Details
Title
Evaluation of medical service quality based on a novel multi-criteria decision-making method with unknown weighted informationJournal title
Archives of Control SciencesYearbook
2021Volume
vol. 31Issue
No 3Affiliation
Zhao, Butian : School of Management and Economic, Beijing Jiaotong University, Beijing, 100044, China ; Zhang, Runtong : School of Management and Economic, Beijing Jiaotong University, Beijing, 100044, China ; Xing, Yuping : Glorious Sun School of Business and Management, DongHua University, Shanghai, 200051, ChinaAuthors
Keywords
interval-valued q-rung dual hesitant fuzzy set ; Maclaurin symmetric mean operator ; multi-criteria decision-making ; aggregation operatorsDivisions of PAS
Nauki TechniczneCoverage
645-685Publisher
Committee of Automatic Control and Robotics PASBibliography
[1] C. Teng, C. Ing, H. Chang, and K. Chung: Development of service quality scale for surgical hospitalization. Journal of the Formosan Medical Association, 106(6), (2007), 475–484, DOI: 10.1016/S0929-6646(09)60297-7.[2] I. Otay, B. Öztaysi, S. Çevik, and C. Kahraman: Multi-expert performance evaluation of healthcare institutions using an integrated intuitionistic fuzzy AHP&DEA methodology. Knowledge-Based Systems, 33 (2017), 90– 106, DOI: 10.1016/j.knosys.2017.06.028.
[3] J. Shieh, H. Wu, and K. Huang: A DEMATEL method in identifying key success factors of hospital service quality. Knowledge Based Systems, 23(3), (2010), 277–282, DOI: 10.1016/j.knosys.2010.01.013.
[4] M.L. Mccarthy, R. Ding, and S.L. Zeger: A randomized controlled trial of the effect of service delivery information on patient satisfaction in an emergency department fast track. Academic Emergency Medicine, 18(7), (2011), 674–685, DOI: 10.1111/j.1553-2712.2011.01119.x.
[5] L. Fei, J. Lu, and Y. Feng: An extended best-worst multi-criteria decisionmaking method by belief functions and its applications in hospital service evaluation. Computers&Industrial Engineering, 142, (2020), 106355, DOI: 10.1016/j.cie.2020.106355.
[6] E.K. Zavadskas, Z. Turskis, and S. Kildien˙e: State of art surveys of overviews on MCDM/MADM methods. Technological and Economic Development of Economy, 20(1), (2014), 165–179, DOI: 10.3846/20294913.2014.892037.
[7] Y. Xing, R. Zhang, M. Xia,and J. Wang: Generalized point aggregation operators for dual hesitant fuzzy information. Journal of Intelligent and Fuzzy Systems, 33(1), (2017), 515–527, DOI: 10.3233/JIFS-161922.
[8] F. Zhang, S.Wang, J. Sun, J. Ye, and G.K. Liew:Novel parameterized score functions on interval-valued intuitionistic fuzzy sets with three fuzziness measure indexes and their application. IEEE Access, 7, (2018), 8172–8180, DOI: 10.1109/ACCESS.2018.2885794.
[9] H. Zhang, R. Zhang, and H. Huang: Some picture fuzzy dombi heronian mean operators with their application to multi-attribute decision-making. Symmetry, 10(11), (2018), 593, DOI: 10.3390/sym10110593.
[10] K.T. Atanassov: Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), (1986), 87–96, DOI: 10.1016/S0165-0114(86)80034-3.
[11] R.R.Yager: Pythagorean membership grades in multicriteria decision making. IEEE Transactions on Fuzzy Systems, 22(4), (2014), 958–965, DOI: 10.1109/TFUZZ.2013.2278989.
[12] J. Wang, R. Zhang, X. Zhu, Z. Zhou, X. Shang, and W. Li: Some q-rung orthopair fuzzy Muirhead means with their application to multi-attribute group decision making. Journal of Intelligent and Fuzzy Systems, 36(2), (2019), 1599–1614, DOI: 10.3233/JIFS-18607.
