[1] Kumar A., Maithani R., Suri A.: Numerical and experimental investigation of enhancement of heat transfer in dimpled rib heat exchanger tube. Heat Mass Transfer 53(2017), 3501–3516.
[2] Xie S., Liang Z., Zhang L., Wang Y.: A numerical study on heat transfer enhancement and flow structure in enhanced tube with cross ellipsoidal dimples. Int. J. Heat Mass Tran. 125(2018), 434–444.
[3] Abu-Khader M.: Further understanding of twisted tape effects as tube insert for heat transfer enhancement. Heat Mass Transfer 43(2006), 123–134.
[4] Karagoz S., Afshari F., Yildirim O., Comakli O.: Experimental and numerical investigation of the cylindrical blade tube inserts effect on the heat transfer enhancement in the horizontal pipe exchangers. Heat Mass Transfer 53(2017), 2769–2784.
[5] Tu W., Tang Y., Hu J.,Wang Q., Lu L.: Heat transfer and friction characteristics of laminar flow through a circular tube with small pipe inserts. Int. J. Therm. Sci. 96(2015), 94–101.
[6] Xin F., Liu Z., Zheng N., Liu P., Liu W.: Numerical study on flow characteristics and heat transfer enhancement of oscillatory flow in a spirally corrugated tube. Int. J. Heat Mass Tran. 127(2018), 402–413.
[7] Zheng N., Liu P., Wang X., Shan F., Liu Z., Liu W.: Numerical simulation and optimization of heat transfer enhancement in a heat exchanger tube fitted with vortex rod inserts. Appl. Therm. Eng. 123(2017), 471–484.
[8] Yuxiang H., Xianhe D., Lianshan Z.: 3Dnumerical study on compound heat transfer enhancement of converging-diverging tubes equipped with twin twisted tapes. Chinese J. Chem. Eng. 20(2012), 589–601.
[9] Akcayoglu A.: Flow past confined delta-wing type vortex generators. Exp. Therm. Fluid Sci. 35(2011), 112–120.
[10] Eiamsa-ard S., Promvonge P.: Influence of double-sided delta-wing tape insert with alternate-axes on flow and heat transfer characteristics in a heat exchanger tube, fluid flow and transport phenomena. Chinese J. Chem. Eng. 19(2011), 410- 423.
[11] Khoshvaght-Aliabadi M., Sartipzadeh O., Alizadeh A.: An experimental study on vortex-generator insert with different arrangements of delta-winglets. Energy 82(2015), 629–639.
[12] Promvonge P., Khanoknaiyakarn C., Kwankaomeng S., Thianpong C.: Thermal behavior in solar air heater channel fitted with combined rib and deltawinglet. Int. Commun. Heat Mass Tran. 38(2011), 749–756.
[13] Singh S., Pandey L., Kharkwal H., Sah H.: Augmentation of thermal performance of heat exchanger using elliptical and circular insert with vertical twisted tape. Exp. Heat Transfer 33 (2019), 6, 510–525.
[14] Vashishtha C., Patil A., Kumar M.: Experimental investigation of heat transfer and pressure drop in a circular tube with multiple inserts. Appl. Therm. Eng. 96(2016), 117–129.
[15] Alzahrani S., Usman S.: CFD simulations of the effect of in-tube twisted tape design on heat transfer and pressure drop in natural circulation. Therm. Sci. Eng. Prog. 11(2019), 325–333.
[16] Bhuiya M.M.K., Sayema A.S.M., Islam M, Chowdhury M.S.U., Shahabuddin M.: Performance assessment in a heat exchanger tube fitted with double counter twisted tape inserts. Int. Commun. Heat Mass Tran. 50(2014), 25–33.
[17] Suri A., Kumar A., Maithani R.: Heat transfer enhancement of heat exchanger tube with multiple square perforated twisted tape inserts. Exp. Invest. Corr. Dev. 116(2017) 76–96.
[18] Nakhchi M.E., Esfahani J.A.: Performance intensification of turbulent flow through heat exchanger tube using double V-cut twisted tape inserts. Chem. Eng. Process. Process Intensific. 141(2019), 107533.
