Details
Title
The measurements of surface defect area with an RGB-D camera for a BIM-backed bridge inspectionJournal title
Bulletin of the Polish Academy of Sciences Technical SciencesYearbook
2021Volume
69Issue
3Authors
Affiliation
Wójcik, Bartosz : Department of Mechanics and Bridges, Faculty of Civil Engendering, Silesian University of Technology, ul. Akademicka 5, 44-100 Gliwice, Poland ; Żarski, Mateusz : Department of Mechanics and Bridges, Faculty of Civil Engendering, Silesian University of Technology, ul. Akademicka 5, 44-100 Gliwice, PolandKeywords
3D reconstruction ; RGB-D camera ; depth sensing ; bridge inspection ; as-is BIMDivisions of PAS
Nauki TechniczneCoverage
e137123Bibliography
- J.S. Kong and D.M. Frangopol, “Life-Cycle Reliability-Based Maintenance Cost Optimization of Deteriorating Structures with Emphasis on Bridges”, J. Struct. Eng. 129(6), 818–828 (2003).
- B.M. Phares, G.A. Washer, D.D. Rolander, B.A. Graybeal, and M. Moore, “Routine Highway Bridge Inspection Condition Documentation Accuracy and Reliability”, J. Bridg. Eng. 9(4), 403–413 (2004).
- A. Costin, A. Adibfar, H. Hu, and S.S. Chen, “Building Information Modeling (BIM) for transportation infrastructure – Literature review, applications, challenges, and recommendations”, Autom. Constr. 94, 257–281 (2018).
- “SeeBridge”. [Online]. Available: https://seebridge.net.technion.ac.il/.
- R. Sacks et al., “SeeBridge as next generation bridge inspection: Overview, Information Delivery Manual and Model View Definition”, Autom. Constr. 90, 134–145 (2018).
- P. Hüthwohl, I. Brilakis, A. Borrmann, and R. Sacks, “Integrating RC Bridge Defect Information into BIM Models”, J. Comput. Civ. Eng. 32(3), (2018).
- P. Hüthwohl and I. Brilakis, “Detecting healthy concrete surfaces”, Adv. Eng. Informatics 37, 150–162 (2018).
- P. Hüthwohl, R. Lu, and I. Brilakis, “Multi-classifier for reinforced concrete bridge defects”, Autom. Constr. 105, 102824 (2019).
- R. Lu, I. Brilakis and C. R. Middleton, “Detection of Structural Components in Point Clouds of Existing RC Bridges”, Comput. Civ. Infrastruct. Eng. 34(3), 191–212 (2019).
- R. Lu and I. Brilakis, “Digital twinning of existing reinforced concrete bridges from labelled point clusters”, Autom. Constr. 105, 102837 (2019).
- D. Isailović, V. Stojanovic, M. Trapp, R. Richter, R. Hajdin, and J. Döllner, “Bridge damage: Detection, IFC-based semantic enrichment and visualization”, Autom. Constr. 112, 103088 (2020).
- C.S. Shim, H. Kang, N.S. Dang, and D. Lee, “Development of BIM-based bridge maintenance system for cable-stayed bridges”, Smart Struct. Syst. 20(6), 697–708 (2017).
- N.S. Dang and C.S. Shim, “BIM authoring for an image-based bridge maintenance system of existing cable-supported bridges”, IOP Conf. Ser. Earth Environ. Sci. 143(1), 012032 (2018).
- S. Dang, H. Kang, S. Lon, and S. Changsu, “3D Digital Twin Models for Bridge Maintenance”, 10th Int. Conf. Short Mediu. Span Bridg., 2018, pp. 73.1‒73.9.
- C.S. Shim, N.S. Dang, S. Lon, and C.H. Jeon, “Development of a bridge maintenance system for prestressed concrete bridges using 3D digital twin model”, Struct. Infrastruct. Eng. 15(10), 1319–1332 (2019).
- Z. Ma and S. Liu, “A review of 3D reconstruction techniques in civil engineering and their applications”, Adv. Eng. Informatics 37, 163–174 (2018).
- Q. Wang and M.K. Kim, “Applications of 3D point cloud data in the construction industry: A fifteen-year review from 2004 to 2018”, Adv. Eng. Informatics 39, 306–319 (2019).
- C. Popescu, B. Täljsten, T. Blanksvärd, and L. Elfgren, “3D reconstruction of existing concrete bridges using optical methods”, Struct. Infrastruct. Eng. 15(7), 912–924 (2019).
- S. Izadi et al., “KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera”, in Proceedings of the 24th annual ACM symposium on User interface software and technology – UIST ’11, 2011, p. 559.
