Nauki Techniczne

Archives of Thermodynamics

Zawartość

Archives of Thermodynamics | 2022 | vol. 43 | No 2

Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Problems related to power control of low power-output steam turbines are analyzed. These turbines are designed to operate in distributed power generation systems. Principles of automatic control involving a single control valve are presented on the basis of experience gathered with high power-output turbines. Results of simulations of power control for a low power-output turbine are discussed. It has been proven that closing of the control system and an application of a power controller (of optimally selected parameters) improves the object dynamics (shortening of the transition period). At the same time, a lack of such optimization can results in occurrence of undesirable phenomena such as: overshoot in the generator power characteristics, elongation of the response time to disturbance or overshoot of turbine control valves.
Przejdź do artykułu

Bibliografia

[1] Karczewski J., Szuman P.: Electrohydraulic Ccontrol of Real Power of Turbosets in the Power and Electricity Generation System Control. Monografie 6. Wydawn. Inst. Energ., Warszawa 2020 (in Polish).
[2] Domachowski Z.: Automatic Control of Thermal Turbosets. Wydawn. PG, Gdansk 2014 (in Polish).
[3] Janiczek R.: Operation of Steam Powerplants. WNT, Warszawa 1992 (in Polish).
[4] Pawlik M., Strzelczyk F.: Power Plants. WNT, Warszawa 2009 (in Polish).
[5] Chmielniak T.: Power Generation Technologies. PWN, Warszawa 2021 (in Polish).
[6] Kryłłowicz W., Szwaja S.: A lowpower-output steam turbine in a system with a heat recovery boiler. Project rep. POIG 01.03.01-26-021/12, Czestochowa 2015 (in Polish).
[7] Gundlach W.: Turbomachinery. PWN, Warszawa 1970 (in Polish). [8] Karczewski J., Szuman P.: Scilab. Modelling and Simulation of Control System Operation. Nakom, Poznan 2019 (in Polish).
[9] Karczewski J.: Coordination of loading of boiler and turbine systems in an electricpower unit. IEEE Catalog Number CFP19H21-ART.: ISBN: 978-1-7281-2053-9.
[10] Karczewski J., Pawlak M.: Power control problems of units co-burning biomass. Arch. Energ. XLI(2011), 3–4, 29–39.
[11] Karczewski J., Pawlak M., Szuman P., Wasik P.: Assessment of availability of the power unit participating in the regulation of the electrical power system. Arch. Energ. XL(2010), 1–2, 89–102.
[12] Karczewski J., Szuman P.: Testing of the power unit control systems using power unit and its parts simulation model. Elektronika (2018), 11 (in Polish).
[13] Karczewski J., Szuman P.: Testing of the power unit control systems using power unit simulator. Elektronika (2017), 11 (in Polish).
[14] Karczewski J., Szuman P.: Power unit work optimization based on simulation of various control system configurations. Prace Inst. Elektrotechn. 270(2015) (in Polish).
[15] Karczewski J., Szuman P.: Simulation of various control system configuration of power units. Elektronika (2015), 12 (in Polish).
Przejdź do artykułu

Autorzy i Afiliacje

Władysław Kryłłowicz
1
Jacek Karczewski
2
Paweł Szuman
2

  1. Lodz University of Technology, Institute of Turbomachinery, Wolczanska 217/221, 93-003 Lodz, Poland
  2. Institute of Power Engineering, Mory 8, 01-330 Warsaw, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Energy management plays a crucial role in cabin comfort as well as enormously affects the driving range. In this paper energy balances contemplating the implementation of a heat pump and an expansion device in battery electric vehicles are elaborated, by comparing the performances of refrigerants R1234yf and R744, from –20°C to 20°C. This work calculates the coefficient of performance, energy requirements for ventilation (from 1 to 5 people in the cabin) and energy required with the implementation of a heat pump, with the employment of a code in Python with the aid of Cool- Prop library. The work ratio is also estimated if the work recovery device recuperates the work during the expansion. Comments on the feasibility of the implementation are as well explicated. The results of the analysis show that the implementation of an expansion device in an heat pump may cover the energy requirement of the compressor from 27% to more than 35% at 20°C in cycles operating with R744, and from 15% to more than 20% with refrigerant R1234yf, considering different compressor efficiencies. At –20°C, it would be possible to recuperate between around 30 and 24%. However, the risk of suction when operating with R1234yf at ambient temperatures below –10°C shows that the heat pump can only operate with R744. Thus, it is the only refrigerant that achieves the reduction of energy consumption at these temperatures.
Przejdź do artykułu