[19] Nakhchi M.E., Esfahani J.A.: Numerical investigation of rectangular-cut twisted tape insert on performance improvement of heat exchangers. Int. J. Therm. Sci. 138(2019), 75–83.
[20] Hong Y., Du J., Li Q., Xu T., Li W.: Thermal-hydraulic performances in multiple twisted tapes inserted sinusoidal rib tube heat exchangers for exhaust gas heat recovery applications. Energ. Convers. Manage. 185(2019), 271–290.
[21] Bas H., Ozceyhan V.: Heat transfer enhancement in a tube with twisted tape inserts placed separately from the tube wall. Exp. Therm. Fluid Sci. 41(2012), 51–58.
[22] Sarviya R.M., Fuskele V.: Heat transfer and pressure drop in a circular tube fitted with twisted tape insert having continuous cut edges. J. Energ. Stor. 19(2018), 10–14.
[23] Reddy V., Kumar S., Gugulothu R., Anuja K., Rao V.: CFD analysis of a helically coiled tube in tube heat exchanger. Sci. Direct Mater. Today Proc. 4(2017), 2341–2349.
[24] Keklikcioglu O., Ozceyhan V.: Experimental investigation on heat transfer enhancement in a circular tube with equilateral triangle cross sectional coiled wire insert. Appl. Therm. Eng. 131(2018), 686–695.
[25] Gholamalizadeh E., Hosseini E., Jamanani M., Amiri A., Sare A., Alimoradi A.: Study of intensification of the heat transfer in helically coiled tube heat exchanger via coiled wire inserts. Int. J. Therm. Sci. 141(2019), 72–83.
[26] Sheikholeslami M., Gorji-Bandpy M., Ganji D.: Effect of discontinuous helical turbulators on heat transfer characteristics of double pipe water to air heat exchanger. Energ. Convers. Manage 118(2016), 75–87.
[27] Eiamsa-ard S., Nivesrangsan P., Chokphoemphun S., Promvonge P.: Influence of combined non-uniform wire coil and twisted tape inserts on thermal performance characteristics. Int. Commun. Heat Mass Tran. 37(2010), 850–856.
[28] Kongkaitpaiboon V., Nanan K., Eiamsa-ard S.: Experimental investigation of convective heat transfer and pressure loss in a round tube fitted with circular-ring turbulators. Int. Commun. Heat Mass Tran. 37(2010), 568–574.
[29] Kumar A., Chamoli S., Kumar M., Singh S.: Experimental investigation on thermal performance and fluid flow characteristics in circular cylindrical tube with circular perforated ring inserts. Exp. Therm. Fluid Sci. 79(2016), 168–174.
[30] Singh S., Negi J., Bisht S., Sah H.: Thermal performance and frictional losses study of solid hollow circular disc with rectangular wings in circular tube. Heat Mass Tran. 55(2019), 2975–2986.
[31] Pandey L., Singh S.: Numerical analysis for heat transfer augmentation in circular tube heat exchanger using triangular perforated Y-shape insert. Fluids 6(2021), 7, 247.
[32] Zong Y., Bai D., Zhou M., Zhao L.: Numerical studies on heat transfer enhancement by hollow-cross disk for cracking coils. Chem. Eng. Process. Process Intensific. 135(2019), 82–92.
[33] Bartwal A., Gautam A., Kumar M., Mamgrulkar C., Chamoli S.: Thermal performance intensification of a circular heat exchanger tube integrated with compound circular ring-metal wire net inserts. Chem. Eng. Process. Process Intensific. 124(2018), 50–70.
[34] Nakchi M.E, Esfahani J.A.: Numerical investigation of different geometrical parameters of perforated conical rings on flow structure and heat transfer in heat exchanger. Appl. Therm. Eng. 156(2019), 494–505.
[35] Gururatana S., Skullong S.: Experimental investigation of heat transfer in a tube heat exchanger with airfoil-shaped insert. Case Stud. Therm. Eng. 14(2019).
[36] Skullong S., Promvonge P., Jayranaiwachira N., Thianpong C.: Experimental and numerical heat transfer investigation in a tubular heat exchanger with delta-wing tape inserts. Chem. Eng. Process. 109(2016), 164–177.
