Details
Title
Automated test bench for research on electrostatic separation in plastic recycling applicationJournal title
Bulletin of the Polish Academy of Sciences Technical SciencesYearbook
2021Volume
69Issue
2Authors
Affiliation
Regulski, Roman : Institute of Mechanical Technology, Poznan University of Technology, 60-965 Poznań, Poland ; Czarnecka-Komorowska, Dorota : Institute of Materials Technology, Poznan University of Technology, 60-965 Poznań, Poland ; Jędryczka, Cezary : Institute of Electrical Engineering and Electronics, Poznan University of Technology, 60-965 Poznań, Poland ; Sędziak, Dariusz : Institute of Mechanical Technology, Poznan University of Technology, 60-965 Poznań, Poland ; Rybarczyk, Dominik : Institute of Mechanical Technology, Poznan University of Technology, 60-965 Poznań, Poland ; Netter, Krzysztof : Institute of Mechanical Technology, Poznan University of Technology, 60-965 Poznań, Poland ; Barański, Mariusz : Institute of Electrical Engineering and Electronics, Poznan University of Technology, 60-965 Poznań, Poland ; Barczewski, Mateusz : Institute of Materials Technology, Poznan University of Technology, 60-965 Poznań, PolandKeywords
recycling ; automotive plastics waste ; separation ; electrostatic separatorDivisions of PAS
Nauki TechniczneCoverage
e136719Bibliography
- J. Flizikowski and M. Macko, “Competitive design of shredder for plastic in recycling”, Tools And Methods Of Competitive Engineering 1(2), 1147–1148 (2004).
- M. Macko, K. Tyszczuk, G. Śmigielski, J. Flizikowski, and A. Mroziński, “The use of CAD applications in the design of shredders for polymers”, MATEC Web of Conferences 157, 02027 (2018), doi: 10.1051/matecconf/201815702027.
- D. Czarnecka-Komorowska and K. Wiszumirska, “Sustainability design of plastic packaging for the Circular Economy”, Polimery 65(1), 8–17 (2020), doi: 10.14314/polimery.2020.1.2.
- D. Czarnecka-Komorowska, K. Wiszumirska, and T. Garbacz, “Films LDPE/LLDPE made from post–consumer plastics: processing, structure, mechanical properties”, Adv. Sci. Technol. Res. J. 12(3), 134–142 (2018).
- Directive 2000/53/EC of the European Parliament and of the Council of 18 September 2000 on end-of life vehicles – Commission Statements, 2020.
- End-of-life vehicle statistics – Eurostat. [Online] https://ec.europa.eu/eurostat/statistics-explained/index.php?title=End-of-life_vehicle_ statistics (accessed Feb. 26, 2020).
- M. Macko, Z. Szczepanski, E. Mikolajewska, J. Nowak, and D. Mikolajewski, “Repository of 3D images for education and everyday clinical practice purposes”, Bio-Algorithms Med-Syst. 13(2), 111–116 (2017).
- J. Kopowski, I. Rojek, D. Mikołajewski, and M. Macko, “3D printed hand exoskeleton-own concept”, in Advances in manufacturing II, pp. 298–306, Springer, 2019.
- G. Dodbiba and T. Fujita, “Progress in separating plastic materials for recycling”, Phys. Sep. Sci. Eng. 13(3–4), 165–182 (2004).
- P. Krawiec, L. Różański, D. Czarnecka-Komorowska, and Ł. Warguła, “Evaluation of the thermal stability and surface characteristics of thermoplastic polyurethane V-Belt”, Materials 13(7), 1502 (2020).
- S.A. Pradeep, R.K. Iyer, H. Kazan, and S. Pilla, “Automotive applications of plastics: past, present, and future”, in Applied Plastics Engineering Handbook, 651–673, Elsevier, 2017.
- X. Yang, X. Liu, L. Song, C. Y. Lv, and X. Cheng, “Study on the separators for plastic wastes processing”, Procedia Eng. 174, 497–503 (2017).
- S. Serranti and G. Bonifazi, “Techniques for separation of plastic wastes”, in Use of Recycled Plastics in Eco-efficient Concrete, pp. 9–37, Elsevier, 2019.
- K.C. Lai, S.K. Lim, P.C. Teh, and K.H. Yeap, “An artificial neural network approach to predicting electrostatic separation performance for food waste recovery”, Pol. J. Environ. Stud. 26(4), 1921–1926 (2017), doi: 10.15244/pjoes/68963.