Bibliografia

  1. Global electric car sales by key markets, 2010-2020 – Charts – Data & Statistics IEA, https://www.iea.org/data-and-statistics/charts/global-electric-car-sales-by-key- markets-2015-2020 (accessed 17 March 2021).
  2. Rietmann N., Hügler B., Lieven T.: Forecasting the trajectory  of  electric  vehicle sales and the consequences for worldwide CO2 emissions. J. Clean. Prod. 261(2020), 121038. https://doi.org/10.1016/j.jclepro.2020.121038.
  3. Greaves , Backman H., Ellison A.B.: An empirical assessment of the feasibility of battery electric vehicles for day-to-day driving. Transport. Res. A-Pol. 66(2014), 226–237. https://doi.org/10.1016/j.tra.2014.05.011.
  4. Kempton W.: Electric vehicles: Driving range. Energ. 1 (2016), 1–2. https:// doi.org/ 10.1038/nenergy.2016.131.
  5. Klamut : Attitude towards electric vehicles. Research  on the students of a tech- nical university. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi PAN 107(2018), 105–118 (in Polish). https://doi.org/10.24425/123719.
  6. Varga O., Sagoian A., Mariasiu F.: Prediction of electric vehicle range: A comprehensive review of current issues and challenges. Energies 12(2019), 946. https://doi.org/10.3390/en12050946.
  7. Lajunen , Suomela   J.:   Evaluation   of   energy   storage   system   requirements for hybrid mining loaders. IEEE T. Veh. Technol. 61(2012), 3387–3393. https:// doi.org/10.1109/TVT.2012.2208485.
  8. Garg ,  Chen  F.,  Zhang  J.: State-of-the-art of designs studies for batteries packs  of electric vehicles. In: Proc. IET Int. Conf. on Intelligent and Connected Vehicles (ICV 2016). https://doi.org/10.1049/cp.2016.1181.
  9. Hannan M.A., Hoque M.M., Hussain A., Yusof Y., Ker P.J.: State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applica- tions: Issues and recommendations. IEEE Access 6(2018), 19362–19378. https://org/10.1109/ACCESS.2018.2817655.
  10. Petitjean C., Guyonvarch G., Benyahia M., Beauvis R.: TEWI analysis for different automotive air conditioning systems. In: Proc. The Future Car Congress 2000, 2000-01–1561. https://doi.org/10.4271/2000-01-1561.
  11. Guyonvarch G., Aloup C., Petitjean C., De  Monts  De  Savasse :  42  V  electric air conditioning systems (E-A/CS) for  low  emissions,  architecture,  comfort and safety of next generation vehicles. In: Proc. The Future Transportation Tech- nology Conf. & Expo. 2001, 2001-01–2500. https://doi.org/10.4271/2001-01-2500.
  12. Bashirpour-Bonab H.: Thermal behavior of lithium batteries used in electric  ve- hicles using phase change materials. Int. J. Energ. Res. 44(2020), 12583–12591. https://doi.org/10.1002/er.5425.
  13. Karimi G., Li X.: Thermal management of lithium-ion batteries for electric vehicles. Int. J. Energ. Res. 37(2013), 13–24. https://doi.org/10.1002/er.1956.
  14. Kizilel R., Lateef A., Sabbah R., Farid M., Selman J.R., Al-Hallaj S.:  Passive control of temperature excursion and uniformity in high-energy Li-ion bat- tery packs at high current and ambient temperature. J. Power Sources 183(2008), 1, 370–375. https://doi.org/10.1016/j.jpowsour.2008.04.050.
  15. Agarwal ,  Sarviya  R.M.:  Characterization  of  Commercial  Grade  Paraffin  wax as Latent Heat Storage material for Solar dryers. Materials Today 4(2017), 779–789, Proc. 5th Int. Conf. on Materials Processing and Characterization (ICMPC 2016). https://doi.org/10.1016/j.matpr.2017.01.086.
  16. Ettouney H., Alatiqi , Al-Sahali M., Al-Hajirie K.: Heat transfer enhance- ment in energy storage in spherical capsules filled with paraffin wax and metal beads. Energ. Convers. Manage. 47(2006), 211–228. https://doi.org/10.1016/j.enconman. 2005.04.003.
  17. Heath A.: Amendment to the Montreal protocol on substances that  deplete  the ozone layer (Kigali amendment). Int. Legal Mater. 56(2017), 193–205. https:// doi.org/10.1017/ilm.2016.2.
  18. Lee Y., Jung D.: A brief performance comparison  of  R1234yf  and  R134a  in  a bench tester for automobile applications. Appl. Therm. Eng. 35(2012), 240–242. https://doi.org/10.1016/j.applthermaleng.2011.09.004.
  19. Ozgur A.E., Kabul A., Kizilkan : Exergy  analysis  of  refrigeration  systems using an alternative refrigerant (hfo-1234yf) to R-134a. Int. J. Low-Carb. Technol. 9(2014), 56–62. https://doi.org/10.1093/ijlct/cts054.
  20. Vaghela K.: Comparative evaluation of an automobile air – conditioning  system using R134a and its alternative refrigerants. Energy Proced. 109(2017), 153–160, Int. Conf. on Recent Advancement in Air Conditioning and Refrigeration, RAAR 2016, 10-12 November 2016, Bhubaneswar. https://doi.org/ 10.1016/j.egypro. 2017. 03.083.
  21. Reasor P., Aute V., Radermacher R.: Refrigerant R1234yf performance com- parison investigation. Refrigeration and Air Conditioning Conference 8, 2010.
  22. Cho H., Lee H., Park : Performance characteristics of an automobile air condi- tioning system with internal heat exchanger using refrigerant R1234yf. Appl. Therm. Eng. 61(2013), 563–569. https://doi.org/10.1016/j.applthermaleng.2013.08.030.
  23. Direk M., Kelesoglu A., Akin A.: Drop-in  performance  analysis  and  effect  of IHX for an automotive air conditioning system with R1234yf as a replacement of R134a. SV-JME 63(2017), 314–319. https://doi.org/10.5545/sv-jme.2016.4247.
  24. Feng L., Hrnjak P.: Experimental Study of an Air Conditioning-Heat Pump Sys- tem for Electric Vehicles. In: Proc: SAE 2016 World Exhibit., 2016-01–0257. https://doi.org/10.4271/2016-01-0257.
  25. Wu , Zhou G., Wang M.: A comprehensive assessment of refrigerants for cabin heating and cooling on electric vehicles. Appl. Therm. Eng. 174(2020), 115258. https://doi.org/10.1016/j.applthermaleng.2020.115258.
  26. Maina P., Huan Z.: A review of carbon dioxide as a refrigerant in refrigeration technology. Afr. J. Sci. 111(2015). https://doi.org/10.17159/sajs.2015/20140258.
  27. Song X., Lu D., Lei Q., Cai Y., Wang , Shi J., Chen J.: Experimental study   on heating performance of a CO2 heat pump system for an electric bus. Appl. Therm. Eng. 190(2021), 116789. https://doi.org/10.1016/j.applthermaleng.2021.116789.
  28. Wu D., Hu B., Wang Z.: Vapor compression heat pumps with pure low-GWP refrigerants. Renew. Sust. Energ. Rev. 138(2021), 110571. https://doi.org/10.1016/ j.rser.2020.110571.
  29. Lorentzen G.: Revival of carbon dioxide as a refrigerant. International Journal of Refrigeration 17(1994), 292–301. https://doi.org/10.1016/0140-7007(94)90059-0.
  30. Großmann H.: Comparing the refrigerant R1234yf and CO2. ATZ Worldw 118(2016), 70. https://doi.org/10.1007/s38311-016-0119-0.
  31. Ma Y., Liu Z., Tian H.: A review of transcritical carbon dioxide heat pump and refrigeration cycles. Energy 55(2013), 156–172. https://doi.org/10.1016/j.energy. 03.030.
  32. Li W., Liu Y., Liu R., Wang , Shi J., Yu Z., Cheng L., Chen J.L.: Perfor- mance evaluation of secondary loop low-temperature heat pump system for frost pre- vention in electric vehicles. Appl. Therm. Eng. 182(2021), 115615. https://doi.org/ 10.1016/j.applthermaleng.2020.115615.
  33. Menken J.C., Ricke M., Weustenfeld  A.,  Koehler  J.:  Simulative  analysis of secondary loop automotive refrigeration systems operated with an HFC and carbon dioxide. SAE Int. J. Passeng. Cars-Mech. Syst. 9(2016), 434–440. https://doi.org/ 10.4271/2016-01-9107.
  34. Wang , Yu B., Hu J., Chen L., Shi J., Chen J.: Heating performance char- acteristics of CO2 heat pump system for electrical vehicle in a cold climate. Int. J.Refrig. 85(2018), 27–41. https://doi.org/10.1016/j.ijrefrig.2017.09.009.
  35. Wang , Wang D., Yu,B., Shi J., Chen J.: Experimental and numerical in- vestigation of a CO2 heat pump system for electrical vehicle with series gas coolerconfiguration. Int. J. Refrig. 100(2019), 156–166. https://doi.org/10.1016/j.ijrefrig. 2018.11.001.
  36. Bruno F., Belusko M., Halawa : CO2 refrigeration and heat pump systems – A comprehensive review. Energies 12(2019), 15, 2959. https://doi.org/10.3390/ en12152959.
  37. Baek J.S., Groll E.A., Lawless B.: Piston-cylinder work producing expansion device in a transcritical carbon dioxide cycle. Part I: experimental investigation. Int. J. Refrig. 28(2005), 141–151. https://doi.org/10.1016/j.ijrefrig.2004.08.006.
  38. Ferrara G., Ferrari L., Fiaschi , Galoppi  G.,  Karellas  S.,  Secchi  R.,  Tempesti D.: A small power recovery expander for heat pump COP improvement. Energ. Proced. 81(2015), 1151–1159, 69th Conf. Ital. Therm. Eng. Assoc., ATI 2014. https://doi.org/10.1016/j.egypro.2015.12.140.
  39. Kohsokabe H., Funakoshi S., Tojo K., Nakayama , Kohno K., Kurashige  K.: Basic operating characteristics of CO2 refrigeration cycles with expander- compressor unit 10 (2006). 
  40. Specific Heat Capacities of Air – (Updated 7/26/08). https://www.ohio.edu/mecha nical/thermo/property_tables/air/air_Cp_Cv.html (accessed 6 March 2021).
  41. Abas N., Kalair A.R., Khan  ,  Haider  A.,  Saleem  Z.,  Saleem  M.S.:  Natu-  ral and synthetic refrigerants, global warming: A review. Renew. Sust. Energ. Rev. 90(2018), 557–569. https://doi.org/10.1016/j.rser.2018.03.099.
  42. Bell H., Wronski J., Quoilin S., Lemort V.: Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property li- brary CoolProp. Ind. Eng. Chem. Res. 53(2014), 6, 2498–2508. https://doi.org/ 10.1021/ie4033999.
  43. Richter M., McLinden M.O., Lemmon E.W.: Thermodynamic Properties of 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf): Vapor Pressure and p–ρ–T Measurements and an Equation of State. ACS Publications (2011). https://doi.org/10.1021/ je200369m.
  44. Span , Wagner W.: A new equation  of  state  for  carbon  dioxide  covering  the fluid region from  the triple-point temperature  to 1100 K at pressures  up to 800 MPa.  J. Phys. Chem. Ref. Data 25(1996), 1509–1596. https://doi.org/10.1063/1.555991.
  45. Fukuda ,  Kojima  H.,  Kondou  C.,  Takata  N.,  Koyama S.:  Experimen-   tal assessment on performance of a heat pump cycle using R32/R1234yf and R744/R32/R1234yf. In; Proc. Int. Refrigeration and Air Conditioning Conf. 2016.
  46. Shin Y., Cho H.: Performance comparison of a truck refrigeration system  with R404A, R134a, R1234yf, and R744 refrigerants under frosting conditions. Int. J. Air-Cond. Ref. 24(2016), 1650005.https://doi.org/10.1142/S201013251650005X.
Przejdź do artykułu

Autorzy i Afiliacje

Maria Laura Canteros
1
Jiri Polansky
2

  1. Czech Technical University in Prague, Jugoslávských partyzánu 1580/3, 160 00 Prague 6 – Dejvice, Czech Republic
  2. ESI Group, Brojova 16, 326 00 Plzen, Czech Republic
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The usage of wet methods for flue gas dedusting from coalfired boilers is associated with significant heat losses and water resources. Widespread emulsifiers of the first and second generation are satisfactory in terms of flue gas cleaning efficiency (up to 99.5%), but at the same time do not create conditions for deeper waste heat recovery, leading to lowering the temperature of gases. Therefore, in the paper, an innovative modernization, including installing an additional economizer in front of the scrubber (emulsifier) is proposed, as part of the flue gas passes through a parallel bag filter. At the outlet of the emulsifier and the bag filter, the gases are mixed in a suitable ratio, whereby the gas mixture entering the stack does not create conditions for condensation processes in the stack.
Przejdź do artykułu

