Details

Title

The effect of temperature on the biodegradation of different types of packaging materials under test conditions

Journal title

Archives of Environmental Protection

Yearbook

2021

Volume

vol. 47

Issue

No 4

Affiliation

Poluszyńska, Joanna : Research Network Łukasiewicz – Institute of Ceramics and Building Materials, Division of Material,Processing and Environmental Engineering, Opole, Poland ; Biernacki, Marcin : Research Network Łukasiewicz – Institute of Ceramics and Building Materials, Division of Material,Processing and Environmental Engineering, Opole, Poland ; Paciorkowski, Maciej : Research Network Łukasiewicz – Institute of Ceramics and Building Materials, Division of Material,Processing and Environmental Engineering, Opole, Poland ; Ciesielczuk, Tomasz : Opole University, Opole, Poland

Authors

Keywords

fermentation ; polymer waste ; microbial degradation ; temperature ; CO2 production

Divisions of PAS

Nauki Techniczne

Coverage

74-83

Publisher

Polish Academy of Sciences

Bibliography

  1. Abdelmoez, W., Dahab, I., Ragab, E.M., Abdelsalam, O.A. & Mustafa A. (2021). Bio- and oxo-degradable plastics: Insights on facts and challenges. Polymers for Advanced Technologies, 32:1981–1996. DOI:10.1002/pat.5253
  2. Abioye, A.A., Oluwadare, O.P., Abioye O.P., Obuekwe, Ch.C., Afolalu, A.S., Atanda, P.O. & Fajobi, M.A. (2019). Environmental Impact on Biodegradation Speed and Biodegradability of Polyethylene and Zea Mays Starch Blends. Journal of Ecological Engineering 20(9), pp. 277–284
  3. Adamcova, D., Vaverková, M.D., Mašíček, T. & Břoušková E. (2016). Analysis of biodegrability of degradable/biodegradable plastic material in controlled composting environment. Journal of Ecological Engineering, 17(4), pp. 1–10. DOI:10.12911/22998993/64564
  4. Ahmed, S., Hall, A. M. & Ahmed, S. F. (2018) Biodegradation of Different Types of Paper in a Compost Environment. Proceedings of the 5th International Conference on Natural Sciences and Technology (ICNST’18) March 30 - 31, (2018), Asian University for Women, Chittagong, Bangladesh
  5. Arefian, M., Tahmourespour, A. & Zia, M. (2020). Polycarbonate biodegradation by newly isolated Bacillus strains. Archives of Environmental Protection. 46(1) pp. 14–20. DOI:10.24425/aep.2020.132521
  6. Czarnecka-Komorowska, D., Bryll, K., Kostecka, E., Tomasik, M., Piesowicz, E. & Gawdzińska K. (2021). The composting of PLA/HNT biodegradable composites as an eco-approach to the sustainability. Bulletin of The Polish Academy of Sciences Technical Sciences, 69(2). DOI:10.24425/Bpasts.2021.136720
  7. Domka, L., Malicka, A., Jagła, K. & Kozak, A. (2009). Biodegradation of Starch-Modified Foil in Natural Conditions. Polish J. of Environ. Stud. 18(2), pp. 191-195
  8. Du, Y.L., Cao, Y., Lu, F., Li, F., Cao, Y., Wang, X.L., & Wang, Y.Z. (2008) Biodegradation behaviors of thermoplastic starch (TPS) and thermoplastic dialdehyde starch (TPDAS) under controlled composting conditions. Polymer Testing 27, pp. 924–930. DOI:10.1016/j.polymertesting.2008.08.002
  9. Ghorpade, V.M., Gennadios, A. & Hanna, M.A. (2001). Laboratory composting of extruded poly(lactic acid) sheets. Bioresource Technology 76, pp. 57-61.
  10. Gomez, E.F. & Michel, F.C. Jr. (2013). Biodegradability of conventional and bio-based plastics and natural fiber composites during composting, anaerobic digestion and long-term soil incubation. Polymer Degradation and Stability 98, pp. 2583-2591. DOI:10.1016/j.polymdegradstab.2013.09.018
  11. Gorokhova, E., Ek, K. & Reichelt S. (2020) Algal Growth at Environmentally Relevant Concentrations of Suspended Solids: Implications for Microplastic Hazard Assessment. Frontiers in Environmental Science 19 Nov. 2020. DOI:10.3389/fenvs.2020.551075
  12. Herniou–Julien, C., Mendieta, J.R. & Gutiérrez T.J. (2019). Characterization of biodegradable/non-compostable films made from cellulose acetate/corn starch blends processed under reactive extrusion conditions. Food Hydrocolloids 89, pp. 67–79 DOI:10.1016/j.foodhyd.2018.10.024
