.1126/science.1068609.
Weeks, M.D., Subramanian, R., Vaidya, A. & Mumm, D.R. (2015). Defining optimal morphology of the bond coat–thermal barrier coating interface of air-plasma sprayed thermal barrier coating systems. Surface and coating technology. 273, 50-59. DOI: 10.1016/j.surfcoat.2015.02.012.
Sampath, S., Schulz, U., Jarligo, M.O. & Kuroda, S. (2012). Processing science of advanced thermal-barrier systems. MRS Bulletin. 37(10), 903-910. DOI: 10.1557/mrs.2012.233.
Mutter, M., Mauer, G., Mücke, R., Guillon, O. & Vaßen, R. (2017). Correlation of splat morphologies with porosity and residual stress in plasma-sprayed YSZ coating. Surface and coating technology. 318, 157-169. https://doi.org/10.1016/j.surfcoat.2016.12.061.
McPherson, R. (1989). A review of microstructure and properties of plasma sprayed ceramic coatings. Surface and coating technology. 39-40(1), 173-181. https://doi.org/10.1016/0257-8972(89)90052-2.
Metzger, D., Jarrett New, K. & Dantzig, J. (2001). A sand surface element for efficient modeling of residual stress in casting. Applied Mathematical Modelling. 25(10), 825-842. https://doi.org/10.1016/S0307-904X(01)00017-8.
James, M.N., Hughes, D.J., Chen, Z., Lombard, H., Hattingh, D.G., Asquith, D., Yates, J.R. & Webster, P.J. (2007). Residual stresses and fatigue performance. Engineering Failure Analysis. 14(2), 384-395. https://doi.org/10.1016/j.engfailanal.2006.02.011.
Rossini, N.S., Dassisti, M., Benyounis, K.Y. & Olabi, A.G. (2012). Methods of measuring residual stresses in components. Materials & Design. 35, 572-588. https://doi.org/10.1016/j.matdes.2011.08.022.
Shet, C. & Deng, X. (2003). Residual stresses and strains in orthogonal metal cutting. International Journal of Machine Tools and Manufacture. 43(6), 573-587. https://doi.org/10.1016/S0890-6955(03)00018-X.
Tabatabaeian, A., Ghasemi, A.R., Shokrieh, M.M., Marzbanrad, B., Baraheni M. & Fotouhi M. (2022). Residual stress in engineering materials: a review. Advanced engineering materials. 24(3), 2100786, 1-28. https://doi.org/10.1002/adem.202100786.
Jun, T.-S. & Korsunsky, A.M. (2010). Evaluation of residual stresses and strains using the eigenstrain reconstruction method. International Journal of Solids and Structures. 47(13), 1678-1686. https://doi.org/10.1016/j.ijsolstr.2010.03.002.
Wyatt, J.E., Berry, J.T. & Williams, A.R. (2007). Residual stresses in aluminum castings. Journal of materials processing technology. 191(1-3), 170-173. https://doi.org/10.1016/j.jmatprotec.2007.03.018.
Carrera, E., Rodríguez, A., Talamantes, J., Valtierra, S. & Colás, R. (2007). Measurement of residual stresses in cast aluminium engine blocks. Journal of materials processing technology. 189(1-3), 206-210. https://doi.org/10.1016/j.jmatprotec.2007.01.023.
Guan, J., Dieckhues, G.W. & Sahm, P.R. (1994) Analysis of residual stresses and cracking of γ-TiAl castings. Intermetallics. 2(2), 89-94. https://doi.org/10.1016/0966-9795(94)90002-7.
Skarbiński, M. (1957). Construction of Castings. Warszawa: PWT.
Training materials from Vishay.
Maj, M. (2024). The formation of the strength of castings including stress and strain analysis. Materials. 17(11), 2484, 1-19. https://doi.org/10.3390/ma17112484.
Maj, M. (2012). Fatigue endurance of selected casting alloys. Katowice-Gliwice: Archives of Foundry Engineering.
Wolna, M. (1993). Elastooptic Materials. Warsaw: Wydawnictwo Naukowe PWN.
Jakubowicz, A., Orłoś, Z. (1972), Strength of Materials. Warszawa: Wydawnictwa Naukowo-Techniczne.
Orłoś, Z. (1977). Experimental Analysis of Deformations and Stresses [Doświadczalna analiza odkształceń i naprężeń.]; Warszawa: PWN. (in Polish)
Stachurski, W., Siemieniec, A. (2005). Structural Studies of Castings Using Elastooptics Methods. Kraków: WN AKAPIT.
Siemieniec, A. (1977). Elastooptics. Kraków: Wydawnictwo AGH. (in Polish).
Zandman, F., Redner, S., & Dally, J. W. (1977). Photoelastic coatings (SESA Monograph No. 3). Iowa State University Press.
Ulutan, D., Ulutan, B., Erdem, A. & Lazoglu, I. (2007). Analytical modelling of residual stresses in machining. Journal of Materials Processing Technology. 183(1), 77-87. https://doi.org/10.1016/j.jmatprotec.2006.09.032.
Raptis, K.G., Costopoulos, Th.Ν., Papadopoulos, G.,Α. & Tsolakis, Α.D. (2010). Rating of spur gear strength using photoelasticity and the finite element method. American Journal of Engineering and Applied Sciences. 3(1), 222-231. ISSN 1941-7020.
Umezaki, E. & Terauchi, Sh. (2002). Extraction of isotropic points using simulated isoclinics obtained by photoelasticity-assisted finite element analysis. Optics and lasers in engineering. 38(1-2), 71-85. https://doi.org/10.1016/S0143-8166(01)00158-0.
Marle Ramachandra, P., Sungar, S., Mohan Kumara, G.C. (2022). Stress analysis of a gear using photoelastic method and Finite element method. Materials Today: Proceedings. 65(8), 3820-3828. https://doi.org/10.1016/j.matpr.2022.06.579.
Corby Jr, T.W., Nickola Wayne, E. (1997). Residual strain measurement using photoelastic coatings. Optics and Lasers in Engineering. 27(1), 111-123. https://doi.org/10.1016/S0143-8166(95)00012-7.
Submission
To submit the article, please use the Editorial System provided here:
https://www.editorialsystem.com/afe
Papers submitted in any other way will not be accepted.
The Journal does not have submission charges.
The APC Article Processing Charge is 110 euros (500zł for Polish authors). In some cases, the APC is paid as a part of the scientific conference fee, for which the AFE journal is a supportive one. If not, it is payable after the acceptance of the final article by direct money transfer.
Bank account details:
Account holder: Stowarzyszenie Wychowankow Politechniki Slaskiej Kolo Odlewnikow
Account holder address: ul. Towarowa 7, 44-100 Gliwice, Poland
Account numbers: BIC BPKOPLPW IBAN PL17 1020 2401 0000 0202 0183 3748
Instructions for the preparation of an Archives of Foundry Engineering Paper