Bibliografia

[1] Iliev I.: Means and methods for waste heat recovery from low-grade gas-steam flows. Monograph, University Publishing Center at the University of Ruse, Ruse 2013 (in Bulgarian).
[2] Kowalczyk T., Ziółkowski P., Badur J.: Exergy analysis of the Szewalski cycle with a waste heat recovery system. Arch. Thermodyn. 36(2015), 3, 25–48.
[3] Rutkowski Ł., Szczygieł I.: Calculation Of the furnace exit gas temperature of Stoker fired boilers. Arch. Thermodyn. 42(2021), 3, 3–24.
[4] Mikielewicz J., Mikielewicz D.: Optimal boiling temperature for orc installation. Arch. Thermodyn. 33(2012), 3, 27–37.
[5] Askarova A.S., Bolegenova S.A., Georgiev A., Bolegenova S.A., Maximov V.Yu., Manatbayev R.K., Yergaliyeva A.B., Nugymanova A.O., Baizhuma Zh.T.: The use of a new “clean” technology for burning low-grade coal in boilers of Kazakhstan TPPs. Bulg. Chem. Commun. 50(2018), Spec. Iss. G, 53–60.
[6] Nunes L.J.R., Godina R., Matias J.C.O.: Characterization and possible use to fly ashes from anthracite combustion in a thermal power plant. In: Proc. 2018 IEEE Int. Conf. on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Palermo, June 12–15, 2018, 1–4.
[7] Zlatov N., Glazyrin S., Zhumagulov M., Aidymbayeva Z.: Wastewater treatment of the thermal power plants for desulfurization of flue gas. J. Eng. Sci. Technol. Rev., Spec. Iss. (2020), 154–157.
[8] Dzhaksybaev S.I., Muravyev I.Ya.: Big coal of Ekibastuz. Nedra, Moscow 1990, ISBN 5-247-00833-2.
[9] Shtyogolev V.A.: Battery Emulsifier Swirler Unit with Replaceable Blade Machines. Patent # RU129017U1, 2013-06-20, (2013).
[10] Bricl M.: Cleaning of flue gases in thermal power plants. J. Energy Technol. 4(2016), 45–56.
[11] https://www.mikropul.com/uploads/pdf/wet_scrubbers.pdf (accessed 20 May 2022).
[12] Lee B.K, Mohan B.R., Byeon S.H, Lim K.S., Hong E.P.: Evaluating the performance of a turbulent wet scrubber for scrubbing particulate matter. J. Air Waste Manage. Assoc. 63(2013), 499–506.
[13] Buchta J., Oziemski A.: Flue gas heat recovery in high efficient coal-fired power plant. In: Proc. 20th Int. Sci. Conf. on Electric Power Engineering (EPE), May 15-17, 2019, Kouty nad Desnou, 1–6.
[14] Szulc P., Tietze T.: Recovery and energy use of flue gas from a coal power plant. J. Power Technol. 97(2017), 135–141.
[15] Stevanovic V.D., Petrovic M.M.,Wala T., Milivojevic S., Ilic M., Muszynski S.: Efficiency and power upgrade at the aged lignite-fired power plant by flue gas waste heat utilization: High pressure versus low pressure economizer installation. Energy 187(2019), 115980.
[16] Wang C., He B., Sun S., Wu Y., Yan N., Yan L., Pei X.: Application of a low pressure economizer for waste heat recovery from the exhaust flue gas in a 600 MW power plant. Energy 48(2012), 196–202.
[17] Xu C., Xu G., Zhou L., Yang Y., Li Y., Deng J.: A novel flue gas heat recovery system integrated with air preheating in a utility boiler. In: Proc. ASME Turbo Expo 2013, Power for Land, Sea, and Air, Vol. 2, Turbo Expo 2013, San Antonio, June 3–7, 2013. ASME Pap. GT2013–95185.
[18] Xu G., Xu C., Yang Y., Fang Y., Li Y., Song X.: A novel flue gas waste heat recovery system for coal-fired ultra-supercritical power plants. Appl. Therm. Eng. 67(2014), 240–249.
[19] Han Y., Xu G., Zheng Q., Xu C., Hu Y., Yang Y., Lei J.: New heat integration system with bypass flue based on the rational utilization of low-grade extraction steam in a coal–fired power plant. Appl. Therm. Eng. 113(2017), 460–471.
[20] Yan M., Zhang L., Shi Y., Zhang L., Li Y., Ma C.: A novel boiler cold-end optimisation system based on bypass flue in coal-fired power plants, Heat recovery from wet flue gas. Energy 152 (2018), 84–94.
[21] Fan C., Pei D., Wei H.: A novel cascade energy utilization to improve efficiency of double reheat cycle. Energy Convers. Manage. 171(2018), 1388–1396.
[22] Yang Y., Xu C., Xu G., Han Y., Fang Y., Zhang D.: A new conceptual cold-end design of boilers for coal fired power plants with waste heat recovery. Energy Convers. Manage. 89(2015), 137–146.
[23] Ziółkowski P., Hyrzynski R., Lemanski M., Kraszewski B., Bykuc S., Głuch S., Sowizdzał A., Pajak L., Wachowicz-Pyzik A., Badur J.: Different design aspects of an organic Rankine cycle turbine for electricity production using a geothermal binary power plant. Energy Convers. Manage. 246(2021), 114672. [24] Mikielewicz D., Wajs J, Ziółkowski P., Mikielewicz J.: Utilisation of waste heat from the power plant by use of the ORC aided with bleed steam and extra source of heat. Energy 97(2016), 11–19.
[25] Huang S., Li Ch., Tan T., Fu P., Wang L., Yang Y.: Comparative evaluation of integrated waste heat utilization systems for coal-fired power plants based on in-depth boiler-turbine integration and organic rankine cycle. Entropy 20(2018), 2, 89.
[26] Alekhnovich A.N.: Ash collection at homeland thermal power plants. Private communication, (2020).
[27] Leister N., Karbstein H.P.: Evaluating the stability of double emulsions. A review of the measurement techniques for the systematic investigation of instability mechanisms. Colloids Interfaces 4(2020), 1, 8.
[28] Shamsi S.S.M., Negash A.A., Cho G.B., Kim Y.M.: Waste heat and water recovery system optimization for flue gas in thermal power plants. Sustainability 11(2019), 1881.
[29] http://www.coolprop.org (accessed 20 May 2022).
[30] Nemade A.C., Ponsankar S.: Efficiency improvement in thermal power plants using waste heat recovery of flue gas-simulation study. IOP Conf. Ser.: Mater. Sci. Eng. 912(2020), 042015.
[31] Kostov K., Ivanov I., Atanasov K.: Development and analysis of a new approach for simplified determination of the heating and the cooling loads of livestock buildings. EUREKA: Phys. Eng. 2(2021), 87–98.
[32] https://www.publenef-toolbox.eu/tools/ensi-eab-energy-auditing-buildings-bulgaria (accessed 20 May 2022).
Przejdź do artykułu

Autorzy i Afiliacje

Iliya Krastev Iliev
1
Tomasz Kowalczyk
2
ORCID: ORCID
Hristo Kvanov Beloev
1
Angel Kostadinov Terziev
3
Krzysztof Jan Jesionek
4
Janusz Badur
2

  1. University of Ruse, Department of Thermotechnics, Hydraulics and Environmental Engineering, Studentska 8, 7017 Ruse, Bulgaria
  2. Energy Conversion Department, Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-251 Gdansk, Poland
  3. Technical University of Sofia, Department of Power Engineering and Power Machines, Kliment Ohridski 8, 1000 Sofia, Bulgaria
  4. Witelon Collegium State University, Faculty of Technical and Economic Science, Sejmowa 5C, 59-220 Legnica, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The potential applications of loop heat pipes (LHPs) are the nuclear power space systems, fuel cell thermal management systems, waste heat recovery systems, medium temperature electronic systems, medium temperature military systems, among others. Such applications usually operate in temperature ranges between 500–700 K, hence it is necessary to develop an LHP system that will meet this requirement. Such a thermal management device require to meet various technical problems and challenges currently existing in the development of LHP working in medium temperatures, including: (1) selection of appropriate working fluid; (2) selection of appropriate LHP construction material; (3) construction of suitable test rig capable of testing at elevated temperatures; (4) development of new testing methods. Currently, there are no proven working fluids that can be used in LHPs in medium temperature ranges. Water can be applicable only at temperatures up to 570 K. Caesium can be applicable at temperatures above 670 K. Organic fluids usually tend to generate non-condensable gasses and/or decompose at elevated temperatures and their viscosity dramatically increases. For halides, most of them are very reactive or toxic and their full property data are not available or the majority of the physical properties are predicted, also live tests and their environmental impact data are not adequate. As for casing/LHP construction material, there are no full chemical compatibility tables with most of the medium temperature working fluids and the reactivity of fluids significantly limits the potential materials. Also, testing such an LHP is an endeavour as the reactivity of medium temperature fluids and the use of obscure metals create new challenges. Altogether creates multiple challenges in the development, testing, handling and operating of LHP in the medium temperature range.
Przejdź do artykułu

Bibliografia

[1] Zohuri B.: Heat Pipe Design and Technology. Modern Applications for Practical Thermal Management (2nd Edn.). Springer, 2016.
[2] Zhang Y. (Ed.): Heat Pipes: Design, Applications and Technology. Nova, 2018.
[3] Anderson W.G., Bland J.J., Fershtater Y., Goncharov K.A., Nikitkin M., Juhasz A.: High-temperature loop heat pipes. IECEC AP-18, ASME 1995.
[4] Anderson W.G., Rosenfeld J.H., Angirasa D., Mi Y.: Evaluation of heat pipe working fluids in the temperature range 450 to 700 K. AIP Conf. Proc. 699(2004), 20.
[5] Anderson W.G., Bienert W.: Loop heat pipe radiator trade study for the 300– 550 K temperature range. AIP Conf. Proc. 746(2005), 946.
[6] Anderson W.G.: Intermediate temperature fluids for heat pipes and loop heat pipes. In: Proc. 5th Int. Energy Conversion Engineering Conf. Exhib. (IECEC), 25–27 June 2007, AIAA 2007–4836.
[7] Faghri A., Buchko M., Cao Y.: A study of high-temperature heat pipes with multiple heat sources and sinks: Part I – Experimental methodology and frozen startup profiles. J. Heat Transf. 113(1991), 4, 1003–1009.
[8] Faghri A., Buchko M., Cao Y.: A study of high-temperature heat pipes with multiple heat sources and sinks: Part II – Analysis of continuum transient and steadystate experimental data with numerical predictions. J. Heat Transf. 113(1991), 4, 1010–1016.
[9] https://www.1-act.com/merit-number-and-fluid-selection/ (accessed 10 Sept. 2021).
[10] NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP), Version 10. https://www.nist.gov/srd/refprop/ (accessed 10 Sept. 2021).
[11] Blauciak K., Szymanski P., Mikielewicz D.: The influence of loop heat pipe evaporator porous structure parameters and charge on its effectiveness for ethanol and water as working fluids. Materials 14(2021), 7029.
[12] Nikitkin M.N., Bienert W.B., Goncharov K.A.: Non condensable gases and loop heat pipe operation. SAE Tech. Pap. 981584. In: Proc. 28th Int. Conf. on Environmental Systems, 1998.
[13] Wrenn K.R., Wolf D., Kroliczek E.J.: Effect of non-condensible gas and evaporator mass on loop heat pipe performance. SAE Tech. Pap. 2000-01-2409. In: Proc. 30th Int. Conf. on Environmental Systems, 603–614, 2000.
[14] Ishikawa H., Ogushi T., Nomura T., Noda H., Kawasaki H., Yabe T.: Heat transfer characteristics of a reservoir embedded loop heat pipe (2nd report, influence of noncondensable gas on heat transfer characteristics). Heat Transf. Asian Res. 36(2007), 8, 459–473.
[15] Singh R., Akbarzadeh A., Mochizuki M.: Operational characteristics of the miniature loop heat pipe with non-condensable gases. Int. J. Heat Mass Tran. 53(2010), 17–18, 3471–3482.
[16] He J., Lin G., Bai L., Miao J., Zhang H.: Effect of non-condensable gas on the operation of a loop heat pipe. Int. J. Heat Mass Tran. 70(2014), 449–462.
[17] Prado-Montes P.: Development of an elevated temperature loop heat pipe for space applications and investigation of non-condensable gas impact on its performance. PhD thesis, Polytechnic University of Madrid, Madrid 2014.
[18] Devarakonda A., Xiong D., Beach E.D.: Intermediate temperature water heat pipe tests. AIP Conf. Proc. 746(2005), 158.
[19] Mishkinis D., Prado P., Sanz R., Radkov A., Torres A., Tjiptajardja T.: Loop heat pipe working fluids for intermediate temperature range: from –40°C to +125°C. In: Proc. 1st. Int. Conf. on Heat Pipes for Space Applications, Moscow, Sept. 2009.
[20] Mikielewicz D, Błauciak K.: Investigation of the influence of capilary effect on operation of the loop heat pipe. Arch. Thermodyn. 35(2014), 3, 59–80.
Przejdź do artykułu

