Details

Title

Removal of microplastics in unit processes used in water and wastewater treatment: a review

Journal title

Archives of Environmental Protection

Yearbook

2022

Volume

vol. 48

Issue

No 4

Authors

Affiliation

Bodzek, Michał : Institute of Environmental Engineering Polish Academy of Sciences, Zabrze, Poland ; Pohl, Alina : Institute of Environmental Engineering Polish Academy of Sciences, Zabrze, Poland

Keywords

water and wastewater treatment ; microplastics removal ; physical treatment ; chemical technology ; biological process

Divisions of PAS

Nauki Techniczne

Coverage

102-128

Publisher

Polish Academy of Sciences

Bibliography

  1. Abbasi, S., Keshavarzi, B., Moore, F., Turner, A., Kelly, F.J., Dominguez, A.O. & Jaafarzadeh, N. (2019). Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran. Environ. Pollut., 244, pp. 153–164. DOI: 10.1016/j.envpol.2018.10.039
  2. Ahmed, M.B., Rahman, M.S., Alom, J., (...), Zhou, J.L. & Yoon, M.-H. (2021). Microplastic particles in the aquatic environment: A systematic review, Science of The Total Environment, 775, 145793. DOI: 10.1016/j.scitotenv.2021.145793
  3. Ahmed, M.B., Zhou, J.L., Ngo, H.H., Guo, W. & Chen, M. (2016). Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater, Bioresour. Technol., 214, pp. 836–851. DOI: 10.1016/j.biortech.2016.05.057
  4. Ahmed, M.B., Zhou, J.L., Ngo, H.H., Guo, W., Thomaidis, N.S. & Xu, J. (2017). Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review, J. Hazard. Mater., 323, pp. 274–298. DOI: 10.1016/j.jhazmat.2016.04.045
  5. Akarsu, C. & Deniz, F., 2020. Electrocoagulation/electroflotation process for removal of organics and microplastics in laundry wastewater, CLEAN–Soil, Air, Water, 49, 2000146. DOI: 0.1002/clen.202000146
  6. Akbal, F. & Camcı, S. (2011). Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation, Desalination, 269, pp. 214–222. DOI: 10.1016/j.desal.2010.11.001
  7. Alavian Petroody, S. S., Hashemi, S. H. & van Gestel, C. A. M. (2020). Factors affecting microplastic retention and emission by a wastewater treatment plant on the southern coast of Caspian Sea. Chemosphere 261, 128179. DOI: 10.1016/j.chemosphere.2020.128179
  8. Ali, S.S., Qazi, I.A., Arshad, M., Khan, Z., Voice, T.C. & Mehmood, C.T. (2016). Photocatalytic degradation of low density polyethylene (LDPE) films using titania nanotubes, Environ.Nanotechnol. Monit. Manag., 5, pp. 44–53. DOI:10.1016/J.ENMM.2016.01.001
  9. Anderson, Z.T., Cundy, A.B., Croudace, I.W., Warwick, P.E., Celis-Hernandez, O. & Stead, J.L. (2018). A rapid method for assessing the accumulation of microplastics in the sea surface microlayer (SML) of estuarine systems, Sci. Rep., 8, 9428. DOI: 10.1038/s41598-018-27612-w
  10. Andrady, A.L., (2011). Microplastics in the marine environment, Mar. Pollut. Bull., 62(8), pp. 1596-1605. DOI: 10.1016/j.marpolbul.2011.05.030
  11. Antony, A., Low, J.H., Gray, S., Childress, A.E., Le-Clech, P. & Leslie, G. (2011). Scale formation and control in high pressure membrane water treatment systems: A review, J. Membr. Sci., 383, pp. 1–16. DOI: 10.1016/j.memsci.2011.08.054
  12. Ariza-Tarazona, M.C., Villarreal-Chiu, J.F., Barbieri, V., Siligardi, C. & Cedillo-González, E.I. (2019). New strategy for microplastic degradation: Green photocatalysis using aprotein-based porous N-TiO2 semiconductor, Ceram. Int., 45, pp. 9618–9624. DOI: 10.1016/j.ceramint.2018.10.208
  13. Arossa, S., Martin, C., Rossbach, S. & Duarte, C.M. (2019). Microplastic removal by Red Sea giant clam (Tridacna maxima), Environmental Pollution, 252, pp. 1257–1266. DOI: 10.1016/J.ENVPOL.2019.05.149
  14. Atiq, N., Ahmed, S., Ali, M.I., Ahmad, B. & Robson, G. (2010). Isolation and identification of polystyrene biodegrading bacteria from soil, African Journal of Microbiological Research, 4(14), pp. 1537–1541. DOI: 10.5897/AJMR.9000457
  15. Auta, H., Emenike, C. & Fauziah, S (2017). Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation, Environ. Pollut., 231, pp.1552–1559. DOI: 10.1016/j.envpo l.2017.09.043
  16. Auta, H.S., Emenike, C.U., Jayanthi, B. & Fauziah, S.H. (2018). Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment, Marine Pollution Bulletin, 127, pp. 15–21. DOI: 10.1016/j.marpolbul.2017.11.036
  17. Bache, D.H. & Gregory R. (2010). Flocs and separation processes in drinking water treatment: a review, Journal of Water Supply: Research and Technology-Aqua, 59 (1), pp. 16–30. DOI: 10.2166/aqua.2010.028
  18. Badola, N., Bahuguna, A., Sasson, Y. & Chauhan, J.S. (2022). Microplastics removal strategies: A step toward finding the solution, Front. Environ. Sci. Eng., 16(1): 7, DOI: 10.1007/s11783-021-1441-3
  19. Baresel, C., Harding, M. Fång, J. (2019). Ultrafiltration/granulated active carbon-biofilter: efficient removal of a broad range of micropollutants, Applied Sciences, 9(4), 710. DOI: 10.3390/app9040710
  20. Barth, M., Wei, R., Oeser, T., Then, J., Schmidt, J., Wohlgemuth, F. & Zimmermann, W. (2015). Enzymatic hydrolysis of polyethylene films in an ultrafiltration membrane reactor, J. Memb. Sci., 494, pp. 182–187. DOI: 10.1016/j.memsci.2015.07.030
  21. Bayo, J., López-Castellanos, J. & Olmos, S. (2020a). Membrane bioreactor and rapid sand filtration for the removal of microplastics in an urban wastewater treatment plant. Marine Pollution Bulletin, 156, 111211. DOI:10.1016/j.marpolbul.2020.111211
  22. Bayo, J., Olmos, S. & López-Castellanos, J. (2020b). Microplastics in an urban wastewater treatment plant: The influence of physicochemical parameters and environmental factors, Chemosphere, 238, 124593. DOI: 10.1016/j.chemosphere.2019.124593
