Details
Title
Fractional order, discrete model of heat transfer process using time and spatial Grünwald-Letnikov operatorJournal title
Bulletin of the Polish Academy of Sciences Technical SciencesYearbook
2021Volume
69Issue
No. 1Authors
Affiliation
Oprzędkiewicz, Krzysztof : AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, PolandKeywords
fractional order systems ; heat transfer equation ; fractional order state equation ; Fractional Order Backward Difference ; Grünwald-Letnikov operator ; practical stabilityDivisions of PAS
Nauki TechniczneCoverage
e135843Bibliography
- S. Das, Functional Fractional Calculus for System Identification and Controls, Springer, Berlin, 2010.
- R. Caponetto, G. Dongola, L. Fortuna, and I. Petras, “Fractional order systems: Modeling and Control Applications”, in World Scientific Series on Nonlinear Science, ed. L.O. Chua, pp. 1–178, University of California, Berkeley, 2010.
- A. Dzieliński, D. Sierociuk, and G. Sarwas, “Some applications of fractional order calculus”, Bull. Pol. Ac.: Tech. 58(4), 583– 592 (2010).
- C.G. Gal and M. Warma, “Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions”, Evol. Equ. Control Theory 5(1), 61–103 (2016).
- E. Popescu, “On the fractional Cauchy problem associated with a feller semigroup”, Math. Rep. 12(2), 81–188 (2010).
- D. Sierociuk et al., “Diffusion process modeling by using fractional-order models”, Appl. Math. Comput. 257(1), 2–11 (2015).
- J.F. Gómez, L. Torres, and R.F. Escobar (eds.), “Fractional derivatives with Mittag-Leffler kernel trends and applications in science and engineering”, in Studies in Systems, Decision and Control, vol. 194, ed. J. Kacprzyk, pp. 1–339. Springer, Switzerland, 2019.
- M. Dlugosz and P. Skruch, “The application of fractional-order models for thermal process modelling inside buildings”, J. Build Phys. 1(1), 1–13 (2015).
- A. Obrączka, Control of heat processes with the use of noninteger models. PhD thesis, AGH University, Krakow, Poland, 2014.
- A. Rauh, L. Senkel, H. Aschemann, V.V. Saurin, and G.V. Kostin, “An integrodifferential approach to modeling, control, state estimation and optimization for heat transfer systems”, Int. J. Appl. Math. Comput. Sci. 26(1), 15–30 (2016).
- T. Kaczorek, “Singular fractional linear systems and electri cal circuits”, Int. J. Appl. Math. Comput. Sci. 21(2), 379–384 (2011).
- T. Kaczorek and K. Rogowski, Fractional Linear Systems and Electrical Circuits, Bialystok University of Technology, Bialystok, 2014.
- I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
- B. Bandyopadhyay and S. Kamal, “Solution, stability and realization of fractional order differential equation”, in Stabilization and Control of Fractional Order Systems: A Sliding Mode Approach, Lecture Notes in Electrical Engineering 317, pp. 55–90, Springer, Switzerland, 2015.
- D. Mozyrska, E. Girejko, M. Wyrwas, “Comparison of hdifference fractional operators”, in Advances in the Theory and Applications of Non- integer Order Systems, eds. W. Mitkowski et al., pp. 1–178. Springer, Switzerland, 2013.
- P. Ostalczyk, “Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains”, Int. J. Appl. Math. Comput. Sci. 22(3), 533–538 (2012).
- E.F. Anley and Z. Zheng, “Finite difference approximation method for a space fractional convection–diffusion equation with variable coefficients”, Symmetry 12(485), 1–19 (2020).
- P. Ostalczyk, Discrete Fractional Calculus. Applications in Control and Image Processing, World Scientific, New Jersey, London, Singapore, 2016.
- M. Buslowicz and T. Kaczorek, “Simple conditions for practical stability of positive fractional discrete-time linear systems”, Int. J. Appl. Math. Comput. Sci. 19(2), 263–269 (2009).
- R. Brociek and D. Słota, “Implicit finite difference method for the space fractional heat conduction equation with the mixed boundary condition”, Silesian J. Pure Appl. Math. 6(1), 125–136 (2016).
- D. Mozyrska and E. Pawluszewicz, “Fractional discrete-time linear control systems with initialization”, Int. J. Control 1(1), 1–7 (2011).
- K. Oprzędkiewicz, “The interval parabolic system”, Arch. Control Sci. 13(4), 415–430 (2003).
- K. Oprzędkiewicz, “A controllability problem for a class of uncertain parameters linear dynamic systems”, Arch. Control Sci. 14(1), 85–100 (2004).
- K. Oprzędkiewicz, “An observability problem for a class of uncertain-parameter linear dynamic systems”, Int. J. Appl. Math. Comput. Sci. 15(3), 331–338 (2005).
- A. Dzieliński and D. Sierociuk, “Stability of discrete fractional order state-space systems”, in Proc. of the 2nd IFAC Workshop on Fractional Differentiation and its Applications, Porto, Portugal, 2006, pp. 505–510.