Autorzy i Afiliacje

Paweł Szymański
1
Dariusz Mikielewicz
1

  1. Gdansk University of Technology, Faculty of Mechanical Engineering and Ship Technology, Narutowicza 11/12,80-233 Gdansk, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The article deals with a current state-of-art of fluid solid interaction (FSI) – the new branch of continuum physics. Fluid-solid interaction is a new quality of modeling physical processes of continuum mechanics, it can be described as the interaction of various (so far treated separately from the point of view of mathematical modeling) physical phenomena occurring in continuous media systems. The most correct is the simultaneous application of the laws of the given physical disciplines, which implies that fluid solid interaction is a subset of multi-physical applications where the interactions between these subsets are exchanged on the surface in interconnected systems. Our purpose is to extend the fluid solid interaction aplications into new phenomena what follow from the industrial needs and inovative thechnologies. Selecting the various approaches, we prefer the arbitraty lagrangean-eulerian description within the bulk of fluid/solid domain and a new sort of advanced boundary condition on a surface of common contact.
Przejdź do artykułu

Bibliografia

[1] Badur J., Ziółkowski P., Zakrzewski W., Sławinski D., Kornet S., Kowalczyk T., Hernet T., Piotrowski R., Felincjancik J., Ziółkowski P.J.: An advanced thermal-FSI approach to flow heating/coolin. J. Phys. Conf. Ser. 530(2014), 340–370.
[2] Kornet S., Ziółkowski P., Józwik P., Ziółkowski P., Stajnke M., Badur J.: Thermal-FSI modeling of flow and heat transfer in a heat exchanger based on minichanels. J. Power Technol. 97(2017), 5, 373–381.
[3] Zienkiewicz O.C., Taylor R.L.: The Finite Element Method: Vol. 1 (5th Edn.). Butterworth-Heinemann, Oxford, 2000.
[4] Schäfer M., Sieber G., Sieber R., Teschauer I.: Coupled fluid-solid problems: Examples and reliable numerical simulation. In: Trends in Computational Structural Mechanics (W.A. Wall, Ed.), CIMNE, Barcelona 2001, 654–692.
[5] Axisa F.: Modelling of Mechanical Systems – Fluid-Structure Interaction. Elsevier, Berlin 2007.
[6] Bazilevs Y., Takizawa K., Tezduyar T.E.: Computational Fluid-Structure Interaction: Methods and Applications. John Wiley & Sons, 2013.
[7] Benson D.J., Souli M.: Arbitrary Lagrangian Eulerian and Fluid-Structure Interaction: Numerical Simulation. Springer-Verlag, 2010.
[8] Bodnar T., Galdi G.P., Necasova S.: Fluid-Structure Interaction and Biomedical Applications. Springer-Verlag, 2014.
[9] Peric D., Dettmer W.G.: A computational strategy for interaction of fluid flow with spatial structures. In: Proc. 5th Int. Conf. on Computational of Shell and Spatial Structures, IASS-IACM, Bochum, 2005.
[10] Ziółkowski P.J., Ochrymiuk T., Eremyev V.: Cont. Mech. Termodyn. 33(2021), 2301–2314.
[11] Ziółkowski P., Badur J.: A theoretical, numerical and experimental verification of the Reynolds thermal transpiration law. Int. J. Numer. Meth. for Heat Fluid Fl. 28(2018), 454–480.
[12] Ziółkowski P, Badur J., Ziółkowski P.J.: An energetic analysis of a gas turbine with regenerative heating using turbine extraction at intermediate pressure-Brayton cycle advanced according to Szewalski’s idea. Energy 185(2019), 763–786.
[13] Badur J., Ziółkowski P., Kornet S., Kowalczyk T., Banas K., Bryk M., Ziółkowski P.J., Stajnke M.: Enhanced energy conversion as a result of fluid-solid interaction in micro-and nanoscale. J. Theor. Appl. Mech. 56(2018), 1, 329–332.
[14] Kowalczyk T, Badur J., Bryk M.: Energy and exergy analysis of hydrogen production combined with electric energy generation in a nuclear cogeneration cycle. Energ. Convers. Manage. 198(2019), 203–224.
[15] Badur J., Bryk M.: Accelerated start-up of the steam turbine by means of controlled cooling steam injection. Energy 184(2019), 334–356.
[16] Bryk M., Kowalczyk T., Ziółkowski P., Badur J.: The thermal effort during marine steam turbine flooding with water. AIP Conf. Proc. 2077(2019), 1, 020009.
[17] Kraszewski B., Bzymek G., Ziółkowski P., Badur J.: Extremal thermal loading of a bifurcation pipe. AIP Conf. Proc. 2077(2019), 1, 020030.
[18] Dudda W., Banaszkiewicz M., Ziółkowski P.J.: Validation plastic model with hardening of St12t. AIP Conf. Proc. 2077(2019), 020016.
[19] Szwaba R., Ochrymiuk T., Lewandowski T., Czerwinska J.: Experimental investigation of microscale effects in perforated plate aerodynamics. J. Fluids Eng. 135(2013), 12.
[20] Badur J., Ziółkowski P., Kowalczyk T., Ziółkowski P.J., Stajnke M., Bryk M., Kraszewski B.: In: Proc. 6th Conf.e on Nano- and Micromechanics, Rzeszów, 3–7 July 2019.
[21] Badur J., Karcz M., Lemanski M., Nastałek L.: Enhancement Transport Phenomena in the Navier-Stokes Shell-like Slip Layer. Computer Model. Eng. Sci. 73(2011), 299–310.
[22] Banas K., Badur J.: Influence of strength differential effect on material effort of a turbine guide vane based on thermoelastoplastic analysis. J. Therm. Stress. 40(2017), 1368–1385.
[23] Kornet S., Badur J.: Infuence of turbulence RANS models on heat transfer coefficients and stress distribution during thermal-FSI analysis of power turbine guide vane of helicopter turbine engine PZL-10W taking into account convergence of heat flux. Prog. Comput. Fluid Dyn. 17(2017), 352–360.
[24] Ziółkowski P., Kowalczyk T., Kornet S., Badur J.: On low-grade waste heat utilization from a supercritical steam power plant using an ORC-bottoming cycle coupled with two sources of heat. Energ. Convers. Manage. 146(2017), 158–173.
[25] Ziółkowski P., Badur J.: On Navier slip and Reynolds transpiration numbers. Arch. Mech. 70(2018), 269–300.
[26] Ziółkowski P., Badur J.: Navier number and transition to turbulence. J. Phys. Conf. Ser. 530(2014), 1–8.
[27] Czechowicz K, Badur J, Narkiewicz K.: Two-way FSI modelling of blood flow through CCA accounting on-line medical diagnostics in hypertension. J. Phys. Conf. Ser. 530(2014), 1–8.
[28] Badur J., Lemanski M., Kowalczyk T., Ziółkowski P., Kornet P.: Zerodimensional robust model of an SOFC with internal reforming for hybrid energy cycles. Energy 158(2018), 128–138.
[29] Badur J., Ziółkowski P.J., Ziółkowski P.: On the angular velocity slip in nanoflows. Microfluid Nanofluid 19(2015), 191–198.
[30] Badur J., Ziółkowski P., Sławinski D., Kornet S.: An approach for estimation of water wall degradation within pulverized-coal boilers. Energy 92(2015), 142–152.
[31] Felicjancik J., Ziółkowski P., Badur J.: An advanced thermal-FSI approach of an evaporation of air heat pump. Trans. Inst. Fluid-Flow Mach. 129(2015), 111–141.
[32] Badur J., Stajnke M., Ziółkowski P., Józwik P., Bojar Z., Ziółkowski P.J.: Mathematical modeling of hydrogen production performance in thermocatalytic reactor based on the intermetallic phase of Ni3Al. Arch. Thermodyn. 3(2019), 3–26.
[33] Badur J., Ziółkowski P., Kornet S., Stajnke M., Bryk M., Banas K., Ziółkowski P.J.: The effort of the steam turbine caused by a flood wave load. AIP Conf. Proc. 1822(2017), 1, 020001.
[34] Badur J., Bryk M., Ziółkowski P., Sławinski D., Ziółkowski P.J., Kornet S., Stajnke M.: On a comparison of Huber–Mises–Hencky with Burzynski- Pecherski equivalent stresses for glass body during nonstationary thermal load. AIP Conf. Proc. 1822(2017), 1, 020002.
[35] Banaszkiewicz M.: On-line monitoring and control of thermal stresses in steam turbine rotors. Appl. Therm. Eng. 94(2016), 763–776
[36] Ochrymiuk T.: Numerical analysis of microholes film/effusion cooling effectiveness. J. Therm. Sci. 26(2017), 5, 459–464.
[37] Ochrymiuk T.: Numerical prediction of film cooling effectiveness over flat plate using variable turbulent Prandtl number closures. J. Therm. Sci. 25(2016), 3, 280– 286.
[38] Ochrymiuk T.: Numerical investigations of the 3D transonic field and heat transfer at the over-tip casing in a HP-turbine stage. Appl. Therm. Eng. 103(2016), 411–418.
[39] Froissart M., Ziolkowski P., Dudda W., Badur J.: Heat exchange enhancement of jet impingement cooling with the novel humped-cone heat sink. Case Stud. Therm. Eng. 28(2021), 1, 101445101445.
Przejdź do artykułu