  23. Blair, R. M., Waldron, S. & Gauchotte-Lindsay, C. (2019). Average daily flow of microplastics through a tertiary wastewater treatment plant over a ten-month period. Water Research, 163, 114909. DOI: 10.1016/j.watres.2019.114909
  24. Bodzek, M. (2019). Membrane separation techniques – removal of inorganic and organic admixtures and impurities from water environment – review, Archives of Environmental Protection, 45(4), pp. 4–19. DOI: 10.24425/aep.2019.130237
  25. Bodzek, M., Konieczny, K. & Kwiecińska-Mydlak, A. (2021). Nano-photocatalysis in water and wastewater treatment, Desalination and Water Treatment, 243, pp. 51–74. DOI: 10.5004/dwt.2021.27867
  26. Bodzek, M., Konieczny, K. & Rajca, M. (2019). Membranes in water and wastewater disinfection – review, Archives of Environmental Protection, 45(1), pp. 3–18. DOI: 10.24425/aep.2019.126419
  27. Bui, X.T., Nguyen, P.T., Nguyen, V.T., Dao, T.S. & Nguyen, P.D. (2020). Microplastics pollution in wastewater: Characteristics, occurrence and removal technologies, Environmental Technology & Innovation, 19, 101013. DOI: 10.1016/j.eti.2020.101013
  28. Cai, L., Wang, J., Peng, J., Wu, Z. & Tan, X. (2018). Observation of the degradation of three types of plastic pellets exposed to UV irradiation in three different environments, Sci. Total Environ., 628, pp. 740–747. DOI: 10.1016/j.scitotenv.2018.02.079
  29. Carr, S.A., Liu, J. & Tesoro, A.G. (2016). Transport and fate of microplastic particles in wastewater treatment plants, Water Research, 91, pp. 174–182. DOI: 10.1016/j. watres.2016.01.002
  30. Chandra, P. & Enespa, S.D. (2020). Microplastic degradation by bacteria in aquatic ecosystem. in: Microorganisms for sustainable environment and health. Chowdhary, P., Raj, A., Verma, D. & Akhter Y., (Eds.) Elsevier, pp. 431–467. DOI: 10.1016/B978-0-12-819001-2.00022-X
  31. Chen, G., Feng, Q. & Wang, J. (2020). Mini-review of microplastics in the atmosphere and their risks to humans, Sci. Total Environ., 703, 135504. DOI: 10.1016/j.scitotenv.2019.135504
  32. Chen, R., Qi, M., Zhang, G. Yi, C. (2018). Comparative experiments on polymer degradation technique of produced water of polymer flooding oilfield, IOP Conference Series: Earth and Environmental Science, 113, 012208. DOI: 10.1088/1755-1315/113/1/012208
  33. Chorghe, D., Sari, M.A. & Chellam, S. (2017). Boron removal from hydraulic fracturing wastewater by aluminum and iron coagulation: mechanisms and limitations, Water Research, 126, pp. 481–487. DOI: 10.1016/j.watre s.2017.09.057
  34. Conley, K., Clum, A., Deepe, J., Lane, H. & Beckingham, B. (2019).Wastewater treatment plants as a source of microplastics to an urban estuary: Removal efficiencies and loading per capita over one year, Water Research X, 3, 100030. DOI: 10.1016/j.wroa.2019.100030
  35. Coppock, R.L., Cole, M., Lindeque, P.K., Queirós, A.M. & Galloway, T.S. (2017). A small-scale, portable method for extracting microplastics from marine sediments, Environmental Pollution, 230, pp. 829–837. DOI: 10.1016/j.envpol.2017.07.017
  36. Corona, E., Martin, C., Marasco, R. & Duarte, C.M. (2020). Passive and active removal of marine microplastics by a mushroom coral (Danafungia scruposa), Frontiers in Marine Science, 7, 128, DOI: 10.3389/fmars.2020.00128
  37. Crawford, C. & Quinn, B. (2017). Microplastic separation techniques. In: Microplastic Contaminants. Crawford, C. & Quinn, B. (Eds.). Elsevier, Amsterdam, pp. 203–218. DOI: 10.1016/B978-0-12-809406-8.00009-8
  38. Cunha, C., Silva, .L, Paulo, J., Faria, M., Nogueira, N. & Cordeiro, N. (2020). Microalgal-based biopolymer for nano- and microplastic removal: A possible biosolution for wastewater treatment. Environmental Pollution, 263, 114385. DOI: 10.1016/j.envpol.2020.114385
  39. Dawson, A.L., Kawaguchi, S., King, C.K., Townsend, K.A., King, R., Huston, W.M. & Bengtson Nash, S.M. (2018). Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill, Nature Communications, 9(1), 1001. DOI: 10.1038/s41467-018-03465-9
  40. Delacuvellerie, A., Cyriaque, V., Gobert, S., Benali, S. & Wattiez, R. (2019). The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation, Journal of Hazardous Materials, 380, 120899. DOI: 10.1016/j.jhazmat.2019.120899
  41. Dris, R., Gasperi, J., Rocher, V., Saad, M., Renault, N. & Tassin, B. (2015). Microplastic contamination in an urban area: a case study in Greater Paris. Environ. Chem. 12(5), pp. 592-599. DOI: 10.1071/EN14167
  42. Durenkamp, M., Pawlett, M., Ritz, K., Harris, J.A., Neal, A.L. & McGrath, S.P. (2016). Nanoparticles within WWTP sludges have minimal impact on leachate quality and soil microbial community structure and function, Environ. Pollut., 211, pp. 399–405. DOI: j.envpol.2015.12.063
  43. Edo, C., González-Pleiter, M., Leganés, ., Fernández-Piñas, F. & Rosa,l R. (2020). Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge, Environmental Pollution, 259, 113837. DOI: 10.1016/j.envpol.2019.113837
  44. Eerkes-Medrano, D., Thompson, R.C. & Aldridge, D.C. (2015). Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs, Water Research, 75, pp. 63–82. DOI: 10.1016/j.watres.2015.02.012
  45. Enfrin, M., Dumée, L.F. & Lee, J. (2019). Nano/microplastics in water and wastewater treatment processes – origin, impact and potential solutions, Water Research, 161, pp. 621–638. DOI: 10.1016/j.watres.2019.06.049
  46. Ersahin, M.E., Ozgun, H., Dereli, R.K., Ozturk, I., Roest, K. & van Lier, J.B., (2012). A reviewon dynamic membrane filtration: materials. applications and future perspectives, Bioresour. Technol., 122, pp. 196–206. DOI: 10.1016/j.biortech.2012.03.086
  47. Eskandarloo, H., Kierulf, A. & Abbaspourrad, A. (2017). Light-harvesting synthetic nano-and micromotors: a review, Nanoscale, 9, pp. 12218–12230. DOI: 10.1039/C7NR05166B
