Details
Title
Thermodynamic analysis of an innovative steam turbine power plant with oxy-methane combustorsJournal title
Archives of ThermodynamicsYearbook
2021Volume
vol. 42Issue
No 4Authors
Affiliation
Kindra, Vladimir Olegovich : National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya 14, Moscow, 111250 Russia ; Osipov, Sergey Konstantinovich : National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya 14, Moscow, 111250 Russia ; Zlyvko, Olga Vladimirovna : National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya 14, Moscow, 111250 Russia ; Shcherbatov, Igor Alexandrovich : National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya 14, Moscow, 111250 Russia ; Sokolov, Vladimir Petrovich : National Research University “Moscow Power Engineering Institute”, Krasnokazarmennaya 14, Moscow, 111250 RussiaKeywords
Combined cycle power plant ; Carbon capture and storage system ; Precombustion capture ; Post-combustion capture ; Oxy-fuel combustionDivisions of PAS
Nauki TechniczneCoverage
123-140Publisher
The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of SciencesBibliography
[1] Ohji A., Haraguchi M.: Steam turbine cycles and cycle design optimization: the Rankine cycle, thermal power cycles, and IGCC power plants. In: Advances in Steam Turbines for Modern Power Plants (T. Tanuma, Ed.). Woodhead, 2017, 11–40.[2] Chiesa P., Macchi E.: A thermodynamic analysis of different options to break 60% electric efficiency in combined cycle power plants. J. Eng. Gas Turbines Power. 126(2004), 4, 770–785.
[3] Tanuma T.: Advances in Steam Turbines for Modern Power Plants. Woodhead, 2017.
[4] Bugge J., Kjaer S., Blum R.: High-efficiency coal-fired power plants development and perspectives. Energy 31(2006), 10-11, 1437–1445.
[5] Susta, M.R., Seong, K.B.: Supercritical and ultra-supercritical power plants-SEA’s vision or reality. In: Proc. Powergen Asia, Bangkok, 2004.
[6] Kotowicz J., Łukowicz H., Bartela Ł., Michalski S.: Validation of a program for supercritical power plant calculations. Arch. Thermodyn. 32(2011), 4, 81–89.
[7] Fan C., Pei D., Wei H.: A novel cascade energy utilization to improve efficiency of double reheat cycle. Energ. Convers. Manag. 171(2018), 1388–1396.
[8] Li Y., Zhou L., Xu G., Fang Y., Zhao S., Yang Y.: Thermodynamic analysis and optimization of a double reheat system in an ultra-supercritical power plant. Energy 74(2014), 202–214.
[9] Liu Y., Li Q., Duan X., Zhang Y., Yang Z., Che D.: Thermodynamic analysis of a modified system for a 1000 MW single reheat ultra-supercritical thermal power plant. Energy 145(2018), 25–37.
[10] Łukowicz H., Dykas S., Rulik S., Stepczynska K.: Thermodynamic and economic analysis of a 900 MW ultra-supercritical power unit. Arch. Thermodyn. 32(2011), 3, 231–245.
[11] Zaryankin A., Rogalev A., Komarov I., Kindra V., Osipov S.: The boundary layer separation from streamlined surfaces and new ways of its prevention in diffusers. In: Proc. 12th Eur. Conf. on Turbomachinery Fluid Dynamics and Thermodynamics, Stockholm, 3-7 April 2017, ETC2017-168.
[12] Kowalczyk Ł., Elsner W., Drobniak S.: Thermoeconomic analysis of supercritical coal fired power plant using RRM method. in Polish: Analiza termoekonomiczna nadkrytycznego bloku weglowego przy uzyciu metody RRM. Arch. Thermodyn. 32(2011), 3, 215–229.
[13] Kosman W.: The influence of external cooling system on the performance of supercritical steam turbine cycles. Arch. Thermodyn. 31(2010), 3, 131–144.
[14] Zaryankin A., Rogalev A., Kindra V., Khudyakova V., Bychkov N.: Reduction methods of secondary flow losses in stator blades: Numerical and experimantal study. In: Proc. 12th Eur. Conf. on Turbomachinery Fluid Dynamics and Thermodynamics, Stockholm, 3-7 April 2017, ETC2017-158.