Autorzy i Afiliacje

Tomasz Ochrymiuk
1
Mariusz Banaszkiewicz
1 2
Marcin Lemański
1 3
Tomasz Kowalczyk
1
ORCID: ORCID
Paweł Ziółkowski
1 4
Piotr J. Ziółkowski
1
Rafał Hyrzyński
1 5
Michał Stajnke
1
Mateusz Bryk
1
Bartosz Kraszewski
1
Sylwia Kruk-Gotzman
1 6
Marcin Froissart
1
Janusz Badur
1

  1. Institute of Fluid Flow Machinery Polish Academy of Science, Fiszera 14, 80-331 Gdansk, Poland
  2. General Electric Power, Stoczniowa 2, 82-300 Elblag, Poland
  3. Anwil Grupa Orlen, Torunska 222, 87-800 Włocławek, Poland
  4. Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
  5. Energa S.A. Grunwaldzka 472, 80-309 Gdansk, Poland
  6. Agencja Rynku Energii, Bobrowiecka 3, 00-728 Warszawa, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The global solar radiation is the origin for all environmental processes on the earth and the majority of energy sources are derived from it. The data of solar radiation are required for the design and the study of solar application systems. The more important is the quality of the solar radiation which is defined by the maximum work can be provided by the solar radiation. This quality is measured by the exergy content of a solar radiation. In the present work, a universal pattern has been built to provide a prediction of solar exergy dependently to the geographic location. Fitting models have been developed for exergy account depending on geographic location, based on the linear, quadratic, cubic, logarithmic, exponential, power regression. The Petela model is adopted from literature for exergetic efficiency accounting of solar radiation. The global solar radiation according to ASHRAE model is expressed dependently of the cosine of zenith angle. The developed model is applied on Tunisia regions to predict exergy solar potential. The studied regions are classified regarding the exergy account, high, medium and low solar exergy locations. Results show that generally the solar radiation shows a low degree of exergy content, about 7% of difference.
Przejdź do artykułu

Bibliografia

[1] Li L., Lin J., Wu N., Xie S., Meng C., Zheng Y., Wang X., Zhao Y.: Review and outlook on the international renewable energy development. Energ. Built Environ. 3(2020), 2, 2666–1233.
[2] Papadis E., Tsatsaronis G.: Challenges in the decarbonization of the energy sector. Energy 205(2020), 118025.
[3] Hosseini S.E., Wahid M.A.: Renewable and sustainable energy reviews hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew. Sust. Energ. Rev. 57(2016), 850–866.
[4] Multon B., Gaël R., Ruellan M., Ahmed H.B.: Situation énergétique mondiale à l’aube du 3ème millénaire. Perspectives offertes par les ressources renouvelables. La Revue 3EI SEE (2004), 20–33.
[5] Notton G.: Solar radiation for energy applications. In: Encyclopedia of Sustainable Technologies (A.M. Abraham, Ed.). Elsevier, 2017, 339–356.
[6] Sanan T. Mohammad, Hussain H. Al-Kayiem, Mohammed A. Aurybi, Ayad K. Khlief: Measurement of global and direct normal solar energy radiation in Seri Iskandar and comparison with other cities of Malaysia. Case Stud.Therm. Eng. 18, (2020), 100591.
[7] Cavaco A., Canhoto P., Pereira M.C.: Corrigendum to “Procedures for solar radiation data gathering and processing and their application to DNI assessment in southern Portugal” [Renew. Energ. 163(2021) 2208–2219]. Renew. Energ. 168(2021), 1405.
[8] Yorukoglu M., Celik A.N.: A critical review on the estimation of daily global solar radiation from sunshine duration. Energ. Convers. Manage. 47(2006), 15–16, 2441–2450.
[9] Bakirci K.: Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey. Energy 34(2009), 4, 485–501.
[10] Çengelet Y.A. Boles M.A.: Thermodynamics. An Engineering Approach (5th Edn.). McGraw-Hill, 2005.
[11] Dincer I., Rose M.A. (Eds.): Exergy, Energy, Environment, and Sustainable Development (3rd Edn.). Elsevier, 2021, 61–89.
[12] Ziebik A.: Thermodynamical motivation of the Polish energy policy. Arch. Thermodyn. 33(2012), 4, 3–21.
[13] Chu S.X., Liu L.H.: Analysis of terrestrial solar radiation exergy. Sol. Energy 83(2009), 8, 1390–1404.
[14] Candau Y.: On the exergy of radiation. Sol. Energy 75(2003), 3, 241–247.
[15] Gueymard Ch.A.: The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Sol. Energy 76(2004), 4, 423–453.
[16] Kabelac S.: Exergy of solar radiation. Int. J. Energy Technol. Policy 3(2005), 1–2, 115–122.
[17] Joshi A.S., Dincer I., Reddy B.V: Development of new solar exergy maps. Int. J. Energ. Res. 33(2009), 8, 709–718.
[18] Alta D., Ertekin C., Evrendilek F.: Quantifying spatio-temporal dynamics of solar radiation exergy over Turkey. Renew. Energ. 35(2010), 12, 2821–2828.
[19] Jiménez-Muñoz J.C., Sobrino J.A., Mattar C.: Recent trends in solar exergy and net radiation at global scale. Ecol. Model. 228(2012), C, 59–65.
[20] Hepbasli A., Alsuhaibani Z.: Estimating and comparing the exergetic solar radiation values of various climate regions for solar energy utilization. Energ. Source. Part A 36(2014) 7, 764–773.
[21] Uçkan I.: Exergy analysis of solar radiation based on long term for Van city. J. Polytech. 20(2017), 3, 579–584.
[22] Petela R.: Energy of heat radiation. J. Heat Transfer 86(1964), 187–192.
[23] Spanner D.C.: Introduction to Thermodynamics. Academic Press, London, 1964.
[24] Jeter S.M.: Maximum conversion efficiency for the utilization of direct solar radiation. Sol. Energ. 26(1981), 231–236.
[25] Arslanoglu N.: Empirical modeling of solar radiation exergy for Turkey. Appl. Therm. Eng. 108(2016), 1033–1040.
[26] Jamil B., Bellos E.: Development of empirical models for estimation of global solar radiation exergy in India. J. Clean. Prod. 207(2019), 1–16.
[27] Khorasanizadeh H., Sepehrnia M.: Solar exergy evaluation and empirical model establishment; case study: Iran. Heliyon 6(2020), 12, 2405–8440, e05638.
[28] Lounissi D., Bouaziz N.: Exergetic analysis of an absorption/compression refrigeration unit based on R124/DMAC mixture for solar cooling. Int. J. Hydrog. Energ. 42(2017), 13, 8940–8947.
[29] Simpson A.P.: Decision making in energy: Advancing technical, environmental, and economic perspectives. PhD thesis, Stanford Univ. 2010, 28168075. https://www.proquest.com/openview/6ee7749bfe128753d88ba805856d03b8/1?pqorigsite= gscholar&cbl=18750&diss=y (accessed 10 May 2010).
[30] Brand Correa L.I.: Exergy and useful work analysis as a tool for improved energy policy making: The case of the Colombian energy sector. MSc. thesis, Univ. of Edinburgh, 2014, https://www.doi.org/10.13140/RG.2.1.4523.6089.
[31] Sciubba E.: Beyond thermoeconomics? The concept of extended exergy accounting and its application to the analysis and design of thermal systems. Exerg. Int. J. 1(2001), 2, 68–84.
[32] Abd Elbar A.R., Yousef M.S., Hassan H.: Energy, exergy, exergoeconomic and enviroeconomic (4E) evaluation of a new integration of solar still with photovoltaic panel. Clean. Prod. 233(2019), 665–680.
[33] Luminosu I., Fara L.: Determination of the optimal operation mode of a flat solar collector by exergetic analysis and numerical simulation. Energy 30(2005), 5, 731– 747.
[34] Sala Lizarraga J.M.P., Picallo-Perez A.: Exergy Analysis and Thermoeconomics of Buildings. Butterworth-Heinemann, 2020.
[35] Ghritlahre H.K., Sahu P.K.: A comprehensive review on energy and exergy analysis of solar air heaters. Arch. Thermodyn. 41(2020), 3, 183–222.
[36] Ghritlahre H.K.: An experimental study of solar air heater using arc shaped wire rib roughness based on energy and exergy analysis. Arch. Thermodyn. 42(2021), 3, 115–139.
[37] Sobhnamayan F., SarhaddF. i, Alavi M.A., Farahat S., Yazdanpanahi J.: Optimization of a solar photovoltaic thermal (PV/T) water collector based on exergy concept. Renew. Energ. 68(2014), 356–365.
[38] Hossain S., Chowdhur H., Chowdhury T., Ahamed J.U., Saidur R., Sait S.M., Rosen M.A.: Energy, exergy and sustainability analyses of Bangladesh’s power generation sector. Energ. Rep. 6(2020), 868–878.
[39] Chowdhury H., Chowdhury T., Chowdhury P., Islam M., Saidur R., Sait S.M.: Integrating sustainability analysis with sectoral exergy analysis: A case study of rural residential sector of Bangladesh, Energ. Buildings 202(2019), 109397.
[40] Cornelissen R.L.: Thermodynamics and sustainable development. PhD thesis, Univ. of Twente, 1997.
[41] Maruf M.H., Rabbani M., Ashique R.H., Islam M.T., Nipun M.K., Haq M.A.U., Al Mansur, Shihavuddin A.S.M.: Exergy based evaluation of power plants for sustainability and economic performance identification. Case Stud. Therm. Eng. 28(2021), 101393.
[42] Rosen M.A., Dincer I., Kanoglu M.: Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy 36(2008), 128–137.
[43] Zisopoulos F.K., Rossier-Miranda F.J., van der Goot A.J., Boom R.M.: The use of exergetic indicators in the food industry – A review. Crit. Rev. Food Sci. Nutrit. 57(2017), 197–211.
[44] Hepbasli A.: A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renew. Sust. Energ. Rev. 12(2008), 593–661.
[45] Sudhakar K., Tulika Srivastava: Energy and exergy analysis of 36 W solar photovoltaic module. Int. J. Amb. Energ. 35(2014), 1, 51–57.
[46] Press W.H.: Theoretical maximum for energy from direct and diffuse sunlight. Nature 264(1976), 734–735.
[47] Landsberg P.T., Tonge G.: Thermodynamics of the conversion of diluted radiation. J. Phys. A-Math. Gen. 12(1979), 4, 551–562.
[48] Parrott J.E.: Theoretical upper limit to the conversion efficiency of solar energy. Sol. Energy 21(1978), 3, 227–229.
[49] Parrott J.E.: A letter. Sol. Energy 22(1979), 6, 572–573.
[50] Kabelac S.: A new look at the maximum conversion efficiency of blackbody radiation. Sol. Energy 46(1991), 4, 231–236.
[51] Millan M.I., Hernandez F., Martin E.: Available solar exergy in an absorption cooling process. Sol. Energy 56(1996), 6, 505–511.
[52] Würfel P.: Thermodynamic limitations to solar energy conversion. Physica E 14(2002), 1–2, 18–26.
[53] Bejan A.: Advanced Engineering Thermodynamics. Wiley, New York, 2006.
[54] Petela R.: Exergy of undiluted thermal radiation. Sol. Energy 74(2003), 6, 469–488.
[55] ASHRAE. Handbook of Fundamentals. American Society of Heating, Refrigeration, and Air Conditioning Engineers, New York, 1979.
[56] Solar Position Calculator. https://gml.noaa.gov/grad/solcalc/azel.html (accessed 10 May 2021).
[57] Khorasanizadeh H., Mohammadi K., Mostafaeipour A.: Establishing a diffuse solar radiation model for determining the optimum tilt angle of solar surfaces in Tabass, Iran. Energ. Convers. Manage. 78(2014), 805–814.
[58] Despotovic M., Nedic V., Despotovic D., Cvetanovic S.: Review and statistical analysis of different global solar radiation sunshine models. Renew. Sust. Energ. Rev.52(2015), 1869–1880.
Przejdź do artykułu