  48. Ezugbe, E.O. & Rathilal, S. (2020). Membrane Technologies in Wastewater Treatment: A Review, Membranes, 10, 89. DOI:10.3390/membranes10050089
  49. Feng, H.-M., Zheng, J.-C., Lei, N.-Y., Yu, L., Kong, K.H.-K., Yu, H.-Q., Lau, T.-C. & Lam, M.H.W. (2011). Photoassisted Fenton degradation of polystyrene, Environ. Sci. Technol., 45, pp. 744–750. DOI: 10.1021/es102182g
  50. Foshtomi, M.Y., Oryan, S., Taheri, M., Bastami, K.D. & Zahed, M.A. (2019). Composition and abundance of microplastics in surface sediments and their interaction with sedimentary heavy metals, PAHs and TPH (total petroleum hydrocarbons), Mar. Pollut. Bull., 149, 110655. DOI:10.1016/j.marpolbul.2019.1
  51. Freeman S, Booth A M, Sabbah I, Tiller R, Dierking J, Klun K, Rotter A, Ben-David E, Javidpour J, Angel D L (2020). Between source and sea: The role of wastewater treatment in reducing marine microplastics, Journal of Environmental Management, 266, 110642. DOI: 10.1016/j.jenvman.2020.110642
  52. Gerritse, J., Leslie, H.A., de Tender, C.A. Devriese, L.I., & Vethaak, A.D. (2020). Fragmentation of plastic objects in a laboratory seawater microcosm, Sci. Rep., 10, 10945. DOI:10.1038/s41598-020-67927-1
  53. Giacomucci, L., Raddadi, N., Soccio, M., Lotti, N. & Fava, Fm (2019). Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus, New Biotechnology, 52, pp. 35–41. DOI: 10.1016/j.nbt.2019.04.005
  54. Gies, E.A., LeNoble, J.L., Noel, M., Etemadifar, A., Bishay, F., Hall, E.R. & Ross, P.S. (2018). Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Mar. Pollut. Bull., 133, 553-561. DOI: 10.1016/j.marpolbul.2018.06.006
  55. Gimiliani, G.T., Fornari, M., Redígolo, M.M., Willian Vega Bustillos, J O., Moledo de Souza Abessa, D., &Faustino Pires, M.A. (2020). Simple and cost-effective method for microplastic quantification in estuarine sediment: A case study of the Santos and São Vicente Estuarine System, Case Studies in Chemical and Environmental Engineering, 2, 100020. https://doi.org/10.1016/j.cscee.2020.100020
  56. Gonzalez-Pleiter, M., Velazquez, D., Edo, C., Carretero, O., Gago, J., Baron-Sola, A., Hernandez, L.E., Yousef, I., Quesada, A., Leganes, F., Rosal, R. & Fernandez-Pi˜nas, F. (2020). Fibers spreading worldwide: Microplastics and other anthropogenic litter in an Arctic freshwater lake, Sci. Total Environ., 722, 137904 DOI:10.1016/j. scitotenv.2020.137904
  57. Grbic, J., Nguyen, B., Guo, E., You, J.B., Sinton, D. & Rochman, C.M. (2019). Magnetic extraction of microplastics from environmental samples, Environ. Sci. Technol. Letters, 6, pp. 68–72. DOI: 1021/acs.estlett.8b00671
  58. Guo, J.J., Huang, X.P., Xiang, L., Wang, Y.Z., Li, Y.W., Li, H., Cai, Q.Y., Mo, C.H. & Wong, M.H. (2020). Source, migration and toxicology of microplastics in soil, Environ. Int. 137, 105263. DOI: 10.1016/j.envint.2019.105263
  59. Han, M., Niu, X.R., Tang, M., Zhang, B.T., Wang, G.Q., Yue, W.F., Kong, X.L. & Zhu, J.Q. (2020). Distribution of microplastics in surface water of the lower Yellow River near estuary, Sci. Total Environ., 707, 135601 DOI: 10.1016/j. scitotenv.2019.135601
  60. Han, X., Lu, X. & Vogt, R.D. (2019). An optimized density-based approach for extracting microplastics from soil and sediment samples, Environmental Pollution, 254, 113009. DOI: 10.1016/j.envpol.2019.113009
  61. Harrison, J.P., Sapp, M., Schratzberger, M. & Osborn, A.M. (2011). Interactions between microorganisms and marine microplastics: A call for research, Marine Technology Society Journal, 45(2), pp. 12–20. DOI: 10.4031/MTSJ.45.2.2
  62. He, P., Chen, L., Shao, L., Zhang, H. & Lü, F. (2019). Municipal solid waste (MSW) landfill: a source of microplastics?-Evidence of microplastics in landfill leachate, Water Res., 159, pp. 38-45. DOI: 10.1016/j.watres.2019.04.060
  63. Helcoski, R., Yonkos, L.T., Sanchez, A. & Baldwin, A.H. (2020). Wetland soil microplastics are negatively related to vegetation cover and stemdensity, Environ. Pollut., 256, 113391. DOI: 10.1016/j.envpol.2019.113391
  64. Hermanová, S. & Pumera M. (2022). Micromachines for Microplastics Treatment, ACS Nanosci., 2, pp. 225-232. DOI: 10.1021/acsnanoscienceau.1c00058
  65. Hernandez, E., Nowack, B. & Mitrano, D.M. (2017). Polyester textiles as a source of microplastics from households: a mechanistic study to understand microfiber release during washing, Environ. Sci. Technol., 51, pp. 7036-7046. DOI: 10.1021/acs.est.7b01750
  66. Hidalgo-Ruz, V., Gutow, L., Thompson, R.C. & Thiel, M. (2012). Microplastics in the marine environment: a review of the methods used for identification and quantification, Environ. Sci. Technol., 46(6), pp. 3060-3075. DOI: 10.1021/es2031505
  67. Hidayaturrahman, H. & Lee, T.-G. (2019). A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process, Mar. Pollut. Bull., 146, pp. 696–702. DOI: 10.1016/j.marpolbul.2019.06.071
  68. Hirai, H., Takada, H., Ogata, Y., Yamashita, R., Mizukawa, K., Saha, M., Kwan, C., Moore, C., Gray, H. & Laursen, D. (2011). Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches, Mar. Pollut. Bull., 62(8), pp. 1683–1692. DOI: 10.1016/j.marpo lbul.2011.06.004
  69. Horton, A.A., Walton, A., Spurgeon, D.J., Lahive, E. & Svendsen, C. (2017). Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities, Sci. Total Environ., 586, pp. 127–141. DOI: 10.1016/j.scitotenv.2017.01.190
  70. Howard, G.T., Norton, W.N. & Burks, T. (2012). Growth of Acinetobacter gerneri P7 on polyurethane and the purification and characterization of a polyurethanase enzyme, Biodegradation, 23(4), pp. 561–573. DOI: 10.1007/s10532-011-9533-6
