Details
Title
Influence of Cold Work on the Efficiency of Vibratory MachiningJournal title
Archives of Foundry EngineeringYearbook
2024Volume
vol. 24Issue
No 2Affiliation
Bańkowski, D. : Kielce University of Technology, Poland ; Spadło, S. : Kielce University of Technology, PolandAuthors
Keywords
Vibratory machining ; Brass ; Recrystallization ; Crushing ; Burrs removingDivisions of PAS
Nauki TechniczneCoverage
5-10Publisher
The Katowice Branch of the Polish Academy of SciencesBibliography
[1] Stal Centrum (2021). M63 - Material properties, Application. Retrieved April 1, 2021, from http://www.stal-Centrum.com.pl/index.php/pomoc-techniczna/charakterystyka-gatunkow/mosiadz/m63cuzn37 (in Polish).[2] Bańkowski, D., & Spadło, S. (2017). Investigations of influence of vibration smoothing conditions of geometrical structure on machined surfaces. IOP Conference Series: Materials Science and Engineering. 179 (1), 012002). DOI.: 10.1088/1757-899X/179/1/012002
[3] Ciampini, D., Papini, M. & Spelt, J.K. (2007). Impact velocity measurement of media in a vibratory finisher. Journal of Materials Processing Technology. 183(2-3), 347-357. DOI.: 1016/j.jmatprotec.2006.10.024.
[4] Borovets, V., Lanets, O., Korendiy, V., Dmyterko, P. (2021). Volumetric vibration treatment of machine parts fixed in rotary devices. In: Tonkonogyi, V., et al., Advanced Manufacturing Processes II (pp.373-383). Springer, Cham. DOI.: 10.1007/978-3-030-68014-5_37.
[5] Mediratta, R., Ahluwalia, K. & Yeo, S.H. (2016). State-of-the-art on vibratory finishing in the aviation industry: An industrial and academic perspective. The International Journal of Advanced Manufacturing Technology. 85, 415-429. DOI.: 10.1007/s00170-015-7942-0.
[6] Grigoriev, S.N., Metel, A.S., Tarasova, T.V., Filatova, A.A., Sundukov, S.K., Volosova, M.A., Okunkova, A.A., Melnik, Y.A. & Podrabinnik, P.A. (2020). Effect of cavitation erosion wear, vibration tumbling, and heat treatment on additively manufactured surface quality and properties. Metals. 10(11), 1540, 1-27. DOI.: 10.3390/met10111540.
[7] Canals, L., Badreddine, J., McGillivray, B., Miao, H.Y., Levesque, M. (2019). Effect of vibratory peening on the sub-surface layer of aerospace materials Ti-6Al-4V and E-16NiCrMo13. Journal of Materials Processing Technology. 264, 91-106. DOI.: 10.1016/j.jmatprotec.2018.08.023.
[8] Uhlmann, E., Eulitz, A. (2018). Influence of ceramic media composition on material removal in vibratory finishing. Procedia CIRP. 72, 1445-1450. https://doi.org/10.1016/ j.procir.2018.03.285
[9] Bańkowski, D., Spadło, S. (2017). Vibratory tumbling of elements made of Hardox400 steel. In 26th International Conference on Metallurgy and Materials, 24-26 May 2017 (pp. 725-730). Brno, Czech Republic.
[10] Bankowski, D., Spadlo, S. (2018). Influence of ceramic media on the effects of tumbler treatment. In 27th International Conference on Metallurgy and Materials, 23-25 May 2018, (pp. 1062-1066). Brno, Czech Republic.
[11] Metel, A.S., Grigoriev, S.N., Tarasova, T.V., Filatova, A.A., Sundukov, S.K., Volosova, M.A., Okunkova, A.A., Melnik, Y.A. & Podrabinnik, P.A. (2020). Influence of postprocessing on wear resistance of aerospace steel parts produced by laser powder bed fusion. Technologies. 8(4), 73. DOI.: 10.3390/technologies8040073.
[12] Glvan, D.O. et al. (2018). Study on the influence of supplying compressed air channels and evicting channels on pneumatical oscillation systems for vibromooshing. In IOP Conference Series: Materials Science and Engineering, 10-12 May 2017 (pp. 012069). Hunedoara, Romania. DOI.: 10.1088/1757-899X/294/1/012069.
[13] Bańkowski, D. & Spadło, S. (2020). Research on the influence of vibratory machining on titanium alloys properties. Archives of Foundry Engineering. 20(3), 47-52. DOI: 10.24425/afe.2020.133329.
[14] Woźniak, K. (2017). Surface treatment in container smoothing machines. Warszawa: WNT (in Polish).
[15] Micallef, C., Zhuk, Y. & Aria, A.I. (2020). Recent progress in precision machining and surface finishing of tungsten carbide hard composite coatings. Coatings. 10(8), 731, 1-35. DOI.: 10.3390/coatings10080731.
[16] Domblesky, J., Evans, R. & Cariapa, V. (2004). Material removal model for vibratory finishing. International Journal of Production Research. 42(5). 1029-1041. https://doi.org/10.1080/00207540310001619641.
[17] Bańkowski, D. & Spadło, S., (2019). The influence of abrasive paste on the effects of vibratory machining of brass. Archives of Foundry Engineering. 19(4), 5-10. DOI.: 10.24425/afe.2019.129622.
[18] Janecki, D., Stępień, K. & Adamczak, S. (2010). Problems of measurement of barrel- and saddle-shaped elements using the radial method. Measurement. 43(5), 659-663. DOI.: 10.1016/j.measurement.2010.01.015.
[19] Marciniak, M., Stefko, A., Szyrle W. (1983). Basics of processing in container smoothing machines. Warszawa: WNT. (in Polish).
[20] Hashimoto, F. & Debra, D.B. (1996). Modelling and optimization of vibratory finishing process. CIRP Annals. 45(1), 303-306. DOI.: 10.1016/S0007-8506(07)63068-6.