Autorzy i Afiliacje

Khaoula Daghsen
1 2
Dorra Lounissi
2
Nahla Bouaziz
2

  1. University of Monastir, National Engineering School of Monastir, Rue Ibn El Jazzar, Monastir 5000, Rue Ibn Jazzar, Monastir 5035, Tunisia
  2. University of Tunis El Manar, National Engineering School of Tunis, Energy and Environment Laboratory LR21ES09, ENIT. BP 37, Le Belvedere 1002
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

This brief note focuses on a simple fluid, i.e., a homogeneous, chemically inert, and electrically neutral fluid, for which, in the linear nonequilibrium regime, the thermodynamic state is expressed by a relation between pressure, temperature, and density. The approach based on the elementary scales is used to check the validity range of both the classical irreversible thermodynamics and the extended irreversible thermodynamics. The achieved result reveals that the classical irreversible thermodynamics fails in providing an adequate response when the mechanical solicitations exceed limit values.
Przejdź do artykułu

Bibliografia

[1] Gad-el-Hak M.: The fluid mechanics of microdevices-the Freeman scholar lecture. J. Fluids Eng. 121(1999), 1, 5–33.
[2] Auriault J.-L.: Homogenization theory applied to porous media. Poromechanics 3(2005), 113–120.
[3] Di Nucci C., Celli D., Fischione P., Pasquali D.: Elementary scales and the lack of Fourier paradox for Fourier fluids. Meccanica 57(2022), 251–254.
[4] Jou D., Casas-Vázquez J., Lebon G.: Extended Irreversible Thermodynamics revisited (1988–98). Rep. Prog. Phys. 62(1999), 7, 1035–1142.
[5] Lenarczyk M., Domanski R.: Investigation of non-Fourier thermal waves interaction in a solid material. Arch. Thermodyn. 40(2019), 1, 115–126.
[6] Othman M.I.A., Abouelregal A.E.E.: The effect of pulsed laser radiation on a thermoviscoelastic semi-infinite solid under two-temperature theory. Arch. Thermodyn. 38(2017), 3, 77–99.
[7] Di Nucci C., Pasquali D., Celli D., Pasculli A., Fischione P., Di Risio M.: Turbulent bulk viscosity. Eur. J. Mech. B-Fluid. 84(2020), 446–454.
[8] Durst F.: Fluid Mechanics: An Introduction to the Theory of Fluid Flows. Springer- Verlag, Berlin – Heidelberg 2008.
[9] Frost W., Moulden T.H. (Eds.): Handbook of Turbulence: Vol. 1 Fundamentals and Applications. Plenum Press, New York – London 1977.
[10] Gallavotti G.: Foundations of Fluid Dynamics. Springer-Verlag, Berlin – Heidelberg 2002.
[11] Petersen K.B., Pedersen M.S.: The Matrix Cookbook. Tech. Univ. of Denmark, 2008.
[12] Panton R.: Incompressible Flow. John Wiley & Sons, Hoboken 2013.
Przejdź do artykułu

Autorzy i Afiliacje

Carmine Di Nucci
1
Daniele Celli
1
Piera Fischione
1
Davide Pasquali
1

  1. Environmental and Maritime Hydraulic Laboratory (LIAM), Civil, Construction-Architectural and Environmental Engineering Department (DICEAA), University of L’Aquila, Piazzale Ernesto Pontieri 1, Monteluco di Roio, 67100 L’Aquila, Italy
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Limiting energy resources has led researchers to find new innovative ways to enhance heat exchanging devices thermal performance in power generating systems. Thus, the present paper analyzes passive techniques of enhancing the thermal performance of a single tube heat exchanger. Experimental and numerical investigation on heat transfer enhancement using aserrated circular ring with twisted tape is carried out. The work incorporates the determination of Nusselt number, friction factor, thermal performance factor for serrated circular ring with twisted tape with variation in diameter ratio (0.8 and 0.85) and pitch ratio (2 and 3). Air is used as a working fluid with Reynolds number 6000–24000. The experiment is conducted by providing a constant wall heat flux of 1000 W/m2 to the system and thereby taking results at a steady state. The experimental and computational findings obtained for the smooth tube case are compared with the standard correlations of Dittus–Boelter and Blasius. Based on experimental and numerical investigation, there is 5.16 times augmentation in heat transfer and 3.05 times improvement in thermal performance factor over the smooth tube heat exchanger. In addition, the study of entropy generation rate for every geometrical parameter has been conducted, and their influence on the system’s thermal behaviour is presented. The results obtained in the present study may help the researchers of the same research area to find similar inserts and new ways of enhancing the thermal performance of heat exchangers.
Przejdź do artykułu