- J. Wang, M. de Wit, R. M. Boom, and M.A.I. Schutyser, “Charging and separation behavior of gluten–starch mixtures assessed with a custom-built electrostatic separator”, Sep. Purif. Technol. 152, 164–171 (2015), doi: 10.1016/j.seppur.2015.08.025.
- S. Tabtabaei, D. Konakbayeva, A. R. Rajabzadeh, and R.L. Legge, “Functional properties of navy bean (Phaseolus vulgaris) protein concentrates obtained by pneumatic tribo-electrostatic separation”, Food Chem. 283, 101–110 (2019), doi: 10.1016/j.foodchem.2019.01.031.
- J. Wang, J. Zhao, M. de Wit, R.M. Boom, and M.A.I. Schutyser, “Lupine protein enrichment by milling and electrostatic separation”, Innovative Food Sci. Emerg. Technol. 33, 596–602 (2016), doi: 10.1016/j.ifset.2015.12.020.
- A. Iuga, L. Calin, V. Neamtu, A. Mihalcioiu, and L. Dascalescu, “Tribocharging of plastics granulates in a fluidized bed device”, J. Electrostat. 63(6), 937–942 (2005), doi: 10.1016/j.elstat.2005.03.064.
- L. Calin et al., “Tribocharging of Granular Plastic Mixtures in View of Electrostatic Separation”, IEEE Trans. Ind. Appl. 44(4), 1045–1051 (2008), doi: 10.1109/TIA.2008.926689.
- M. Żenkiewicz, T. Żuk, and J. Pietraszek, “Modeling electrostatic separation of mixtures of poly(ε-caprolactone) with poly(vinyl chloride) or poly(ethylene terephthalate)”, Przem. Chem. 95(9), 1687–1692 (2016), doi: 10.15199/62.2016.9.6.
- A. Cieśla, M. Skowron, and P. Syrek, “Elektryzacja ziaren węgla metodą tryboelektryczną”, Przegląd Elektrotechniczny, 1(1), 129–132 (2017), doi: 10.15199/48.2017.01.31.
- H. Lu, J. Li, J. Guo, and Z. Xu, “Movement behavior in electrostatic separation: Recycling of metal materials from waste printed circuit board”, J. Mater. Process. Technol. 197(1), 101–108 (2008), doi: 10.1016/j.jmatprotec.2007.06.004.
- T. Dziubak, “Experimental research on separation efficiency of aerosol particles in vortex tube separators with electric field”, Bull. Pol. Acad. Sci. Tech. Sci. 68(3), 503–516 (2020).
- L. Dascalescu et al., “Factors that influence the efficiency of a fluidized-bed-type tribo-electrostatic separator for mixed granular plastics”, J. Phys. Conf. Ser. 301, 012066 (2011), doi: 10.1088/1742-6596/301/1/012066.
- A. Cieśla, W. Kraszewski, M. Skowron, A. Surowiak, and P. Syrek, “Application of electrodynamic drum separator to electronic wastes separation”, Min. Res. Manag. 32(1), 155–174 (2016), doi: 10.1515/gospo-2016-0007.
- H.M. Veit, T.R. Diehl, A.P. Salami, J.S. Rodrigues, A.M. Bernardes, and J. A. S. Tenório, “Utilization of magnetic and electrostatic separation in the recycling of printed circuit boards scrap”, Waste Manage. 25(1), 67–74 (2005), doi: 10.1016/j.wasman.2004.09.009.
- U. Śliwa and M. Skowron, “Analysis of the electric field distribution in the drum separator of different electrode configuration”, IAPGOS, 6, 79–82 (2016).
- L. Dascalescu, T. Zeghloul, and A. Iuga, “Chapter 4 – Electrostatic separation of metals and plastics from waste electrical and electronic equipment”, in WEEE Recycling, 75–106, 2016.
- G. Bedeković, B. Salopek, and I. Sobota, “Electrostatic separation of PET/PVC mixture”, Tech. Gaz. 18(2), 261–266 (2011).
- L. Calin, A. Mihalcioiu, A. Iuga, and L. Dascalescu, “Fluidized bed device for plastic granules triboelectrification”, Part. Sci. Technol. 25(2), 205–211 (2007), doi: 10.1080/02726350701257782.
- T. Zeghloul, A. Mekhalef Benhafssa, G. Richard, K. Medles, and L. Dascalescu, “Effect of particle size on the tribo-aero-electrostatic separation of plastics”, J. Electrostat. 88, 24–28 (2017), doi: 10.1016/j.elstat.2016.12.003.
