Details

Title

Properties of Casting Al-Cu Alloy Modified by Mixed Rare Earth (La, Ce) and its Mechanism Analyzed

Journal title

Archives of Foundry Engineering

Yearbook

2024

Volume

vol. 24

Issue

No 2

Authors

Affiliation

Li, Xin : School of Mechanical & Electrical Engineering, Guizhou Normal University, China ; Nurtilek, Medetbek Uulu : School of Mechanical & Electrical Engineering, Guizhou Normal University, China ; Zeng, Qi : Guiyang Huaheng Mechanical Manufacture CO.LTD, China ; Zhang, Ziqi : School of Mechanical & Electrical Engineering, Guizhou Normal University, China ; Wang, Lixia : School of Mechanical & Electrical Engineering, Guizhou Normal University, China ; Wu, Quan : School of Mechanical & Electrical Engineering, Guizhou Normal University, China ; Mao, Peixuan : School of Mechanical & Electrical Engineering, Guizhou Normal University, China ; Li, Rong : School of Mechanical & Electrical Engineering, Guizhou Normal University, China

Keywords

Cast aluminum alloy ; Mechanical properties ; RE modification ; Simulation calculations ; Mechanism analysis

Divisions of PAS

Nauki Techniczne

Coverage

69-87

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

[1] Gan, L., Wen-ying, Q., Min, L., Le, C., Chuan, G., Xing-gang, L., Zhen, X., Xiao-gang, H., Da-quan, L., Hong-xing, L. & Qiang, Z. (2021). Semi-solid processing of aluminum and magnesium alloys: Status, opportunity, and challenge in China. Transactions of Nonferrous Metals Society of China. 31(11), 3255-3280. https://doi.org/10.1016/S1003-6326(21)65729-1.

[2] Wang, J. & Li, F. (2023). Research Status and prospective properties of the Al-Zn-Mg-Cu series aluminum alloys. Metals. 13(8), 1329, 1-24. https://doi.org/10.3390/met13081329.

[3] Medvedev, A.E., Murashkin, M.Y., Enikeev, N.A., Valiev, R.Z., Hodgson, P.D. & Lapovok, R. (2018). Enhancement of mechanical and electrical properties of Al-RE alloys by optimizing rare-earth concentration and thermo-mechanical treatment. Journal of Alloys and Compounds. 745, 696-704. https://doi.org/10.1016/j.jallcom.2018.02.247.

[4] Demétrio, K. B., Nogueira, A. P. G., Menapace, C., Bendo, T., & Molinari, A. (2021). Effect of nanostructure on phase transformations during heat treatment of 2024 aluminum alloy. Journal of Materials Research and Technology. 14, 1800-1808. https://doi.org/10.1016/j.jmrt.2021.07.044.

[5] Hong, J., Linfan, Z., Biwei, Z., Ming, S. & Meifeng, H. (2022). Microstructure and mechanical properties of ZL205A aluminum alloy produced by squeeze casting after heat treatment. Metals. 12(12), 2037, 1-12. https://doi.org/10.3390/met12122037.

[6] Krishna, N.N., Sivaprasad, K. & Susila, P. (2014). Strengthening contributions in ultra-high strength cryorolled Al-4% Cu-3% TiB2 in situ composite. Transactions of Nonferrous Metals Society of China. 24(3), 641-647. https://doi.org/10.1016/S1003-6326(14)63106-X.

[7] Liu, F., Su, H., Liang, Y. & Xu, J. (2023). Fatigue performance on 7050 aluminum alloy by using ultrasonic vibration-assisted hole expansion strengthening. The International Journal of Advanced Manufacturing Technology. 128, 5153-5165. https://doi.org/10.1007/s00170-023-12234-y.

[8] Harvey, (2013). Cerium-based conversion coatings on aluminium alloys: a process review. Corrosion Engineering, Science and Technology. 48(4), 248-269. https://doi.org/10.1179/1743278213Y.0000000089.

[9] Martínez-Campos, A. Y., Pérez-Bustamante, F., Pérez-Bustamante, R., Rosales-Sosa, G., del carmen Gallegos-Melgar, A., Martínez-Sánchez, R., Carreño-Gallardo, C. & Mendoza-Duarte, J. M. (2021). Hot extrusion of an aerospace-grade aluminum alloy modified with rare earths. Microscopy and Microanalysis. 27(S1), 3396-3397. https://doi.org/10.1017/S1431927621011673.