Bibliografia

[1] Kumar A., Maithani R., Suri A.: Numerical and experimental investigation of enhancement of heat transfer in dimpled rib heat exchanger tube. Heat Mass Transfer 53(2017), 3501–3516.
[2] Xie S., Liang Z., Zhang L., Wang Y.: A numerical study on heat transfer enhancement and flow structure in enhanced tube with cross ellipsoidal dimples. Int. J. Heat Mass Tran. 125(2018), 434–444.
[3] Abu-Khader M.: Further understanding of twisted tape effects as tube insert for heat transfer enhancement. Heat Mass Transfer 43(2006), 123–134.
[4] Karagoz S., Afshari F., Yildirim O., Comakli O.: Experimental and numerical investigation of the cylindrical blade tube inserts effect on the heat transfer enhancement in the horizontal pipe exchangers. Heat Mass Transfer 53(2017), 2769–2784.
[5] Tu W., Tang Y., Hu J.,Wang Q., Lu L.: Heat transfer and friction characteristics of laminar flow through a circular tube with small pipe inserts. Int. J. Therm. Sci. 96(2015), 94–101.
[6] Xin F., Liu Z., Zheng N., Liu P., Liu W.: Numerical study on flow characteristics and heat transfer enhancement of oscillatory flow in a spirally corrugated tube. Int. J. Heat Mass Tran. 127(2018), 402–413.
[7] Zheng N., Liu P., Wang X., Shan F., Liu Z., Liu W.: Numerical simulation and optimization of heat transfer enhancement in a heat exchanger tube fitted with vortex rod inserts. Appl. Therm. Eng. 123(2017), 471–484.
[8] Yuxiang H., Xianhe D., Lianshan Z.: 3Dnumerical study on compound heat transfer enhancement of converging-diverging tubes equipped with twin twisted tapes. Chinese J. Chem. Eng. 20(2012), 589–601.
[9] Akcayoglu A.: Flow past confined delta-wing type vortex generators. Exp. Therm. Fluid Sci. 35(2011), 112–120.
[10] Eiamsa-ard S., Promvonge P.: Influence of double-sided delta-wing tape insert with alternate-axes on flow and heat transfer characteristics in a heat exchanger tube, fluid flow and transport phenomena. Chinese J. Chem. Eng. 19(2011), 410- 423.
[11] Khoshvaght-Aliabadi M., Sartipzadeh O., Alizadeh A.: An experimental study on vortex-generator insert with different arrangements of delta-winglets. Energy 82(2015), 629–639.
[12] Promvonge P., Khanoknaiyakarn C., Kwankaomeng S., Thianpong C.: Thermal behavior in solar air heater channel fitted with combined rib and deltawinglet. Int. Commun. Heat Mass Tran. 38(2011), 749–756.
[13] Singh S., Pandey L., Kharkwal H., Sah H.: Augmentation of thermal performance of heat exchanger using elliptical and circular insert with vertical twisted tape. Exp. Heat Transfer 33 (2019), 6, 510–525.
[14] Vashishtha C., Patil A., Kumar M.: Experimental investigation of heat transfer and pressure drop in a circular tube with multiple inserts. Appl. Therm. Eng. 96(2016), 117–129.
[15] Alzahrani S., Usman S.: CFD simulations of the effect of in-tube twisted tape design on heat transfer and pressure drop in natural circulation. Therm. Sci. Eng. Prog. 11(2019), 325–333.
[16] Bhuiya M.M.K., Sayema A.S.M., Islam M, Chowdhury M.S.U., Shahabuddin M.: Performance assessment in a heat exchanger tube fitted with double counter twisted tape inserts. Int. Commun. Heat Mass Tran. 50(2014), 25–33.
[17] Suri A., Kumar A., Maithani R.: Heat transfer enhancement of heat exchanger tube with multiple square perforated twisted tape inserts. Exp. Invest. Corr. Dev. 116(2017) 76–96.
[18] Nakhchi M.E., Esfahani J.A.: Performance intensification of turbulent flow through heat exchanger tube using double V-cut twisted tape inserts. Chem. Eng. Process. Process Intensific. 141(2019), 107533.
[19] Nakhchi M.E., Esfahani J.A.: Numerical investigation of rectangular-cut twisted tape insert on performance improvement of heat exchangers. Int. J. Therm. Sci. 138(2019), 75–83.
[20] Hong Y., Du J., Li Q., Xu T., Li W.: Thermal-hydraulic performances in multiple twisted tapes inserted sinusoidal rib tube heat exchangers for exhaust gas heat recovery applications. Energ. Convers. Manage. 185(2019), 271–290.
[21] Bas H., Ozceyhan V.: Heat transfer enhancement in a tube with twisted tape inserts placed separately from the tube wall. Exp. Therm. Fluid Sci. 41(2012), 51–58.
[22] Sarviya R.M., Fuskele V.: Heat transfer and pressure drop in a circular tube fitted with twisted tape insert having continuous cut edges. J. Energ. Stor. 19(2018), 10–14.
[23] Reddy V., Kumar S., Gugulothu R., Anuja K., Rao V.: CFD analysis of a helically coiled tube in tube heat exchanger. Sci. Direct Mater. Today Proc. 4(2017), 2341–2349.
[24] Keklikcioglu O., Ozceyhan V.: Experimental investigation on heat transfer enhancement in a circular tube with equilateral triangle cross sectional coiled wire insert. Appl. Therm. Eng. 131(2018), 686–695.
[25] Gholamalizadeh E., Hosseini E., Jamanani M., Amiri A., Sare A., Alimoradi A.: Study of intensification of the heat transfer in helically coiled tube heat exchanger via coiled wire inserts. Int. J. Therm. Sci. 141(2019), 72–83.
[26] Sheikholeslami M., Gorji-Bandpy M., Ganji D.: Effect of discontinuous helical turbulators on heat transfer characteristics of double pipe water to air heat exchanger. Energ. Convers. Manage 118(2016), 75–87.
[27] Eiamsa-ard S., Nivesrangsan P., Chokphoemphun S., Promvonge P.: Influence of combined non-uniform wire coil and twisted tape inserts on thermal performance characteristics. Int. Commun. Heat Mass Tran. 37(2010), 850–856.
[28] Kongkaitpaiboon V., Nanan K., Eiamsa-ard S.: Experimental investigation of convective heat transfer and pressure loss in a round tube fitted with circular-ring turbulators. Int. Commun. Heat Mass Tran. 37(2010), 568–574.
[29] Kumar A., Chamoli S., Kumar M., Singh S.: Experimental investigation on thermal performance and fluid flow characteristics in circular cylindrical tube with circular perforated ring inserts. Exp. Therm. Fluid Sci. 79(2016), 168–174.
[30] Singh S., Negi J., Bisht S., Sah H.: Thermal performance and frictional losses study of solid hollow circular disc with rectangular wings in circular tube. Heat Mass Tran. 55(2019), 2975–2986.
[31] Pandey L., Singh S.: Numerical analysis for heat transfer augmentation in circular tube heat exchanger using triangular perforated Y-shape insert. Fluids 6(2021), 7, 247.
[32] Zong Y., Bai D., Zhou M., Zhao L.: Numerical studies on heat transfer enhancement by hollow-cross disk for cracking coils. Chem. Eng. Process. Process Intensific. 135(2019), 82–92.
[33] Bartwal A., Gautam A., Kumar M., Mamgrulkar C., Chamoli S.: Thermal performance intensification of a circular heat exchanger tube integrated with compound circular ring-metal wire net inserts. Chem. Eng. Process. Process Intensific. 124(2018), 50–70.
[34] Nakchi M.E, Esfahani J.A.: Numerical investigation of different geometrical parameters of perforated conical rings on flow structure and heat transfer in heat exchanger. Appl. Therm. Eng. 156(2019), 494–505.
[35] Gururatana S., Skullong S.: Experimental investigation of heat transfer in a tube heat exchanger with airfoil-shaped insert. Case Stud. Therm. Eng. 14(2019).
[36] Skullong S., Promvonge P., Jayranaiwachira N., Thianpong C.: Experimental and numerical heat transfer investigation in a tubular heat exchanger with delta-wing tape inserts. Chem. Eng. Process. 109(2016), 164–177.
[37] Navickaite K., Cattani L., Bahl C., Engelbrecht K.: Elliptical double corrugated tubes for enhanced heat transfer. Int. J. Heat Mass Tran. 128(2019) 363–377.
[38] Andrzejczyk R., Muszynski T., Gosz M.: Experimental investigations on heat transfer enhancement in shell coil heat exchanger with variable baffles geometry. Chem. Eng. Process. 132(2018), 114–126.
[39] Hameed V., Hussein M.: Effect of new type of enhancement on inside and outside surface of the tube side in single pass heat Exchanger. Appl. Therm. Eng. 122(2017), 484–491.
[40] Nagarajan P.K., Sivashanmugam P.: Heat transfer enhancement studies in a circular tube fitted with right-left helical inserts with spacer. World Ac. Sci., Eng. Technol., Int. J. Mech. Mechatron. Eng. 5(2011), 10, 2091–2095.
[41] Promvonge P., Koolnapadol N., Pimsarn M., Thianpong C.: Thermal performance enhancement in a heat exchanger tube fitted with inclined vortex rings. Appl. Therm. Eng. 62(2014), 285–292.
[42] Sripattanapipat S., Tamna S., Jayranaiwachira N., Promvonge P.: Numerical heat transfer investigation in a heat exchanger tube with hexagonal conical-ring inserts. Energy Proced. 100(2016), 522–525.
[43] Liang Y., Liu P., Zheng N., Shan F., Liu Z., Liu W.: Numerical investigation of heat transfer and flow characteristics of laminar flow in a tube with center-tapered wavy-tape insert. Appl. Therm. Eng. 148(2019), 557–567.
[44] Skullong S., Promvonge P., Thianpong C., Jayranaiwachira N., Pimsarn M.: Thermal performance of heat exchanger tube inserted with curved-winglet tapes. Appl. Therm. Eng. 129(2018), 1197–1211.
[45] Yaningsih I., Wijayanta A., Miyazaki T., Koyama S.: Thermal hydraulic characteristics of turbulent single-phase flow in an enhanced tube using louvered strip insert with various slant angles. Int. J. Therm. Sci. 134(2018), 355–362.
[46] Modi A., Kalel N., Rathod M.: Thermal performance augmentation of finand- tube heat exchanger using rectangular winglet vortex generators having circular punched holes. Int. J. Heat Mass Tran. 158(2020), 119724.
[47] Webb R.L., Kim N.H.: Principles of Enhanced Heat Transfer (2nd Edn.). Taylor Francis, New York 2005. [48] Klein S.J., McClintock A.: The description of uncertainties in a single sample experiments. Mech. Eng. 75(1953), 3–8.
[49] Kumar A., Chamoli S., Kumar M.: Experimental investigation on thermal performance and fluid flow characteristics in heat exchanger tube with solid hollow circular disk inserts. Appl. Therm. Eng. 100(2016), 227–236.
[50] Keklikcioglu O., Ozceyhan V.: Entropy generation analysis for a circular tube with equilateral triangle cross sectioned coiled-wire inserts. Energy 139(2017), 65–75.
[51] Singh S., Kharkwal H., Gautam A., Pandey A.: CFD analysis for thermohydraulic properties in a tubular heat exchanger using curved circular rings. J. Therm. Anal. Calorim. 141(2020), 2211–2218.
[52] Siddique W., Raheem A., Aqeel M., Qayyum S., Salamen T., Waheed K., Qureshi K.: Evaluation of thermal performance factor for solar airheaters with artificially roughened channels. Arch. Mech. Eng. 68(2021), 195–225.
[53] Menni Y., Chamkha A., Zidani C., Benyoucef B.: Analysis of thermo-hydraulic performanceof a solar air heater tube with modern obstacles. Arch. Thermodyn. 41(2020), 3, 33–56.
[54] https://www.ansys.com/products/fluids/ansys-fluent
[55] https://idoc.pub/queue/ansys-fluent-users-guide-d49o6jd0g649
[56] Benlekkam M., Nehar D.: Hybrid nano improved phase change material for latent thermal energy storage system: Numerical study. Arch. Mech. Eng. 69(2022), 77–98.
Przejdź do artykułu