[15] Zaryankin A., Rogalev A., Garanin I., Osipov S.: Methods of low-pressure cylinders throughput improvement for construction of ultra-high capacity generation units. WIT Trans. Ecol. Environ. 195(2015), 149–160.
[16] Aminov R.Z., Egorov A.N.: Hydrogenoxygen steam generator for a closed hydrogen combustion cycleInt. J. Hydrog. Energy 44(2019), 21, 11161–11167.
[17] Rogalev N., Prokhorov V., Rogalev A., Komarov I., Kindra V.: Steam boilers’ advanced constructive solutions for the ultra-supercritical power plants. Int. J. Appl. Eng. Res. 1(2016), 18, 9297–9306.
[18] Milman O., Yankov G., Krylov V., Ptahin A.: High efficiency steam-gas mixture condenser. J. Phys. Conf. Ser. 1683(2020), 4, 042074.
[19] Milman O., Krylov V., Ptakhin A., Kondratev A., Yankov G.: Steam condensation from a moving steam-gas mixture. Therm. Eng. 65(2018), 12, 916–921.
[20] Zou C., Song Y., Li G., Cao S., He Y., Zheng C.: The chemical mechanism of steam’s effect on the temperature in methane oxy-steam combustion. Int. J. Heat Mass Transf. 75(2014), 12–18.
[21] Mazas A.N., Fiorina B., Lacoste D. A., Schuller T.: Effects of water vapor addition on the laminar burning velocity of oxygen-enriched methane flames. Combust. Flame 158(2011), 12, 2428–2440.
[22] Jin B., Zhao H., Zou C., Zheng C.: Comprehensive investigation of process characteristics for oxy-steam combustion power plants. Energ. Convers. Manag., 99(2015), 92–101.
[23] Milman O., Shifrin B.A.: High-temperature steam turbine unit running on natural gas. In: Proc. of Sem. of the Laboratory for Hydrogen Energy Technologies of JIHT RAS, Moscow 2017, 143–149
[24] Klimenko A.V., Milman O.O., Shifrin B.A.: A high-temperature gas-and-steam turbine plant operating on combined fuel. Therm. Eng. 62(2015), 11, 807–816.
[25] Van der Ham L.V., Kjelstrup S.: Exergy analysis of two cryogenic air separation processes. Energy 35(2010), 12, 4731–4739.
[26] Kotowicz J., Balicki A.: Enhancing the overall efficiency of a lignite-fired oxyfuel power plant with CFB boiler and membrane-based air separation unit. Energ. Convers. Manag. 80(2014), 20–31.
[27] Aspen Plus. https://www.aspentech.com/en/products/engineering/aspen-plus (acessed 21 March 2020).
Date
2022.01.17Type
ArticleIdentifier
DOI: 10.24425/ather.2021.139654Editorial Board
International Advisory BoardJ. Bataille, Ecole Central de Lyon, Ecully, France
A. Bejan, Duke University, Durham, USA
W. Blasiak, Royal Institute of Technology, Stockholm, Sweden
G. P. Celata, ENEA, Rome, Italy
L.M. Cheng, Zhejiang University, Hangzhou, China
M. Colaco, Federal University of Rio de Janeiro, Brazil
J. M. Delhaye, CEA, Grenoble, France
M. Giot, Université Catholique de Louvain, Belgium
K. Hooman, University of Queensland, Australia
D. Jackson, University of Manchester, UK
D.F. Li, Kunming University of Science and Technology, Kunming, China
K. Kuwagi, Okayama University of Science, Japan
J. P. Meyer, University of Pretoria, South Africa
S. Michaelides, Texas Christian University, Fort Worth Texas, USA
M. Moran, Ohio State University, Columbus, USA
W. Muschik, Technische Universität Berlin, Germany
I. Müller, Technische Universität Berlin, Germany
H. Nakayama, Japanese Atomic Energy Agency, Japan
S. Nizetic, University of Split, Croatia
H. Orlande, Federal University of Rio de Janeiro, Brazil
M. Podowski, Rensselaer Polytechnic Institute, Troy, USA
A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine
M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA
A. Vallati, Sapienza University of Rome, Italy
H.R. Yang, Tsinghua University, Beijing, China