- J. Hoła, J. Bień, Ł. Sadowski, and K. Schabowicz, “Non-destructive and semi-destructive diagnostics of concrete structures in assessment of their durability”, Bull. Polish Acad. Sci. Tech. Sci. 63(1), 87–96 (2015).
- J. Bień, T. Kamiński, and M. Kużawa, “Taxonomy of non-destructive field tests of bridge materials and structures”, Arch. Civ. Mech. Eng. 19(4), 1353–1367 (2019).
- J. Bień, M. Kużawa, and T. Kamiński, “Strategies and tools for the monitoring of concrete bridges”, Struct. Concr. 21(4), 1227–1239 (2020).
- “OpenCV AI Kit”. [Online]. Available: https://www.kickstarter.com/projects/opencv/opencv-ai-kit.
- B. Liu, H. Cai, Z. Ju, and H. Liu, “RGB-D sensing based human action and interaction analysis: A survey”, Pattern Recognit. 94, 1–12 (2019).
- Y.-D. Hong, Y.-J. Kim, and K.-B. Lee, “Smart Pack: Online Autonomous Object-Packing System Using RGB-D Sensor Data”, Sensors 20(16), 4448 (2020).
- M.R. Jahanshahi, F. Jazizadeh, S.F. Masri, and B. Becerik-Gerber, “Unsupervised approach for autonomous pavement-defect detection and quantification using an inexpensive depth sensor”, J. Comput. Civ. Eng. 27(6), 743–754 (2013).
- D. Roca, S. Lagüela, L. Díaz-Vilariño, J. Armesto, and P. Arias, “Low-cost aerial unit for outdoor inspection of building façades”, Autom. Constr. 36, 128–135 (2013).
- C. Bellés and F. Pla, “A Kinect-Based System for 3D Reconstruction of Sewer Manholes”, Comput. Civ. Infrastruct. Eng. 30(11), 906–917 (Nov. 2015).
- M. Abdelbarr, Y.L. Chen, M.R. Jahanshahi, S.F. Masri, W.M. Shen, and U.A. Qidwai, “3D dynamic displacement-field measurement for structural health monitoring using inexpensive RGB-D based sensor”, Smart Mater. Struct. 26(12) (2017).
- Z. Xu, S. Li, H. Li, and Q. Li, “Modeling and problem solving of building defects using point clouds and enhanced case-based reasoning”, Automation in Construction 96(February), 40–54 (2018).
- M. Nahangi, T. Czerniawski, C.T. Haas, and S. Walbridge, “Pipe radius estimation using Kinect range cameras”, Autom. Constr. 99 (March 2017), 197–205 (2019).
- G.H. Beckman, D. Polyzois, and Y.J. Cha, “Deep learning-based automatic volumetric damage quantification using depth camera”, Automation in Construction 99(November 2018), 114–124 (2019).
- H. Kim, S. Lee, E. Ahn, M. Shin, and S.-H. Sim, “Crack identification method for concrete structures considering angle of view using RGB-D camera-based sensor fusion”, Struct. Heal. Monit., 1–13 (2020).
- Intel, “Intel® RealSenseTM Camera D400 series Product Family Datasheet” (2019).
- C. Rother, V. Kolmogorov, and A. Blake, “‘GrabCut’: interactive foreground extraction using iterated graph cuts”, in ACM SIGGRAPH 2004 Papers on – SIGGRAPH ’04, 2004, p. 309.
- Y. Li, J. Sun, C.K. Tang, and H.Y. Shum, “Lazy snapping”, ACM SIGGRAPH 2004 Pap. SIGGRAPH 2004, 303–308 (2004).
- M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models”, Int. J. Comput. Vis. 1(4), 321–331 (Jan. 1988).
- M.A. Fischler and R.C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography”, Commun. ACM 24(6), 381–395 (1981).
- D. Holz and S. Behnke, “Fast Range Image Segmentation and Smoothing Using Approximate Surface Reconstruction and Region Growing”, 2013, 61–73.
- M. Garland and P.S. Heckbert, “Surface simplification using quadric error metrics”, in Proceedings of the 24th annual conference on Computer graphics and interactive techniques – SIGGRAPH ’97, 1997, 209–216.
- Intel, “Intel® RealSenseTM Camera: Depth testing methodology”, 2018.
- B. Wójcik and M. Żarski, “Asesment of state-of-the-art methods for bridge inspection: case study”, Arch. Civ. Eng. 66(4), 343‒362 (2020).
- K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN”, IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 386–397 (2017).