[13] R.R. Yager: Generalized orthopair fuzzy sets. IEEE Transactions on Fuzzy Systems, 25(5), (2017), 1222–1230, DOI: 10.1109/TFUZZ.2016.2604005.
[14] P. Liu and P.Wang: Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making. International Journal of Intelligent Systems, 33(4), (2017), 259–280, DOI: 10.1002/int.21927.
[15] C. Bonferroni: Sulle medie multiple di potenze. Bollettino dell’Unione Matematica Italiana, 5(3-4), (1950), 267–270. [16] S. Sykora: Mathematical means and averages: Generalized Heronian means. Stan’s Library, Ed. S. Sykora, 3, (2009), DOI: 10.3247/SL3Math 09.002.
[17] C. Maclaurin: A second letter to Martin Folkes, Esq.: concerning the roots of equations, with the demonstration of other rules in algebra. Phil, Transaction (1683–1775), 394, (1729), 59–96.
[18] R.F. Muirhead: Some methods applicable to identities and inequalities of symmetric algebraic functions of n letters. Proceedings of the Edinburgh Mathematical Societ., 21, (1902), 144–162, DOI: 10.1017/ S001309150003460X.
[19] P. Liu and J. Liu: Some q-rung orthopair fuzzy Bonferroni mean operators and their application to multi-attribute group decision making. International Journal of Intelligent Systems, 33(2), (2018), 315–347, DOI: 10.1002/int.21933.
[20] G. Wei, H. Gao, and Y. Wei: Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making. International Journal of Intelligent Systems, 33(7), (2017), 1426–1458, DOI: 10.1002/int.21985.
[21] P. Liu and D. Li: Some Muirhead mean operators for intuitionistic fuzzy numbers and their applications to group decision making. PloS ONE, 12(1), (2017), 423–431, DOI: 10.1371/journal.pone.0168767.
[22] G. Wu, H. Garg, H. Gao, and C. Wei: Interval-valued Pythagorean fuzzy maclaurin symmetric mean operators in multiple attribute decision making. IEEE Access, 99(1), (2018), 67866–67884, DOI: 10.1109/ACCESS.2018.2877725.
[23] K. Bai, X. Zhu, J. Wang, and R. Zhang: Some partitioned Maclaurin symmetric mean based on q-rung orthopair fuzzy information for dealing with multi-attribute group decision making. Symmetry, 10(9), (2018), 383, DOI: 10.3390/sym10090383.
[24] G. Wei and M. Lu: Pythagorean fuzzy Maclaurin symmetric mean operators in multiple attribute decision making. International Journal of Intelligent Systems, 33(6), (2017), 1043–1070, DOI: 10.1002/int.21911.
[25] J. Qin: Generalized Pythagorean fuzzy Maclaurin symmetric means and its application to multiple attribute SIR group decision model. Journal of Intelligent and Fuzzy Systems, 20(1), (2017), 943–957, DOI: 10.1007/s40815- 017-0439-2.
[26] P. Liu, and X. Qin: Maclaurin symmetric mean operators of linguistic intuitionistic fuzzy numbers and their application to multiple-attribute decisionmaking. Journal of Experimental & Theoretical Artificial Intelligence, 29(6), (2017), 1–30, DOI: 10.1080/0952813X.2017.1310309.
[27] H. Wang, P. Liu, and Z. Liu: Trapezoidal interval type-2 fuzzy Maclaurin symmetric mean operators and their applications to multiple attribute group decision making. International Journal for Uncertainty Quantification, 8(44), (2018), 343–360, DOI: 10.1615/Int.J.UncertaintyQuantification.2018020768.
[28] H. Garg: Hesitant Pythagorean fuzzy Maclaurin symmetric mean operators and its applications to multiattribute decision-making process. International Journal of Intelligent Systems, 34(4), (2019), 601–626, DOI: 10.1002/int.22067.
[29] K.T. Atanassov and G. Gargov: Interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 31, (1989), 343–349, DOI: 10.1016/0165-0114(89)90205-4.