  13. Ivankovic, A., Zeljko, K., Talic, S., Martinovic Bevanda, A. & Lasic M. (2017). Biodegradable packaging in the food industry. Arch Lebensmittelhyg 68, pp. 26–38. DOI:10.2376/0003-925X-68-26
  14. Luchese, C.L., Benelli, P., Spada, J.C. & Tessaro I.C. (2018). Impact of the starch source on the physicochemical properties and biodegradability of different starch-based films. Journal of Applied Polymer Science. DOI:10.1002/APP.46564
  15. Maria, P., Cadar, O., Cadar, s., Levei, E., Pojar-Feneşan, M., Balea, A. & Pascalau, V. (2010). Biodegradability determination of vegetal originated packaging materials under controlled composting conditions. Agricultura – Ştiinţă şi practică 1-2, pp. 73-77
  16. Markowicz, F., Król, G., Szymańska-Pulikowska, A. (2018). Biodegradable Package – Innovative Purpose or Source of the Problem. Journal of Ecological Engineering, 20(1), pp. 228–237. DOI:10.12911/22998993/94585
  17. Markowicz, F. & Szymańska-Pulikowska, A. (2019). Analysis of the Possibility of Environmental Pollution by Composted Biodegradable and Oxo-Biodegradable Plastics. Geosciences, 9(11). DOI:10.3390/geosciences9110460
  18. McLauchlin, A., Thomas, N.L., Patrick, S.G. & Clarke J. (2012) Oxo-degradable plastics: Degradation, environmental impact and recycling. Waste and Resource Management, 165(3), pp. 133-140. DOI:10.1680/warm.11.00014
  19. Popa, M., Mitelut, A., Niculita, P., Geicu, M., Ghidurus, M. & Turtoi M. (2011). Biodegradable materials for food packaging applications. Journal of Environmental Protection and Ecology, 12(4). pp. 1825-1834
  20. Seruga, P., Krzywonos, M., Wilk, M. & Borowiak D. (2019). The Effect of Selected Parameters on the Stabilization Efficiency of the Organic Fraction of Municipal Solid Waste (OFMSW) in the Mechanical and Biological Treatment Plant (MBT). Annual Set The Environment Protection, 21, pp. 316-329.
  21. Spiridon, I., Anghel, N.C., Darie-Nita, R.N., Iwańczuk, A. Ursu, R.G. & Spiridon I.A. (2019). New composites based on starch/Ecoflex®/biomass wastes: Mechanical, thermal, morphological and antimicrobial properties. International Journal of Biological Macromolecules, 156, pp. 1435-1444. DOI:10.1016/j.ijbiomac.2019.11.185
  22. Tabasi, R.Y. & Ajji, A. (2015). Selective degradation of biodegradable blends in simulated laboratory composting. Polymer Degradation and Stability, 120, pp. 435-442. DOI:10.1016/j.polymdegradstab.2015.07.020
  23. Yashchuk, O., Portillo, F.S. & Hermida, E. B.(2012). Degradation of polyethylene film samples containing oxodegradable additives. Procedia Materials Science, 1, pp. 439 – 445.
  24. Youssef, A.M. & El.-Sayed S.M. (2019). Bionanocomposites materials for food packaging applications: Concepts and future outlook. Carbohydrate Polymers. 193, 1 pp. 19-27. DOI:10.1016/j.carbpol.2018.03.088
  25. Vasile, C., Pamfil, D., Râpă, M., Darie-Niţăa, R.N., Mitelut, A.C., Popa E.E., Popescu, P.A., Draghici, M.C. & Popac, M.E. (2018). Study of the soil burial degradation of some PLA/CS biocomposites. Composites Part B 142, pp. 251–262. DOI:10.1016/j.compositesb.2018.01.026
  26. Wróblewska-Krepsztul, J., Rydzkowski, T., Borowski, G., Szczypiński, M., Klepka, T. & Thakur, V.K. (2018). Recent Progress in Biodegradable Polymers and Nanocomposites Based Packaging Materials for Sustainable Environment. International Journal of Polymer Analysis and Characterization. 23, 4, pp. 383-395. DOI:10.1080/1023666X.2018.1455382

Date

2021.12.02

Type

Article

Identifier

DOI: 10.24425/aep.2021.139503

Abstracting & Indexing

Abstracting & Indexing


Archives of Environmental Protection is covered by the following services:


AGRICOLA (National Agricultural Library)

Arianta

Baidu

BazTech

BIOSIS Citation Index

CABI

CAS

DOAJ

EBSCO

Engineering Village

GeoRef

Google Scholar

Index Copernicus

Journal Citation Reports™

Journal TOCs

KESLI-NDSL

Naviga

ProQuest

SCOPUS

Reaxys

Ulrich's Periodicals Directory

WorldCat

Web of Science

×