  71. Jeon, H.J. & Kim, M.N. (2016). Isolation of mesophilic bacterium for biodegradation of polypropylene, International Biodeterioration & Biodegradation, 115, pp. 244–249. DOI: 10.1016/J.IBIOD.2016.08.025
  72. Jeong, C.-B., Won, E.-J., Kang, H.-M., Lee, M.-C., Hwang, D.-S., Hwang, U.-K., Zhou, B., Souissi, S., Lee, S.-J. & Lee, J.-S. (2016). Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus), Environ. Sci. Technol., 50 (16), pp. 8849-8857. DOI: 10.1021/acs.est.6b01441
  73. Judd, S. (2016). The status of industrial and municipal euent treatment with membrane bioreactor technology, Chem. Eng. J., 305, pp. 37–45. DOI: 10.1016/j.cej.2015.08.141
  74. Kalčíková, G., Alič, B., Skalar, T., Bundschuh,M. & Gotvajn, A.Ž. (2017). Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater, Chemosphere, 188, pp. 25–31. DOI: 10.1016/j.chemosphere.2017.08.131
  75. Katrivesis, F.K., Karela, A.D., Papadakis, V.G. & Paraskeva, C.A. (2019). Revisiting of coagulation-flocculation processes in the production of potable water, J. Water Process. Eng., 27, 193–204. DOI: 10.1016/j.jwpe.2018.12.007
  76. Kazour, M., Terki, S., Rabhi, K., Jemaa, S., Khalaf, G. & Amara R. (2019). Sources of microplastics pollution in the marine environment: importance of wastewater treatment plant and coastal landfill, Mar. Pollut. Bull., 146 608-618. 10.1016/j.marpolbul.2019.06.066
  77. Kima, S., Sin, A., Nam, H., Park, Y., Lee, H. & Han, C. (2022). Advanced oxidation processes for microplastics degradation: A recent trend, Chemical Engineering Journal Advances, 9, 100213. DOI: 10.1016/j.ceja.2021.100213
  78. Klavarioti, M., Mantzavinos, D. & Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes, Environ. Int., 35, pp. 402–417. DOI:10.1016/j.envint.2008.07.009
  79. Kole, P.J., Lohr, A.J., Van Belleghem, F. & Ragas, A. (2017). Wear and tear of tyres: a stealthy source of microplastics in the environment, Int. J. Environ. Res. Public Health, 14, 1265. DOI:10.3390/ijerph14101265
  80. Lares, M., Ncibi, M.C., Sillanpaa, M. & Sillanpaa, M. (2018). Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology, Water Research, 133, pp. 236–246. DOI: 10.1016/ j.watres.2018.01.049
  81. Lee, Y.K., Murphy, K.R. & Hur, J. (2020). Fluorescence signatures of dissolved organic matter leached from microplastics: Polymers and additives, Environ. Sci. Technol., 54, 11905–11914. DOI: 10.1021/acs.est.0c00942
  82. Li, L., Liu, D., Song, K. & Zhou, Y.W. (2020). Performance evaluation of MBR in treating microplastics polyvinylchloride contaminated polluted surface water, Mar. Pollut., Bull., 150, 110724. DOI: 10.1016/j.marpolbul.2019.110724
  83. Li, L., Xu, G. & Yu, H. (2018). Dynamic membrane filtration: formation, filtration, cleaning. and applications, Chem. Eng. Technol., 41, pp. 7–18. DOI: 10.1002/ceat.201700095
  84. Liang, W., Luo, Y., Song, S., Dong, X. & Yu, X. (2013). High photocatalytic degradation activity of polyethylene containing polyacrylamide grafted TiO2, Polym. Degrad. Stab,. 98, pp. 1754–1761. DOI: 1016/j.polymdegradstab.2013.05.027
  85. Liu, X., Yuan,W., Di, M., Li, Z. & Wang, J. (2019a). Transfer and fate of microplastics during the conventional activated sludge process in one wastewater treatment plant of China, Chem. Eng. J., 362, pp. 176–182. DOI: 10.1016/j.cej.2019.01.033
  86. Liu, F.F., Liu, G.Z., Zhu, Z.L., Wang, S.C. & Zhao, F.F. (2019b). Interactions between microplastics and phthalate esters as affected bymicroplastics characteristics and solution chemistry, Chemosphere, 214, 688–694. Doi: 10.1016/j.chemosphere.2018.09.174
  87. Liu, F., Vianello, A., Vollertsen, J., (2019c). Retention of microplastics in sediments of urban and highway stormwater retention ponds, Environ. Pollut., 255, 113335. DOI: 10.1016/j.envpol.2019.113335
  88. Liu, S.Y., Leung, M.M.L., Fang, J.K.H. & Chua, S.L. (2021). Engineering a microbial ‘trap and release’ mechanism for microplastics removal, Chemical Engineering Journal, 404, 127079. DOI: 10.1016/j.cej.2020.127079
  89. Liu, W.L., Wu, Y., Zhang, S.J., Gao, Y.Q., Jiang, Y., Horn, H. & Li, J. (2020). Successful granulation and microbial differentiation of activated sludge in anaerobic/anoxic/aerobic (A2O) reactor with two-zone sedimentation tank treating municipal sewage, Water Research, 178, 115825. DOI: 10.1016/j.watres.2020.115825
  90. Long, Z., Pan, Z., Wang, W., Ren, J., Yu, X., Lin, L., Lin, H., Chen, H. & Jin, X. (2019). Microplastic abundance, characteristics, and removal in wastewater treatment plants in a coastal city of China, Water Res,. 155, 255-265. DOI: 10.1016/j.watres.2019.02.028
  91. de Luna, M.D.G., Veciana, M.L., Su, C.C. & Lu, M.C. (2012). Acetaminophen degradation by electro-Fenton and photoelectro-Fenton using a double cathode electrochemical cell, J. Hazard. Mater.. 217, pp. 200–207. DOI: 10.1016/j.jhazmat.2012.03.018
  92. Lv, X., Dong, Q., Zuo, Z., Liu, Y., Huang, X. & Wu, W. (2019). Microplastics in a municipal wastewater treatment plant: fate, dynamic distribution, removal efficiencies, and control strategies, J. Clean. Prod., 225, pp. 579–586. DOI: 10.1016/j. jclepro.2019.03.321
  93. Ma, B., Xue, W., Hu, C., (...), Qu, J. & Li, L., (2019b). Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment, Chemical Engineering Journal, 359, pp. 159-167. 10.1016/j.cej.2018.11.155
  94. Ma, B., Xue,W., Ding, Y., Hu, C., Li, H. & Qu, J. (2019c). Removal characteristics of microplastics by Fe-based coagulants during drinking water treatment, J. Environ. Sci., 78, pp. 267–275. DOI: 10.1016/j.jes.2018.10.006
  95. Ma, J., Zhao, J.H., Zhu, Z.L., Li, L.Q. & Yu, F. (2019a). Effect of microplastic size on the adsorption behavior and mechanism of triclosan on polyvinyl chloride, Environ. Pollut., 254, 113104 DOI: 10.1016/j.envpol.2019.113104
  96. Magni, S., Binelli, A., Pittura, L., Avio, C.G., Della Torre, C., Parenti, C.C. & Gorbi, S., Regoli, F. (2019). The fate of microplastics in an Italian Wastewater Treatment Plant, Sci. Total Environ,. 652, pp. 602–610. DOI: 10.1016/j.scitotenv.2018.10.269
  97. Magnin, A., Hoornaert, L., Pollet, E., Laurichesse, S., Phalip, V. & Avérous, L. (2019). Isolation and characterization of different promising fungi for biological waste management of polyurethanes, Microbial Biotechnology, 12(3), pp. 544–555. DOI: 10.1111/1751-7915.13346
  98. Malankowska, M. Echaide-Gorriz, C. & Coronas, J. (2021). Microplastics in marine environment – sources, classification, and potential remediation by membrane technology – A review, Environ. Sci.: Water Res. Technol., 7, pp. 243-258. DOI: 10.1039/D0EW00802H
  99. Mason, S.A., Garneau, D., Sutton, R., Chu, Y., Ehmann, K., Barnes, J., Fink P., Papazissimos, D. & Rogers D.L (2016). Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent, Environ. Pollut., 218, pp. 1045–1054. DOI: 10.1016/j. envpol.2016.08.056
  100. Miao, F., Liu, Y., Gao, M., Yu, X., Xiao, P., Wang, M., Wang, S. & Wang, X. (2020). Degradation of polyvinyl chloride microplastics via an electro-Fenton-like system with a TiO2/graphite cathode, J. Hazard. Mater., 399, 123023. DOI: 10.1016/j.jhazmat.2020.123023
  101. Michielssen, M.R., Michielssen, E.R., Ni, J. & Duhaime, M.B. (2016). Fate of microplastics and other small anthropogenic litter (SAL) in wastewater treatment plants depends on unit processes employed, Environmental Science: Water Research & Technology, 2(6), pp. 1064–1073, DOI: 10.1039/C6EW00207B
  102. Mintenig, S., Int-Veen, I., Loder, M.G., Primpke, S. & Gerdts, G.,(2017). Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging, Water Res., 108, pp. 365-372. DOI: 10.1016/j.watres.2016.11.015
  103. Mohan, D., Sarswat, A., Ok, Y.S. & Pittman Jr., C.U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review, Bioresour. Technol., 160, pp. 191–202. DOI: 10.1016/j.biortech.2014.01.120
  104. Moraczewska-Majkut, K., Nocoń, W., Zyguła, M. & Wiśniowska, E. (2020). Quantitative analysis of microplastics in wastewater during selected treatment processes, Desal. Water Treat., 199, pp. 352-361. DOI:10.5004/dwt.2020.26019
  105. Moraczewska-Majkut, K., Nocoń, W. & Łobos-Moysa, E. (2021). The occurrence of microplastics in wastewater and the possibilities of using separation methods to reduce this contamination at the WWTP, Des. Water Treat., 243, pp. 37-43. DOI: 10.5004/dwt.2021.27860
  106. Moussa, D.T., El-Naas, M.H., Nasser, M. & Al-Marri, M.J. (2017). A comprehensive review of electrocoagulation for water treatment: potentials and challenges, J. Environ. Manage., 186, pp. 24–41. DOI: 10.1016/j.jenvman.2016.10.032
  107. Mrowiec B. (2017). Plastic pollutants in water environment, Environmental Protection and Natural Resources, 28, (74), pp. 51-55. DOI 10.1515/oszn-2017-0030
  108. Mrowiec B. (2018). Plastics in the circular economy (CE), Environmental Protection and Natural Resources, 29, (78), pp. 16-19. DOI 10.2478/oszn-2018-0017
  109. Murphy, F., Ewins, C., Carbonnier, F. & Quinn, B. (2016). Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment, Environ. Sci. Technol., 50(11), pp. 5800–5808. DOI: 10.1021/acs.est.5b05416
  110. Murphy, J. (2001). Additives for plastics handbook. Elsevier, Amsterdam, DOI: 10.1016/b978-1-85617 -370-4.x5000 -3
  111. Nakamiya, K., Hashimoto, S., Ito, H., Edmonds, J.S., Yasuhara, A. & Morita, M. (2005). Microbial treatment of bis (2-ethylhexyl) phthalate in polyvinyl chloride with isolated bacteria. Journal of Bioscience and Bioengineering, 99(2): 115–119. DOI: 10.1263/JBB.99.115
  112. Napper, I.E. & Thompson, R.C. (2016). Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions, Mar.Pollut. Bull., 112, pp. 39–45. DOI: 1016/j.marpolbul.2016.09.025
  113. Narciso-Ortiz, L., Coreño-Alonso, A., Mendoza-Olivares, D., Lucho-Constantino, C.A. & Lizardi-Jiménez, M.A. (2020). Baseline for plastic and hydrocarbon pollution of rivers, reefs, and sediment on beaches in Veracruz State, México, and a proposal for bioremediation, Environmental Science and Pollution Research, 27(18), pp. 23035–23047. DOI: 10.1007/s11356-020-08831-z
  114. Ngo, P.L., Pramanik, B.K., Shah, K. & Roychand, R. (2019). Pathway, classification and removal efficiency of microplastics in wastewater treatment plants, Environmental Pollution, 255(2), 113326, DOI: 10.1016/j.envpol.2019.113326
  115. Nizzetto, L., Futter, M. & Langaas, S. (2016). Are agricultural soils dumps for microplastics of urban origin? Environ. Sci. Technol., 50(20), pp. 10777–10779. DOI: 10.1021/acs.est.6b04140
  116. Nocoń, W., Moraczewska-Majkut, K. & Wiśniowska E. (2018). Microplastics in surface water under strong anthropopression, Desal. Water Treat., 134, pp. 174-181. DOI: 10.5004/dwt.2018.22833
  117. Odusanya, S.A., Nkwogu, J.V., Alu, N., Etuk Udo, G.A., Ajao, J.A., Osinkolu, G.A. & Uzomah, A.C. (2013). Preliminary studies on microbial degradation of plastics used in packaging potable water in Nigeria, Nigerian Food Journal, 31(2), pp. 63–72. DOI: 10.1016/S0189-7241(15)30078-3
  118. Olivatto, G.P., Martins, M.C. T., Montagner, C.C., Henry, T.B. & Carreira, R.S. (2019). Microplastic contamination in surface waters in Guanabara Bay, Rio de Janeiro, Brazil, Marine Pollution Bulletin, 139, pp. 157–162. DOI: 10.1016/j.marpolbul.2018.12.042
  119. Oprea, S. & Doroftei, F. (2011). Biodegradation of polyurethane acrylate with acrylated epoxidized soybean oil blend elastomers by Chaetomium globosum, International Biodeterioration & Biodegradation, 65(3), pp. 533–538. DOI: 10.1016/j.ibiod.2010.09.011
  120. Orr, I.G., Hadar, Y. & Sivan, A. (2004). Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber, Applied Microbiology and Biotechnology, 65(1), pp. 97–104. DOI: 10.1007/s00253-004-1584-8
  121. Osman, M., Satti, S.M., Luqman, A., Hasan, F., Shah, Z. & Shah, A.A. (2018). Degradation of polyester polyurethane by Aspergillus sp. strain S45 isolated from soil, Journal of Polymers and the Environment, 26(1), pp. 301–310. DOI: 10.1007/s10924-017-0954-0
  122. Östman, M., Björlenius, B., Fick, J. & Tysklind, M. (2019). Effect of full-scale ozonation and pilot-scale granular activated carbon on the removal of biocides, antimycotics and antibiotics in a sewage treatment plant, Sci. Total Environ., 649, pp. 1117–1123. DOI: 10.1016/j.scitotenv.2018.08.382
  123. Ostrovsky, I., Yacobi, Y. & Koren, N. (2014). Sedimentation Processes, In: Zohary, T., Sukenik, A., Berman, T., Nishri, A. (eds) Lake Kinneret. Aquatic Ecology Series, vol 6. Springer, Dordrecht. DOI.org/10.1007/978-94-017-8944-8_27
  124. Ouyang, Z., Yang, Y., Zhang, C., Zhu, S., Qin, L., Wang, W., He, D., Zhou, Y., Luo, H. & Qin, F. (2021). Recent Advances in Photocatalytic Degradation of Plastics and Plastic-Derived Chemicals, Journal of Materials Chemistry A, 9 (23), pp. 13402−13441. DOI: 10.1039/D0TA12465F
  125. Paço, A., Duarte, K., da Costa, J.P., Santos, P.S.M., Pereira, R., Pereira, M.E., Freitas, A.C., Duarte, A.C. & Rocha-Santos, T.A.P. (2017). Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum, Science of the Total Environment, 586, pp. 10–15. DOI: 10.1016/j.scitotenv.2017.02.017
  126. Padervand, M., Lichtfouse E., Robert, D. & Wang C. (2020). Removal of microplastics from the environment. A review, Environmental Chemistry Letters, 18(3), pp. 807-828. DOI: 10.1007/s10311-020-00983-1
  127. Perren, W., Wojtasik, A. & Cai, Q (2018). Removal of microbeads from wastewater using electrocoagulation. ACS Omega, 3(3), pp. 3357–3364. DOI: 10.1021/acsom ega.7b020 37
  128. Plastics Europe 2022, access 15.09.2022 https://www.plasticseurope.org
  129. Poerio, T., Piacentini, E. & Mazzei, R. (2019). Membrane processes for microplastic removal, Molecules, 24, 4148, DOI:10.3390/molecules24224148
  130. Pohl, A., Tytła, M., Kernert, J., Bodzek M. (2022). Plastics-derived and heavy metals contaminants in the granulometric fractions of bottom sediments of anthropogenic water reservoir – Comprehensive analysis, Desalination and Water Treatment, 258, pp. 207–222, DOI:10.5004/dwt.2022.28459
  131. Pramanik, B.K., Pramanik, S.K. & Monira S. (2021). Understanding the fragmentation of microplastics into nano-plastics and removal of nano/microplastics from wastewater using membrane, air flotation and nano-ferrofluid processes, Chemosphere, 282, 131053. DOI: 10.1016/j.chemosphere.2021.131053
  132. Prata, J.C., da Costa, J.P., Lopes, I., Duarte, A.C. & Rocha-Santos, T. (2020). Environmental exposure to microplastics: an overview on possible human health effects, Sci. Total Environ., 702, 134455. DOI: 10.1016/j.scitotenv.2019.134455
  133. Pivokonsky, M., Cermakova, L., Novotna, K., Peer, P., Cajthaml, T. & Janda, V. (2018). Occurrence of microplastics in raw and treated drinking water, Sci. Total Environ., 643, pp.1644-1651. DOI: 10.1016/j.scitotenv.2018.08.102
  134. Qi, K., Cheng, B., Yu, J. & Ho, W. (2017). Review on the improvement of the photocatalytic and antibacterial activities of ZnO, J. Alloys Compd., 727, pp. 792–820. DOI: 10.1016/j.jallcom.2017.08.142
  135. Rezania, S., Park, J., Din, M.F.M., Taib, S.M., Talaiekhozani, A., Yadav, K.K. & Kamyab, H. (2018). Microplastics pollution in different aquatic environments and biota: A review of recent studies, Mar. Pollut. Bull., 133, pp. 191–208. DOI: 10.1016/j.marpolbul.2018.05.022
  136. Riffat, R., (2013). Fundamentals of wastewater treatment and engineering, Taylor & Francis Group.
  137. Rios, L.M., Moore, C, & Jones P.R. (2007). Persistent organic pollutants carried by synthetic polymers in the ocean environment, Mar, Pollut, Bull., 54(8), pp. 1230–1237. https ://doi.org/10.1016/j.marpolbul.2007.03.022
  138. Rocher, V., Paffoni, C., Goncalves, A., Gu´erin, S., Azimi, S., Gasperi, J., Moilleron, R., Pauss, A., 2012. Municipal wastewater treatment by biofiltration: comparisons of various treatment layouts. Part 1: assessment of carbon and nitrogen removal, Water Sci. Technol., 65, pp. 1705–1712. DOI: 10.2166/wst.2012.105
  139. Rummel, C.D., Jahnke, A., Gorokhova, E., Kühnel, D. & Schmitt-Jansen, M. (2017). Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment, Environ. Sci. Technol. Lett., 4, 258-267. DOI: 0.1021/acs.estlett.7b00164
  140. Saboor F.H.,, Hadian-Ghazvini, S. & Torkashvand M. (2022). Microplastics in Aquatic Environments: Recent Advances in Separation Techniques, Periodica Polytechnica Chemical Engineering, 66(2), pp. 167–181,. DOI: 10.3311/PPch.18930
  141. Sarmah, P. & Rout, J. (2019). Cyanobacterial degradation of low-density polyethylene (LDPE) by Nostoc carneum isolated from submerged polyethylene surface in domestic sewage water, Energy, Ecology & Environment, 4(5), pp. 240–252. DOI: 10.1007/s40974-019-00133-6
  142. Shi, C., Zhang, S., Zhao, J., Ma, J., Wu, H., Sun, H. & Cheng S. (2022b). Experimental study on removal of microplastics from aqueous solution by magnetic force effect on the magnetic sepiolite, Separation and Purification Technology, 288, 120564, DOI: 10.1016/j.seppur.2022.120564
  143. Shi, X., Zhang, X., Gao, W., Zhang, Y. & He, D. (2022a). Removal of microplastics from water by magnetic nano-Fe3O4, Science of The Total Environment, 802, 149838. DOI: 10.1016/j.scitotenv.2021.149838.
  144. Shirasaki, N., Matsushita, T., Matsui, Y. & Marubayashi, T. (2016). Effect of aluminum hydrolyte species on human enterovirus removal from water during the coagulation process. Chem. Eng. J., 284, pp. 786–793. DOI: 10.1016/j.cej.2015.09.045
  145. Siipola, V., Pflugmacher, S., Romar, H., Wendling, L. & Koukkari, P. (2020). Low-Cost Biochar Adsorbents for Water Purification Including Microplastics Removal, Appl. Sci., 10, 788. DOI: 10.3390/app10030788
  146. Simon, M., Vianello, A. & Vollertsen, J. (2019). Removal of >10 μm microplastic particles from treated wastewater by a disc filter, Water, 11(9), 1935. DOI:10.3390/w11091935
  147. Singla, M., Díaz, J., Broto-Puig, F. & Borros, S. (2020). Sorption and release process of polybrominated diphenyl ethers (PDBEs) from different composition microplastics in aqueous medium: Solubility parameter approach, Environ. Pollut., 262, 114377. DOI: 10.1016/j.envpol.2020.114377
  148. Skariyachan, S., Patil, A.A., Shankar, A., Manjunath, M., Bachappanavar, N. & Kiran, S. (2018). Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sp. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants, Polymer Degradation & Stability, 149, pp. 52–68. DOI: 10.1016/J.POLYMDEGRADSTAB.2018.01.018
  149. Sommer, F., Dietze, V., Baum, A., Sauer, J., Gilge, S., Maschowski, C. & Gieré R. (2018). Tire abrasion as a major source of microplastics in the environment, Aerosol Air Qual. Res., 18, pp. 2014–2028. DOI: 10.4209/aaqr.2018.03.0099
  150. Sørensen, L., Rogers, E., Altin, D., Salaberria, I. & Booth, A.M. (2020). Sorption of PAHs to microplastic and their bioavailability and toxicity to marine copepods under co-exposure conditions, Environ. Pollut., 258, 113844. DOI: 10.1016/j. envpol.2019.113844
  151. Sudhakar, M., Doble, M., Murthy, P.S. & Venkatesan, R. (2008). Marine microbe-mediated biodegradation of low-and high-density polyethylenes, International Biodeterioration & Biodegradation, 61(3), pp. 203–213. DOI: 10.1016/J.IBIOD.2007.07.011
  152. Sun, J., Dai, X.H., Wang, Q.L., van Loosdrecht, M.C.M. & Ni, B.J. (2019). Microplastics in wastewater treatment plants: Detection, occurrence and removal, Water Research, 152, pp. 21–37. DOI: 10.1016/j.watres.2018.12.050
  153. Tagg, A., Harrison, J.P., Ju-Nam, Y., Sapp, M., Bradley, E.L., Sinclair, C.J. & Ojeda, J.J. (2017). Fenton's reagent for the rapid and efficient isolation of microplastics from wastewater, Chem. Commun., 53, pp. 372–375. DOI: 10.1039/C6CC08798A
  154. Talvitie, J., Heinonen, M., Paakkonen, J.-P., Vahtera, E., Mikola, A., Setala, O. & Vahala, R. (2015). Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea, Water Sci. Technol., 72(9), pp. 1495-1504. DOI: 10.2166/wst.2015.360
  155. Talvitie, J., Mikola, A., Koistinen, A. & Setälä, O. (2017b). Solutions to microplastic pollution: Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies, Water Research, 123, pp. 401–407. DOI:10.1016/j.watres.2017.07.005
  156. Talvitie, J., Mikola, A., Setala, O., Heinonen, M. & Koistinen, A. (2017a). How well is microlitter purified from wastewater? – a detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant, Water Research, 109, pp. 164–172. DOI:10.1016/j.watres.2016.11.046
  157. Tang, W.C., Li, X., Liu, H.Y., Wu, S.H., Zhou, Q., Du, C., Teng, Q., Zhong, Y.Y. & Yang, C.P. (2020). Sequential vertical flow trickling filter and horizontal flow reactor for treatment of decentralized domestic wastewater with sodium dodecyl benzene sulfonate, Bioresour. Technol. 300, 122634. DOI: 10.1016/j.biortech.2019.122634
  158. Tang, Y., Zhang, S., Su, Y., Wu, D., Zhao, Y. & Xie, B. (2021). Removal of microplastics from aqueous solutions by magnetic carbon nanotubes, Chemical Engineering Journal, 406, 126804. DOI: 10.1016/j.cej.2020.126804
  159. Tian, L., Kolvenbach, B., Corvini, N., Wang, S., Tavanaie, N., Wang, L., Ma, Y., Scheu, S., Corvini, P.F.X. & Ji, R. (2017). Mineralisation of 14C-labelled polystyrene plastics by Penicillium variabile after ozonation pre-treatment, New Biotechnology, 38(B), pp. 101-105. DOI: 10.1016/j.nbt.2016.07.008
  160. Tofa, T.S., Kunjali, K.L., Paul, S. & Dutta, J. (2019). Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods, Environ. Chem. Lett., 17, pp. 1341–1346. DOI: 10.1007/s10311-019-00859-z
  161. Thompson, R.C., Moore, C.J., Vom Saal, F.S. & Swan S.H. (2009). Plastics, the environment and human health: current consensus and future trends, Philosophical Transactions of the Royal Society B, 364, pp. 2153–2166. DOI: 10.1098/rstb.2009.0053
  162. Vimala, P. & Mathew, L. (2016). Biodegradation of polyethylene using Bacillus subtilis, Procedia Technology, 24, pp. 232–239. DOI: 10.1016/j.protcy.2016.05.031
  163. Vuori, L. & Ollikainen, M. (2022). How to remove microplastics in wastewater? A cost-effectiveness analysis, Ecological Economics 192 ,107246. DOI: 10.1016/j.ecolecon.2021.107246
  164. Wagner, M., Scherer, C., Alvarez‐Muñoz, D., Brennholt, N., Bourrain, X., Buchinger, S., Fries, E., Grosbois, C., Klasmeier, J., Marti, T. Ridriguez‐Mozaz, S., Urbatzka, R., Dick Vethaak, A., Winther‐Nielsen M. & Reifferscheid, G. (2014). Microplastics in freshwater ecosystems: what we know and what we need to know, Environ.Sci. Europe, 26, 12. DOI: 10.1186/s12302-014-0012-7
  165. Wang, S.M., Chen, H.Z., Zhou, X.W., Tian, Y.Q., Lin, C., Wang, W.L., Zhou, K.W., Zhang, Y.B. & Lin, H. (2020a). Microplastic abundance, distribution and composition in the mid-west Pacific Ocean, Environ. Pollut., 264, 114125 DOI: 10.1016/j. envpol.2020.114125.
  166. Wang, R., Ji, M., Zhai, H. & Liu, Y. (2020b).Occurrence of phthalate esters and microplastics in urban secondary effluents, receiving water bodies and reclaimed water treatment processes, Science of The Total Environment, 737, 140219. DOI: 10.1016/j.scitotenv.2020.140219
  167. Wang, Z., Sedighi, M. & Lea-Langton, A. (2020c). Filtration of microplastic spheres by biochar: removal efficiency and immobilisation mechanisms, Water Research, 184, 116165. DOI: 10.1016/j.watres.2020.116165
  168. Wang, Q., Hernández-Crespo, C., Santoni, M., Van Hulle, S., Rousseau, D.P. (2020d). Horizontal subsurface flow constructed wetlands as tertiary treatment: Can they be an efficient barrier for microplastics pollution? Sci. Total Environ., 137785. DOI: 10.1016/j.scitotenv.2020.1377
  169. Wang, H., Zhang, Y. & Wang, C. (2019a). Surface modification and selective flotation of waste plastics for effective recycling-a review, Sep. Purif. Technol., 226, pp. 75–94. DOI: 10.1016/j.seppur.2019.05.052
  170. Wang, L., Kaeppler, A., Fischer, D. & Simmchen, J. (2019b). Photocatalytic TiO2 micromotors for removal of microplastics and suspended matter, ACS Appl. Mater. Interfaces., 11, pp. 32937–32944. DOI: 10.1021/acsami.9b06128
  171. Wang, W. & Wang, J. (2018). Investigation of microplastics in aquatic environments: an overview of the methods used, from field sampling to laboratory analysis. Trends Anal. Chem., 108, pp. 195–202. DOI: 10.1016/j.trac.2018.08.026
  172. Wang, W., Ndungu, A.W., Li, Z. & Wang, J. (2017). Microplastics pollution in inland freshwaters of China: a case study in urban surface waters of Wuhan, China, Sci.Total Environ., 575:1369–1374. DOI: 10.1016/j.scito tenv.2016.09.213
  173. Wei, R. & Zimmermann, W. (2017). Biocatalysis as a green route for recycling the recalcitrant plastic polyethylene terephthalate, Microbial Biotechnology, 10(6), pp. 1302–1307. DOI: 10.1111/1751-7915.12714
  174. Wiśniowska, E., Moraczewska-Majkut, K. & Nocoń, W. (2020). Selected unit processes in microplastics removal from water and wastewater, Desal. Water Treat., 199, pp. 512-520. DOI: 10.5004/dwt.2020.26513
  175. Xia, Y., Xiang, X.M., Dong, K.Y., Gong, Y.Y. & Li, Z.J. (2020). Surfactant stealth effect of microplastics in traditional coagulation process observed via 3-D fluorescence imaging, Science of The Total Environment, 729, 138783. DOI: 10.1016/j.scitotenv.2020.138783
  176. Xiao, K., Lianga, S., Wanga, X., Chena, C. & Huanga, X. (2019). Current state and challenges of full-scale membrane bioreactor applications: A critical review, Bioresour. Technol., 271, pp. 473–481. DOI: 10.1016/j.biortech.2018.09.061
  177. Xu, Z., Bai, X. & Ye, Z. (2021). Removal and generation of microplastics in wastewater treatment plants: A review, Journal of Cleaner Production, 291, 125982. DOI: 10.1016/j.jclepro.2021.125982
  178. Yang, L., Li, K., Cui, S., Kang, Y., An, L. & Lei, K. (2019). Removal of microplastics in municipal sewage from China's largest water reclamation plant, Water Research, 155, pp. 175–181. DOI: 10.1016/j.watres.2019.02.046
  179. Yang,Y., Yang, J., Wu, W.M., Zhao, J., Song, Y., Gao, L., Yang, R. & Jiang, L. (2015). Biodegradation and mineralization of polystyrene by plasticeating mealworms: Part 2. Role of gut microorganisms, Environmental Science & Technology, 49(20), pp. 12087–12093. DOI: 10.1021/acs.est.5b02663
  180. Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y. & Oda, K. (2016). A bacterium that degrades an assimilates poly (ethylene terephthalate). Science, 351, pp. 1196–1199. DOI: 10.1126/science.aad6359
  181. Zettler, E.R., Mincer, T.J. & Amaral-Zettler, L.A. (2013). Life in the “plastisphere”: microbial communities on plastic marine debris, Environ. Sci. Technol., 47, pp. 7137-7146. DOI: 10.1021/es401288x
  182. Zhang, K., Shi, H., Peng, J., Wang, Y., Xiong, X., Wu, C. & Lam, P.K. (2018). Microplastic pollution in China's inland water systems: a review of findings, methods, characteristics, effects, and management, Sci. Total Environ., 630, pp. 1641–1653. DOI: 10.1016/j.scitotenv.2018.02.300
  183. Zhang, X., Chen, J. & Li, J. (2020a). The removal of microplastics in the wastewater treatment process and their potential impact on anaerobic digestion due to contaminants association, Chemosphere. 251, 126360. DOI: 10.1016/j.chemosphere.2020.126360
  184. Zhang, Y., Diehl, A., Lewandowski, A., Gopalakrishnan, K. & Baker, T. (2020b). Removal efficiency of micro-and nanoplastics (180 nm–125 μm) during drinking water treatment, Sci. Total Environ., 720, 137383. DOI: 10.1016/j.scitotenv.2020.137383
  185. Zhou, G., Wang, Q., Li, J., Li, Q., Xu, H., Ye, Q., Wang, Y., Shu, S. & Zhang, J. (2021). Removal of polystyrene and polyethylene microplastics using PAC and FeCl3 coagulation: Performance and mechanism, Science of the Total Environment, 752, 141837. DOI: 10.1016/j.scitotenv.2020.141837
  186. Ziajahromi, S., Drapper, D., Hornbuckle, A., Rintoul, L. & Leusch, F.D. (2020). Microplastic pollution in a stormwater floating treatment wetland: Detection of tyre particles in sediment, Sci. Total Environ., 713, 136356. DOI: 10.1016/j.scitotenv.2019.136356
  187. Ziajahromi, S., Neale, P.A., Rintoul, L. & Leusch, F.D.L. (2017). Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics, Water Research, 112, pp. 93-99. DOI: 10.1016/j.watres.2017.01.042

Date

12.12.2022

Type

Article

Identifier

DOI: 10.24425/aep.2022.143713

DOI

10.24425/aep.2022.143713

Abstracting & Indexing

Abstracting & Indexing


Archives of Environmental Protection is covered by the following services:


AGRICOLA (National Agricultural Library)

Arianta

Baidu

BazTech

BIOSIS Citation Index

CABI

CAS

DOAJ

EBSCO

Engineering Village

GeoRef

Google Scholar

Index Copernicus

Journal Citation Reports™

Journal TOCs

KESLI-NDSL

Naviga

ProQuest

SCOPUS

Reaxys

Ulrich's Periodicals Directory

WorldCat

Web of Science

×