[30] H. Garg: A novel accuracy function under interval-valued Pythagorean fuzzy environment for solving multicriteria decision making problem. Journal of Intelligent and Fuzzy Systems, 31(1), (2016), 529–540, DOI: 10.3233/IFS-162165.
[31] B.P. Joshi, A. Singh, P.K. Bhatt, and K.S. Vaisla: Interval valued q-rung orthopair fuzzy sets and their properties. Journal of Intelligent and Fuzzy Systems, 35(5), (2018), 5225–5230, DOI: 10.3233/JIFS-169806.
[32] H. Kalani, M. Akbarzadeh, A. Akbarzadeh, and I. Kardan: Intervalvalued fuzzy derivatives and solution to interval-valued fuzzy differential equations. Journal of Intelligent and Fuzzy Systems, 30(6), (2016), 3373– 3384, DOI: 10.3233/IFS-162085.
[33] T. Chen: An interval-valued Pythagorean fuzzy outranking method with a closeness-based assignment model for multiple criteria decision making. International Journal of Intelligent Systems, 33(2), (2017), 126–168, DOI: 10.1002/int.21943.
[34] Z. Li, G. Wei, and H. Gao: Methods for multiple attribute decision making with interval-valued Pythagorean fuzzy information. Mathematics, 6, (2018), 228, DOI: 10.3390/math6110228.
[35] N. Jan, T. Mahmood, L. Zedam, K.Ullah, J.C. Alcantud, and B.Davvaz: Analysis of social networks, communication networks and shortest path problems in the environment of interval valued q-rung orthopair fuzzy information. Journal of Intelligent and Fuzzy Systems, 21, (2019), 1687– 1708, DOI: 10.1007/s40815-019-00643-9.
[36] H. Gao, Y. Ju, W. Zhang, and D. Ju: Multi-attribute decision-making method based on interval-valued q-rung orthopair fuzzy archimedean Muirhead mean operators. IEEE Access, 99(1), (2019), 74300–74315, DOI: 10.1109/ACCESS.2019.2918779.
[37] V. Torra: Hesitant fuzzy sets. International Journal of Intelligent Systems, 25(6), (2010), 529–539, DOI: 10.1002/int.20418.
[38] B. Zhu, Z. Xu, and M. Xia: Dual hesitant fuzzy sets. Journal of Applied Mathematics, 2012, (2012), 1–13, DOI: 10.1155/2012/879629.
[39] D. Yu, W. Zhang, and G.Q. Huang: Dual hesitant fuzzy aggregation operators. textitTechnological and Economic Development of Economy, 22(2), (2015), 1–16, DOI: 10.3846/20294913.2015.1012657.
[40] Y. Xing, R. Zhang, M. Xia, and J. Wang: Generalized point aggregation operators for dual hesitant fuzzy information. Journal of Intelligent and Fuzzy Systems, 33(1), (2017), 515–527, DOI: 10.3233/JIFS-161922.
[41] Z. Su, Z. Xu, H. Zhao, and S. Liu: Distribution-based approaches to deriving weights from dual hesitant fuzzy information. Symmetry, 11(1), (2019), 85, DOI: 10.3390/sym11010085.
[42] G. Maity, D. Mardanya, S.K. Roy, and G.W. Weber: A new approach for solving dual-hesitant fuzzy transportation problem with restrictions, S¯adhan¯a, 44(75), (2019), DOI: 10.1007/s12046-018-1045-1.
[43] G. Qu, Q. An, W. Qu, F. Deng, and T. Li: Multiple attribute decision making based on bidirectional projection measures of dual hesitant fuzzy set. Journal of Intelligent and Fuzzy Systems, 7(5), (2019), 7087–7102, DOI: 10.3233/JIFS-181970.
[44] Y. Xu, X. Shang, J.Wang, H. Zhao, R. Zhang, and K. Bai: Some intervalvalued q-rung dual hesitant fuzzy Muirhead mean operators with their application to multi-attribute decision-making. IEEE Access, 99(1), (2019), 54724–54745, DOI: 10.1109/ACCESS.2019.2912814.
[45] T. Zhu, L. Luo, H. Liao, X. Zhang, and W. Shen: A hybrid multicriteria decision making model for elective admission control in a Chinese public hospital. Knowledge-Based Systems, 173, (2019), 37–51, DOI: 10.1016/j.knosys.2019.02.020.
[46] X. Gou, Z. Xu, H. Liao, and F. Herrera: Multiple criteria decision making based on distance and similarity measures under double hierarchy hesitant fuzzy linguistic environment. Computers & Industrial Engineering, 126, (2018), 516–530, DOI: 10.1016/j.cie.2018.10.020.
[47] Y. Xu, X. Shang, J. Wang, W. Wu, and H. Huang: Some q-rung dual hesitant fuzzy Heronian mean operators with their application to multiple attribute group decision-making. Symmetry, 10(10), (2018), 472, DOI: 10.3390/sym10100472.
[48] Y. Ju, X. Liu, and S. Yang: Interval-valued dual hesitant fuzzy aggregation operators and their applications to multiple attribute decision making. Journal of Intelligent and Fuzzy Systems, 27(3), (2014), 1203–1218, DOI: 10.3233/IFS-131085.
[49] W. Yang and Y. Pang: Hesitant interval-valued Pythagorean fuzzy VIKOR method. International Journal of Intelligent Systems, 34(5), (2018), 754– 789, DOI: 10.1002/int.22075.
[50] H. Hiidenhovi, P. Laippala, and K. Nojonen: Development of a patientorientated instrument to measure service quality in outpatient departments. Journal of Advanced Nursing, 34(5), (2001), 696–705, DOI: 10.1046/j.1365-2648.2001.01799.x.
[51] L. Li and W. Benton: Hospital capacity management decisions: Emphasis on cost control and quality enhancement. European Journal of Operational Research, 146(3), (2003), 596–614, DOI: 10.1016/S0377-2217(02)00225-4.
[52] C. Tian, Y. Tian, and L. Zhang: An evaluation scale of medical services quality based on “patients’ experience”. Journal of Huazhong University of Science and Technology [Medical Sciences], 34, (2014), 289–297, DOI: 10.1007/s11596-014-1273-5.
[53] S. Das, B. Dutta, and De. Guha: Weight computation of criteria in a decision-making problem by knowledge measure with intuitionistic fuzzy set and interval-valued intuitionistic fuzzy set. Soft Computing, 20(9), (2016), 3421–3442, DOI: 10.1007/s00500-015-1813-3.
[54] W. Zhang, X. Li, and Y. Ju: Some aggregation operators based on Einstein operations under interval-valued dual hesitant fuzzy setting and their application. Mathematical Problems in Engineering, 1, (2014), DOI: 10.1155/2014/958927.
[55] K. Rahman, S. Abdullah, M. Shakeel, M.S. Khan, and M. Ullah: Interval-valued Pythagorean fuzzy geometric aggregation operators and their application to group decision making problem. Cogent Mathematics, 4, (2017), DOI: 10.1080/23311835.2017.1338638.
[56] Y. Zang, X. Zhao, and S. Li: Interval-valued dual hesitant fuzzy Heronian mean aggregation operators and their application to multi-attribute decision making, International Journal of Computational Intelligence and Applications, 17(4), (2018), DOI: 10.1142/S1469026818500050.
[57] J. Wang, X. Shang, X. Feng, and M. Sun: A novel multiple attribute decision making method based on q-rung dual hesitant uncertain linguistic sets and Muirhead mean. Archives of Control Sciences, 30(2), (2020), 233– 272, DOI: 10.24425/acs.2020.133499.
[58] L. Li, R. Zhang, J. Wang, and X. Shang: Some q-orthopair linguistic Heronian mean operators with their application to multi-attribute group decision making. Archives of Control Sciences, 28(4), (2018), 551–583, DOI: 10.24425/acs.2018.125483.
[59] A. Biswas and A. Sarkar: Development of dual hesitant fuzzy prioritized operators based on Einstein operations with their application to multicriteria group decision making. Archives of Control Sciences, 28(4), (2018), 527–549, DOI: 10.24425/acs.2018.125482.