- M. Mirkowska, M. Kratzer, C. Teichert, and H. Flachberger, “Principal factors of contact charging of minerals for a successful triboelectrostatic separation process – a review”, Berg Huettenmaenn Monatsh 161(8), 359–382 (2016), doi: 10.1007/s00501-016-0515-1.
- M. Dötterl et al., “Electrostatic Separation”, in Ullmann’s Encyclopedia of Industrial Chemistry, pp. 1–35, Wiley-VCH Verlag GmbH & Co. KGaA, 2016, doi: 10.1002/14356007.b02_20.pub2.
- M. Lungu, “Electrical separation of plastic materials using the triboelectric effect”, Miner. Eng. 17(1), 69–75 (2004).
- A. Benabderrahmane, K. Medles, T. Zeghloul, P. Renoux, L. Dascalescu, and A. Parenty, “Triboelectrostatic separation of brominated f lame retardants polymers from mixed granular wastes”, in 2019 IEEE Industry Applications Society Annual Meeting, Baltimore, USA, 2019, pp. 1–4, doi: 10.1109/IAS.2019.8912375.
- M. Żenkiewicz and T. Żuk, “Physical basis of tribocharging and electrostatic separation of plastics”, Polimery 59(4), 314–323 (2014), doi: 10.14314/polimery.2014.314.
- Y. Wu, G.S.P. Castle, and I.I. Inculet, “Induction charging of granular materials in an electric field”, in Conference Record of the 2004 IEEE Industry Applications Conference. 39th IAS Annual Meeting, 2004, pp. 2366‒2372 vol. 4, doi: 10.1109/IAS.2004.1348806.
- F. Portoghese, F. Berruti, and C. Briens, “Continuous on-line measurement of solid moisture content during fluidized bed drying using triboelectric probes”, Powder Technol. 181(2), 169–177 (2008), doi: 10.1016/j.powtec.2007.01.003.
- J.-K. Lee, J.-H. Shin, and Y.-J. Hwang, “Triboelectrostatic separation system for separation of PVC and PS materials using fluidized bed tribocharger”, KSME Inter. J. 16(10), 1336–1345 (2002), doi: 10.1007/BF02983841.
- L. Dascalescu et al., “Charges and forces on conductive particles in roll-type corona-electrostatic separators”, IEEE Trans. Ind. Appl. 31(5), 947–956, (1995), doi: 10.1109/28.464503.
- Y.E. Prawatya, M.B. Neagoe, T. Zeghloul, and L. Dascalescu, “Surface-electric-potential characteristics of tribo- and corona-charged polymers: a comparative study”, IEEE Trans. Ind. Appl. 53(3), 2423–2431 (2017), doi: 10.1109/TIA.2017.2650145.
- Y. Prawatya, B. Neagoe, T. Zeghloul, and L. Dascalescu, “Comparison between the surface-electric-potential characteristics of tribo- and corona- charged polymers”, in 2015 IEEE Industry Applications Society Annual Meeting, 2015, pp. 1–5, doi: 10.1109/IAS.2015.7356756.
- M. Maammar, W. Aksa, M. F. Boukhoulda, S. Touhami, L. Dascalescu, and T. Zeghloul, “Modeling and simulation of nonconductive particles trajectories in a multifunctional electrostatic separator”, IEEE Trans. on Ind. Applicat. 55(5), 5244–5252 (2019), doi: 10.1109/ TIA.2019.2920805.
- K. Flynn, A. Gupta, and F. Hrach, “Electrostatic Separation of Dry Granular Plant Based Food Materials – ST Equipment & Technology (STET)”, 2017. [Online]. Available: https://steqtech.com/electrostatic-separation-dry-granular-plant-based-food-materials/.
- D. Czarnecka-Komorowska, K. Grześkowiak, P. Popielarski, M. Barczewski, K. Gawdzińska, and M. Popławski, “Polyethylene wax modified by organoclay bentonite used in the lost-wax casting process: processing-structure property relationships”, Materials 13(10), 2255 (2020).
- Ł. Knypiński, “Optimal design of the rotor geometry of line-start permanent magnet synchronous motor using the bat algorithm”, Open Phys. 15(1), 965–970 (2017).
- Ł. Knypiński, K. Pawełoszek, and Y. Le Menach, “Optimization of low-power line-start PM motor using gray wolf metaheuristic algorithm”, Energies 13(5), 1186 (2020), doi: 10.3390/en13051186.
- I. Rojek and E. Dostatni, “Machine learning methods for optimal compatibility of materials in ecodesign”, Bull. Pol. Acad. Sci. Tech. Sci. 68(2), 199–206 (2020).