[10] Ding, W., Zhao, X., Chen, T., Zhang, H., Liu, X., Cheng, Y. & Lei, D. (2020). Effect of rare earth Y and Al–Ti–B master alloy on the microstructure and mechanical properties of 6063 aluminum alloy. Journal of Alloys and Compounds. 830, 154685, 1-11. (prepublish). https://doi.org/10.1016/ j.jallcom.2020.154685.

[11] Brachetti-Sibaja, S. B., Domínguez-Crespo, M. A., Torres-Huerta, A. M., Onofre-Bustamante, E., & La Cruz-Hernández, D. (2014). Rare earth conversion coatings grown on AA6061 aluminum alloys. Corrosion studies. Journal of the Mexican Chemical Society. 58(4), 248-269. https://doi.org/10.29356/jmcs.v58i4.48.

[12] Ouyang, Y., Zhang, B., Jin, Z. & Liao, S. (1996). The formation enthalpies of rare earth-aluminum alloys and intermetallic compounds. International Journal of Materials Research. 87(10), 802-805. https://doi.org/10.1515/ijmr-1996-871011.

[13] Xie, S.-K., Yi, R.X., Gao, Z., Xia, X., Hu, C.G. & Guo, X.Y. (2010). Effect of rare earth Ce on casting properties of Al-4.5 Cu alloy. Advanced Materials Research. 136, 1-4. https://doi.org/10.4028/www.scientific.net/AMR.136.1.

[14] Xie, S.-K., Ai, Y.P., Xia, X., Yi, R.X., Gao, Z. & Guo, X.Y. (2011). Effects of Ce addition on the mobility and hot tearing tendency of Al-4.5 Cu alloy. Advanced Materials Research. 146, 481-484. https://doi.org/10.4028/www.scientific.net/ AMR.146-147.481.

[15] Knipling, K.E., Dunand, D.C. & Seidman, D.N. (2022). Criteria for developing castable, creep-resistant aluminum-based alloys–A review. International Journal of Materials Research. 97(3), 246-265. https://doi.org/10.1515/ijmr-2006-0042.

[16] Belov, N.A., Naumova, E.A. & Eskin, D.G. (1999). Casting alloys of the Al–Ce–Ni system: microstructural approach to alloy design. Materials Science and Engineering: A. 271(1-2), 134-142. https://doi.org/10.1016/S0921-5093(99)00343-3.

[17] Hishiki, F., Akiyama, T., Kawamura, T., & Ito, T. (2022). Structures and stability of GaN/Ga2O3 interfaces: a first-principles study. Japanese Journal of Applied Physics. 61(6), 065501. https://doi.org/10.35848/1347-4065/ac5e90.

[18] Chen, S., Wang, Q., Liu, X., Tao, J., Wang, J., Wang, M. & Wang, H. (2020). First-principles studies of intrinsic stacking fault energies and elastic properties of Al-based alloys. Materials Today Communications. 24, 101085, 1-9. (prepublish). https://doi.org/10.1016/j.mtcomm.2020.101085.

[19] Yan, C.W., Bo, L.Y., Peng, Z. & Bo, G.C. (2018). First principle study of electronic structures and optical properties of Ce-doped SiO2. AIP Advances. 8(5), 055125. https://doi.org/10.1063/1.5024592.

[20] Yue, F., Jiaojiao, C., Chi, L., Tao, W., Hongchen, L. & Tao, S. (2021). A first-principle study on photoelectric characteristics of Ce-doped ZnO. Ferroelectrics. 573(1), 214-223. https://doi.org/10.1080/00150193.2021.1890478.

[21] Ali, M.L. & Rahaman, M.Z. (2018). Investigation of different physical aspects such as structural, mechanical, optical properties and Debye temperature of Fe2ScM (M=P and As) semiconductors: A DFT-based first principles study. International Journal of Modern Physics B. 32(10), 1850121. https://doi.org/10.1142/S0217979218501217.

[22] Wutthigrai, S., Ittipon, F., Sukit, L. & Kanoknan, P. (2022). A first principles investigation on the structural, elastic, and mechanical properties of MAX phase M3AlC2 (M= Ta, Ti, V) as a function of pressure. Computational Condensed Matter. 30, e00638, 1-9. (prepublish). https://doi.org/10.1016/j.cocom.2021.e00638.

[23] Zhang, J., Huang, Y., Mao, C. & Peng, P. (2012). Structural, elastic and electronic properties of θ (Al2Cu) and S (Al2CuMg) strengthening precipitates in Al–Cu–Mg series alloys: first-principles calculations. Solid State Communications. 152(23), 2100-2104. https://doi.org/10.1016/j.ssc.2012.09.003.

[24] Cornette, P., Costa, D. & Marcus, P. (2020). Relation between surface composition and electronic properties of native oxide films on an aluminium-copper alloy studied by DFT. Journal of the Electrochemical Society. 167(16), 161501. https://doi.org/10.1149/1945-7111/abc9a1.

[25] China Aviation Industry Group. HB 962-2001 Casting Aluminum alloys[S]. Beijing: China National Defense Science, Technology and Industry Commission.2001.11.15

[26] Wang, S. & Fan, C. (2019). Crystal structures of Al2Cu revisited: understanding existing phases and exploring other potential phases. Metals. 9(10), 1037, 1-10. https://doi.org/10.3390/met9101037.

[27] Mishnaevsky Jr, L. (2015). Nanostructured interfaces for enhancing mechanical properties of composites: Computational micromechanical studies. Composites Part B: Engineering. 68, 75-84. https://doi.org/10.1016/ j.compositesb.2014.08.029.

[28] Li, Y., Zhang, Z., Vogt, R., Schoenung, J. & Lavernia, E. (2011). Boundaries and interfaces in ultrafine grain composites. Acta materialia. 59(19), 7206-7218. https://doi.org/10.1016/j.actamat.2011.08.005.

[29] Liu, Y., Xu, M., Xiao, L., Chen, X., Hu, Z., Gao, B., Liang, N., Zhu, Y., Cao, Y. & Zhou, H. (2023). Dislocation array reflection enhances strain hardening of a dual-phase heterostructured high-entropy alloy. Materials Research Letters. 11(8) 638-647. https://doi.org/ 10.1080/21663831.2023.2208166.

[30] Maldonado, F. & Stashans, A. (2017). DFT study of Ag and La codoped BaTiO3. Journal of Physics and Chemistry of Solids. 102, 136-141. https://doi.org/10.1016/j.jpcs.2016.11.016.

[31] Loschen, C., Carrasco, J., Neyman, K.M. & Illas, F. (2007). First-principles LDA+ U and GGA+ U study of cerium oxides: Dependence on the effective U parameter. Physical Review B. 75(3), 035115. https://doi.org/10.1103/PhysRevB.75.035115.

[32] Yang, H., Wang, B., Zhang, H., Shen, B., Li, Y., Wang, M., Wang, J., Gao, W., Kang, Y. & Li, L. (2023). Evolving corundum nanoparticles at room temperature. Acta Materialia 255, 119038, 1-7. https://doi.org/10.1016/ j.actamat.2023.119038.

[33] Michaelson, H.B. (1977). The work function of the elements and its periodicity. Journal of applied physics. 48(11), 4729-4733. https://doi.org/10.1063/1.323539.

[34] Schlesinger, R., Xu, Y., Hofmann, O.T., Winkler, S., Frisch, J., Niederhausen, J., Vollmer, A., Blumstengel, S., Henneberger, F. & Rinke, P. (2013). Controlling the work function of ZnO and the energy-level alignment at the interface to organic semiconductors with a molecular electron acceptor. Physical Review B. 87(15), 155311. https://doi.org/10.1103/PhysRevB.87.155311.

[35] Liu, M., Jin, Y., Pan, J. & Leygraf, C. (2019). Co-Adsorption of H2O, OH, and Cl on aluminum and intermetallic surfaces and its effects on the work function studied by DFT calculations. Molecules. 24(23), 4284, 1-15. https://doi.org/10.3390/molecules24234284.

[36] Golesorkhtabar, R., Pavone, P., Spitaler, J., Puschnig, P. & Draxl, C. (2013). ElaStic: A tool for calculating second-order elastic constants from first principles. Computer Physics Communications. 184(8), 1861-1873. https://doi.org/10.1016/j.cpc.2013.03.010.

[37] de Jong, M., Chen, W., Angsten, T., Jain, A., Notestine, R., Gamst, A., Sluiter, M., Krishna Ande, C., van der Zwaag, S., Plata, J.J., Toher, C., Curtarolo, S., Ceder, G., Persson, K.A. & Asta, M. (2015). Charting the complete elastic properties of inorganic crystalline compounds. Scientific Data. 2(1), 150009, 1-13. https://doi.org/10.1038/sdata.2015.9.

[38] Pugh, S. (1954). XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 45(367), 823-843. https://doi.org/10.1080/14786440808520496.

[39] Shang, S., Wang, Y. & Liu, Z.-K. (2007). First-principles elastic constants of α-and θ-Al2O3. Applied Physics Letters. 90(10), 101909. https://doi.org/10.1063/1.2711762.

[40] Candan, A., Akbudak, S., Uğur, Ş. & Uğur, G. (2019). Theoretical research on structural, electronic, mechanical, lattice dynamical and thermodynamic properties of layered ternary nitrides Ti2AN (A= Si, Ge and Sn). Journal of Alloys and Compounds 771, 664-673. https://doi.org/10.1016/j.jallcom.2018.08.286.

[41] Sun, Z., Music, D., Ahuja, R. & Schneider, J.M. (2005). Theoretical investigation of the bonding and elastic properties of nanolayered ternary nitrides. Physical Review B. 71(19), 193402. https://doi.org/10.1103/PhysRevB.71.193402.

[42] Mattis, S., Sang-Hyeok, L., Tobias, S., W.J. M. & Sandra, K.-K. (2023). Estimation of directional single crystal elastic properties from nano-indentation by correlation with EBSD and first-principle calculations. Materials & Design. 234, 112296, 1-15. https://doi.org/10.1016/j.matdes.2023.112296.

[43] Fan, T., Ruan, Z., Zhong, F., Xie, C., Li, X., Chen, D., Tang, P. & Wu, Y. (2023). Nucleation and growth of L12-Al3RE particles in aluminum alloys:A first-principles study. Journal of Rare Earths. 41(7), 1116-1126. https://doi.org/10.1016/ j.jre.2022.05.018.

[44] Liao, H.-c., Xu, H.-t. & Hu, Y.-y. (2019). Effect of RE addition on solidification process and high-temperature strength of Al− 12% Si− 4% Cu− 1.6% Mn heat-resistant alloy. Transactions of Nonferrous Metals Society of China. 29(6), 1117-1126. https://doi.org/10.1016/S1003-6326(19)65020-X.

[45] Belov, N. & Khvan, A. (2007). The ternary Al–Ce–Cu phase diagram in the aluminum-rich corner. Acta Materialia. 55(16), 5473-5482. https://doi.org/10.1016/j.actamat.2007.06.009.

[46] Chen, Z., Chen, P. & Ma, C. (2012). Microstructures and mechanical properties of Al-Cu-Mn alloy with La and Sm addition. Rare Metals. 31, 332-335. https://doi.org/10.1007/s12598-012-0515-6.

[47] Lang, J., Baer, Y. & Cox, P. (1981). Study of the 4f and valence band density of states in rare-earth metals. II. Experiment and results. Journal of Physics F: Metal Physics 11(1), 121. https://doi.org/10.1088/0305-4608/11/1/015.

[48] Farahani, S.V., Veal, T.D., Mudd, J.J., Scanlon, D.O., Watson, G., Bierwagen, O., White, M., Speck, J.S. & McConville, C.F. (2014). Valence-band density of states and surface electron accumulation in epitaxial SnO2 films. Physical Review B 90(15), 155413. https://doi.org/10.1103/PhysRevB.90.155413.

[49] Nogita, K., Yasuda, H., Yoshiya, M., McDonald, S., Uesugi, K., Takeuchi, A. & Suzuki, Y. (2010). The role of trace element segregation in the eutectic modification of hypoeutectic Al–Si alloys. Journal of Alloys and Compounds. 489(2) 415-420. https://doi.org/10.1016/j.jallcom. 2009.09.138.

[50] Jiajia, W., Kaixiao, Z., Guobing, Y., Jiangbo, C., Dan, S., Jinghua, J. & Aibin, M. (2023). Effects of RE (RE = Sc, Y and Nd) concentration on galvanic corrosion of Mg-Al alloy: a theoretical insight from work function and surface energy. Journal of Materials Research and Technology. 24, 6958-6967. https://doi.org/10.1016/J.JMRT.2023.04.208.



Date

05.06.2024

Type

Article

Identifier

DOI: 10.24425/afe.2024.149273
×