[37] Navickaite K., Cattani L., Bahl C., Engelbrecht K.: Elliptical double corrugated tubes for enhanced heat transfer. Int. J. Heat Mass Tran. 128(2019) 363–377.
[38] Andrzejczyk R., Muszynski T., Gosz M.: Experimental investigations on heat transfer enhancement in shell coil heat exchanger with variable baffles geometry. Chem. Eng. Process. 132(2018), 114–126.
[39] Hameed V., Hussein M.: Effect of new type of enhancement on inside and outside surface of the tube side in single pass heat Exchanger. Appl. Therm. Eng. 122(2017), 484–491.
[40] Nagarajan P.K., Sivashanmugam P.: Heat transfer enhancement studies in a circular tube fitted with right-left helical inserts with spacer. World Ac. Sci., Eng. Technol., Int. J. Mech. Mechatron. Eng. 5(2011), 10, 2091–2095.
[41] Promvonge P., Koolnapadol N., Pimsarn M., Thianpong C.: Thermal performance enhancement in a heat exchanger tube fitted with inclined vortex rings. Appl. Therm. Eng. 62(2014), 285–292.
[42] Sripattanapipat S., Tamna S., Jayranaiwachira N., Promvonge P.: Numerical heat transfer investigation in a heat exchanger tube with hexagonal conical-ring inserts. Energy Proced. 100(2016), 522–525.
[43] Liang Y., Liu P., Zheng N., Shan F., Liu Z., Liu W.: Numerical investigation of heat transfer and flow characteristics of laminar flow in a tube with center-tapered wavy-tape insert. Appl. Therm. Eng. 148(2019), 557–567.
[44] Skullong S., Promvonge P., Thianpong C., Jayranaiwachira N., Pimsarn M.: Thermal performance of heat exchanger tube inserted with curved-winglet tapes. Appl. Therm. Eng. 129(2018), 1197–1211.
[45] Yaningsih I., Wijayanta A., Miyazaki T., Koyama S.: Thermal hydraulic characteristics of turbulent single-phase flow in an enhanced tube using louvered strip insert with various slant angles. Int. J. Therm. Sci. 134(2018), 355–362.
[46] Modi A., Kalel N., Rathod M.: Thermal performance augmentation of finand- tube heat exchanger using rectangular winglet vortex generators having circular punched holes. Int. J. Heat Mass Tran. 158(2020), 119724.
[47] Webb R.L., Kim N.H.: Principles of Enhanced Heat Transfer (2nd Edn.). Taylor Francis, New York 2005. [48] Klein S.J., McClintock A.: The description of uncertainties in a single sample experiments. Mech. Eng. 75(1953), 3–8.
[49] Kumar A., Chamoli S., Kumar M.: Experimental investigation on thermal performance and fluid flow characteristics in heat exchanger tube with solid hollow circular disk inserts. Appl. Therm. Eng. 100(2016), 227–236.
[50] Keklikcioglu O., Ozceyhan V.: Entropy generation analysis for a circular tube with equilateral triangle cross sectioned coiled-wire inserts. Energy 139(2017), 65–75.
[51] Singh S., Kharkwal H., Gautam A., Pandey A.: CFD analysis for thermohydraulic properties in a tubular heat exchanger using curved circular rings. J. Therm. Anal. Calorim. 141(2020), 2211–2218.
[52] Siddique W., Raheem A., Aqeel M., Qayyum S., Salamen T., Waheed K., Qureshi K.: Evaluation of thermal performance factor for solar airheaters with artificially roughened channels. Arch. Mech. Eng. 68(2021), 195–225.
[53] Menni Y., Chamkha A., Zidani C., Benyoucef B.: Analysis of thermo-hydraulic performanceof a solar air heater tube with modern obstacles. Arch. Thermodyn. 41(2020), 3, 33–56.
[54]
https://www.ansys.com/products/fluids/ansys-fluent [55]
https://idoc.pub/queue/ansys-fluent-users-guide-d49o6jd0g649 [56] Benlekkam M., Nehar D.: Hybrid nano improved phase change material for latent thermal energy storage system: Numerical study. Arch. Mech. Eng. 69(2022), 77–98.