Autorzy i Afiliacje

Himanshi Kharkwal
1
Satyendra Singh
1

  1. Department of Mechanical Engineering, B.T. Kumaon Institute of Technology, Dwarahat-263653 (Almora), Uttarakhand, India

Instrukcja dla autorów

Submission of manuscript
Manuscripts should be electronically submitted to the Editorial System http://www.editorialsystem.com/aot. Each manuscript should be accompanied by a cover letter explaining why the manuscript is considered suitable for publication in the journal. The letter should contain:

• full title of the paper,
• full list of authors with affiliations,
• e-mail address of the authors,
• contact address and telephone numbers of the corresponding author.

The cover letter should explicitly state that the manuscript has not been previously published in any language anywhere and that it is not under simultaneous consideration or in press by another journal.

Manuscripts that have been previously rejected, or withdrawn after being returned for modification, may be resubmitted if the major criticisms have been addressed. The cover letter must state that the manuscript is a resubmission, and the former manuscript number should be provided.
All authors of the manuscript are responsible for its content; they must have agreed to its publication and have given the corresponding author the authority to act on their behalf. The corresponding author is responsible for informing the co-authors of the manuscript status throughout the submission, review, and production process.

From January 1, 2024, the authors are requested to submit their paper using a dedicated template provided at the AOT webpage https://www.imp.gda.pl/archives-of-thermodynamics/.


Notes for Contributors

Archives of Thermodynamics publishes original papers which have not previously appeared in other journals. The journal does not have article processing charges (APCs) nor article submission charges. The language of the papers is English. The authors are responsible to prepare papers with good English. All pages should be numbered.

Paper preparation quidelines

1. The manuscript should be written in very good English, using the two-column format provided in the template.

2. The heading should specify the title (as short as possible), author, his/her complete affiliation, town, zip code, country and e-mail. Please indicate the corresponding author. The heading should be followed by Abstract and Keywords.

3. More important symbols used in the paper should be listed in Nomenclature, placed below Abstract and arranged in a column, e.g.:
u – velocity, m/s
v – specific volume, m/kg etc.

The list should begin with Latin symbols in alphabetical order followed by Greek symbols also in alphabetical order and with a separate heading. Subscripts and superscripts should follow Greek symbols and should be identified with separate headings. Physical quantities should be expressed in SI units ( Système International d’Unités). In the template a dedicated area is created to put the nomenclature.

4. All abbreviations should be spelled out first time they are introduced in the text. Abbreviations should also be listed in the Nomenclature.

5. The equations should be each in a separate line. Standard mathematical notation should be used. All symbols used in equations must be clearly defined. The numbers of equations should run consecutively, irrespective of the division of the paper into sections. The numbers should be given in round brackets on the righthand side of the column.

6. Particular attention should be paid to the differentiation between capital and small letters. If there is a risk of confusion, the symbols should be explained (for example small c) in the margins. Indices of more than one level (such as Bfa) should be avoided wherever possible.

7. Computer-generated figures should be produced using bold lines and characters. No remarks should be written directly on the figures, except numerals or letter symbols only. Figures should be as small as possible while displaying clearly all the information requires, and with all lettering readable. The relevant explanations can be given in the caption.

8. The figures, including photographs, diagrams, etc., should be numbered with Arabic numerals in the same order in which they appear in the text. Each figure should have its own caption explaining the content without reference to the text.

9. The figures should also be submitted as separate graphic files in either vector formats (PostScript (PS), Encapsulated PostScript (EPS), preferable, CorelDraw (CDR), etc.) or bitmap formats (Tagged Image File Format (TIFF), Joint Photographic Experts Group (JPEG), etc.), with the resolution not lower than 300 dpi, preferably 600 dpi. These resolutions refer to images sized at dimensions comparable to those of figures in the print journal. Therefore, electronic figures should be sized to fit on single printed page and can have maximum 120 mm x 170 mm.

10. The references for the paper should be numbered in the order in which they are called in the text. Calling the references is by giving the appropriate numbers in square brackets. The references should be listed with the following information provided: the author’s surname and the initials of his/her names, the complete title of the work (in English translation) and, in addition:

The references should be placed after the acknowledgment section. The references citation in the manuscript body should be numbered: [1], [2], etc. Please use the following style of references in bibliography APA – 7th ed:

Journal citation (APA – 7th ed):
[1] Król, J., & Ocłoń, P. (2019). Sensitivity analysis of hybrid combined heat and power plant on fuel and CO2 emission allowances price change. Energy Conversion and Management, 196, 127–148.
doi.org/10.1016/j.enconman.2019.05.090

[2] Zhou, Y., Bi, H., & Wang, H. (2023). Influence of the primary components of the high-speed train on fire heat release rate. Archives of Thermodynamics, 44(1), 37–61.
doi.org/10.24425/ather.2023.145876

When citing scientific papers, it is needed to provide a DOI identifier if available.
Example of citation:
• Król and Ocłoń [1] studied a hybrid CHP sensitivity on fuel and CO2 emission allowances price change.
• Zhou et al. [2] studied the influence of the primary components of the high speed train on fire heat release rate.

Book citation (APA – 7th ed):
[3] Ocłoń, P. (2021). Renewable energy utilization using underground energy systems (1st ed.). Springer Nature.
Example of citation:
• Ocłoń et al. [3] presented renewable energy systems for heating cooling and electrical energy production in buildings.

Book chapter citation (APA – 7th ed):
[4] Ciałkowski, M., & Frąckowiak, A. (2014). Boundary element method in inverse heat conduction problem. In Encyclopedia of Thermal Stresses (pp. 424–433). Springer Netherlands.
Example of citation:
• Ciałkowski and Frąckowiak [4] presented a Boundary element method application for solving inverse heat conduction problems.

Conference proceedings (APA – 7th ed):
[5] Pourghasemi, B., & Fathi, N. (2023). Validation and verification analyses of turbulent forced convection of Na and NaK in miniature heat sinks. ASME 2023 Verification, Validation, and Uncertainty Quantification Symposium, 17-19 May, Baltimore, USA.
Example of citation:
• Pourghasemi and Fathi [5] validated and verified turbulent forced convection of Na and NaK in miniature heat sinks.
For works originally published in a language other than English, the language should be indicated in parentheses at the end of the reference. Authors are responsible for ensuring that the information in each reference is complete and accurate, including the DOI number.

11. As the papers are published in English, the authors who are not native speakers of English are obliged to have the paper thoroughly reviewed language-wise before submitting for publication. When the Editors or Reviewers assess that the writing English of the manuscript is poor, the authors are obliged to correct it, and provide a Certificate of English Editing as attachment in Editorial System.

Further information

All manuscripts will undergo some editorial modification. The paper proofs (as PDF file) will be sent by e-mail to the corresponding author for acceptance, and should be returned within two weeks of receipt. Within the proofs corrections of minor and typographical errors in: author names, affiliations, articles titles, abstracts and keywords, formulas, symbols, grammatical error, details in figures, etc., are only allowed, as well as necessary small additions. The changes within the text will be accepted in case of serious errors, for example with regard to scientific accuracy, or if authors reputation and that of the journal would be affected. Submitted material will not be returned to the author, unless specifically requested. A PDF file of published paper will be supplied free of charge to the Corresponding Author. Submission of the manuscript expresses at the same time the authors consent to its publishing in both printed and electronic versions.

Transfer of Copyright Agreement

All papers are published under lincense CC BY 4.0. Once a paper has been accepted for publication, as a condition of publication, the authors are asked to send a scanned copy of the signed original of the Transfer of Copyright Agreement, signed by the Corresponding Author on behalf of all authors.

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji