Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 486
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to assess the feasibility of utilizing sodium alginate biopolymer as animmobilization carrier for laccase in the removal of indigo carmine (IC), an anionic dye. The main goal of this work was to optimize the decolourization process by selecting the appropriate immobilized enzyme dose per 1 mg of dye, as well as the process temperature. The effective immobilization of laccase using sodium alginate as a carrier was confirmed by Raman spectroscopy. An analysis of the size and geometric parameters of the alginate beads was also carried out. Tests of IC decolourization using alginate-laccase beads were conducted. Applying the most effective dose of the enzyme (320 mg of enzyme/1 mg of IC) made it possible to remove 92.5% of the dye over 40 days. The optimal temperature for the IC decolourization process, using laccase immobilized on sodium alginate, was established at 30-40ºC. The obtained results indicate that laccase from Trametes versicolor immobilized on sodium alginate was capable of decolourizing the tested dye primarily based on mechanism of biocatalysis.
Go to article

Bibliography

  1. Achieng, G.O., Kowenje, Ch.O., Lalah, J.O. & Ojwach S.O. (2019). Preparation, characterization of fish scales biochar and their applications in the removal of anionic indigo carmine dye from aqueous solutions, Water Science & Technology, 80, 11, pp. 2218-2231. DOI:10.2166/wst.2020.040.
  2. Ahlawat, A., Jaswal, A.S. & Mishra, S. (2022). Proposed pathway of degradation of indigo carmine and its co-metabolism by white-rot fungus Cyathus bulleri, International Biodeterioration & Biodegradation, 172, 3, 105424. DOI:10.1016/j.ibiod.2022.105424.
  3. Almulaiky, Y.Q. & Al Harbi, S.A. (2022). Preparation of a calcium alginate coated polypyrrole/silver nanocomposite for site specific immobilization of polygalacturonase with high reusability and enhanced stability, Catalysis Letters, 152, pp. 28-42. DOI:10.1007/s10562-021-03631-7.
  4. Alvarado-Ramírez, L., Rostro-Alanis, M., Rodríguez-Rodríguez, J., Castillo-Zacarías, C., Sosa-Hernández, J.E., Barceló, D., Iqbal, H.M.N. & Parra-Saldívar R. (2021). Exploring current tendencies in techniques and materials for immobilization of laccases – A review, International Journal of Biological Macromolecules, 181, pp. 683–696. DOI:10.1016/j.ijbiomac.2021.03.175.
  5. Bhowmik, S., Chakraborty, V. & Das, P. (2021). Batch adsorption of indigo carmine on activated carbon prepared from sawdust: a comparative study and optimization of operating conditions using Response Surface Methodology, Results in Surfaces and Interfaces, 3, 100011. DOI:10.1016/j.rsurfi.2021.100011.
  6. Bilal, M., Rasheed, T., Nabeel, F. & Iqbal, H.M.N. (2019). Hazardous contaminants in the environment and their laccase-assisted degradation – A review, Journal of Environmental Management, 234, pp. 253-264. DOI:10.1016/j.jenvman.2019.01.001.
  7. Ching, S.H., Bansal, N. & Bhandari, B. (2017). Alginate gel particles–A review of production techniques and physical properties, Critical Reviews in Food Science and Nutrition, 57, pp. 1133–1152. DOI:10.1080/10408398.2014.965773.
  8. Daâssi, D., Mechichi, T., Nasri, M. & Rodriguez-Couto, S. (2013). Decolorization of the metal textile dye Lanaset Grey G by immobilized white-rot fungi, Journal of Environmental Management, 129, pp. 324-332. DOI:10.1016/j.jenvman.2013.07.026.
  9. Deska, M. & Kończak, B. (2020). Operational stability of laccases under immobilization conditions, Przemysł Chemiczny, 99, 3, pp. 472-476. DOI:10.15199/62.2020.3.22. (in Polish)
  10. Deska, M. & Kończak, B. (2022a). Support materials for laccase immobilization for decolourization processes, Przemysł Chemiczny, 101, 2, pp. 135-139. DOI:10.15199/62.2022.2.9. (in Polish)
  11. Deska, M. & Kończak, B. (2022b). Laccase Immobilization on Biopolymer Carriers – Preliminary Studies, Journal of Ecological Engineering, 23, 3, pp. 235–249. DOI:10.12911/22998993/146611.
  12. Deska, M. & Kończak, B., (2019). Immobilized fungal laccase as "green catalyst" for the decolourization process – State of the art, Process Biochemistry, 84, pp. 112-123. DOI:10.1016/j.procbio.2019.05.024.
  13. Deska, M. & Zawadzki, P. (2021). Novel methods of removing synthetic dyes from industrial wastewater, Przemysł Chemiczny, 100, 7, pp. 664-667. DOI:10.15199/62.2021.7.5 (in Polish).
  14. Hevira, L., Rahmayeni, Z., Ighalo, J.O. & Zein R. (2020). Biosorption of indigo carmine from aqueous solution by Terminalia Catappa shell, Journal of Environmental Chemical Engineering, 8, 104290. DOI:10.1016/j.jece.2020.104290.
  15. Holkar, C.R., Jadhav, A.J., Pinjari, D.V., Mahamuni, N.M. & Pandit, A.B. (2016). A critical review on textile wastewater treatments: Possible approaches, Journal of Environmental Management, 182, pp. 351–366. DOI:10.1016/j.jenvman.2016.07.090.
  16. Hurtado, A., Aljabali, A.A.A., Mishra, V.; Tambuwala, M.M. & Serrano-Aroca, Á. (2022). Alginate: Enhancement Strategies for Advanced Applications, International Journal of Molecular Sciences, 23, 4486, DOI:10.3390/ijms23094486.
  17. Kandelbauer, A., Kessler, W. & Kessler, R.W. (2008). Online UV-visible spectroscopy and multivariate curve resolution as powerful tool for model-free investigation of laccase-catalysed oxidation, Analytical and Bioanalytical Chemistry, 390, 5, pp. 1303–1315. DOI:10.1007/s00216-007-1791-0.
  18. Kishor, R., Purchase, D., Saratale, G.D., Saratale, R.G., Ferreira, L.F.R., Bilal, M., Chandra, R. & Bharagava, R.N. (2021). Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety, Journal of Environmental Chemical Engineering, 9, 2, 105012. DOI:10.1016/j.jece.2020.105012.
  19. Klis, M., Maicka, E., Michota, A., Bukowska, J., Sek, S., Rogalski, J. & Bilewicz R. (2007). Electroreduction of laccase covalently bound to organothiol monolayers on gold electrodes, Electrochimica Acta, 52, 18, pp. 5591–5598. DOI:10.1016/j.electacta.2007.02.008.
  20. Krzyczmonik, P., Klisowska, M., Leniart, A., Ranoszek-Soliwoda, K., Surmacki, J., Beton-Mysur, K. & Brożek-Płuska. B. (2023). The Composite Material of (PEDOT-Polystyrene Sulfonate)/Chitosan-AuNPS-Glutaraldehyde/as the Base to a Sensor with Laccase for the Determination of Polyphenols, Materials, 16, 14, pp. 5113. DOI:10.3390/ma16145113.
  21. Kuśmierek, K., Dąbek, L. & Świątkowski A. (2023). Removal of Direct Orange 26 azo dye from water using natural carbonaceous materials, Archives of Environmental Protection, 49, 1, pp. 47-56, DOI:10.24425/aep.2023.144736.
  22. Marszałek, A. (2022). Encapsulation of halloysite with sodium alginate and application in the adsorption of copper from rainwater, Archives of Environmental Protection, 48, 1, pp. 75-82, DOI:10.24425/aep.2022.140546.
  23. Lassouane, F., Aït-Amar, H., Amrani, S. & Rodriguez-Couto, S. (2019). A promising laccase immobilization approach for Bisphenol A removal from aqueous solutions, Bioresource Technology, 271, pp. 360-367. DOI:10.1016/j.biortech.2018.09.129.
  24. Leonties, A.R., Răducan, A., Culiță, D.C., Alexandrescu, E., Moroșan, A., Mihaiescu, D.E. & Aricov, L. (2022). Laccase immobilized on chitosan-polyacrylic acid microspheres as highly efficient biocatalyst for naphthol green B and indigo carmine degradation, Chemical Engineering Journal, 439, 135654. DOI:10.1016/j.cej.2022.135654.
  25. Mohan, Ch., Yadav, S., Uniyal, V., Takaeva, N. & Kumari, N. (2022). Interaction of Indigo carmine with naturally occurring clay minerals: An approach for the synthesis of nanopigments, Materials Today: Proceedings, 69, 2, pp. 82-86. DOI:10.1016/j.matpr.2022.08.081.
  26. Neha, A., Vijendra, S.S., Amel, G., Mohd, A.H., Brijesh, P., Amrita, S., Anupama, S., Virendra, K.Y., Krishna, K.Y., Chaigoo, L., Wonjae, L., Sumate, Ch. & Byong-Hun, J. (2022). Bacterial Laccases as Biocatalysts for the Remediation of Environmental Toxic Pollutants: A Green and Eco-Friendly Approach - A Review, Water, 14, 24, 4068. DOI:10.3390/w14244068.
  27. Niladevi, K. & Prema, P. (2007). Immobilization of laccase from Streptomyces psammoticus and its application in phenol removal using packed bed reactor, World Journal of Microbiology and Biotechnology, 24, pp. 1215-1222. DOI:10.1007/s11274-007-9598-x.
  28. Olajuyigbe, F.M., Adetuyi, O.Y. & Fatokun, C.O. (2018). Characterization of free and immobilized laccase from Cyberlindera fabianii and application in degradation of bisfenol A, International Journal of Biological Macromolecules, 125, pp. 856-864. DOI:10.1016/j.ijbiomac.2018.12.106.
  29. Rane, A. & Joshi, S.J. (2021). Biodecolorization and Biodegradation of Dyes: A Review, The Open Biotechnology Journal, 15, Suppl-1, M4, pp. 97-108. DOI:10.2174/1874070702115010097.
  30. Rodriguez-Couto, S. & Herrera, J.L.T. (2006). Industrial and biotechnological applications of laccases: a review, Biotechnology Advances, 24, 5, pp. 500-513. DOI:10.1016/j.biotechadv.2006.04.003.
  31. Saoudi, O. & Ghaouar, N. (2019). Biocatylytic characterization of free and immobilized laccase from Trametes versicolor in its activation zone, International Journal of Biological Macromolecules, 128, pp.681-691. DOI:10.1016/j.ijbiomac.2019.01.199.
  32. Shokri, Z., Seidi, F., Karami, S., Li, Ch., Saeb, M.R. & Xiao, H. (2021). Laccase immobilization onto natural polysaccharides for biosensing and biodegradation, Carbohydrate Polymers, 262, 117963. DOI:10.1016/j.carbpol.2021.117963.
  33. Teerapatsakul, Ch., Parra, R., Keshavarz, T. & Chitradon, L. (2017). Repeated batch for dye degradation in an airlift bioreactor by laccase entrapped in copper alginate, International Biodeterioration & Biodegradation, 120, pp. 52-57. DOI:10.1016/j.ibiod.2017.02.001.
  34. Tyagi, N., Gambhir, K., Pandey, R., Gangenahalli, G. & Verma, Y.K. (2021) Minimizing the negative charge of Alginate facilitates the delivery of negatively charged molecules inside cells, Journal of Polymer Research, 29, 1. DOI:10.1007/s10965-021-02813-6
  35. Vautier, M., Guillard, C. & Herrmann, J.M. (2001). Photocatalytic degradation of dyes in water: Case study of indigo and of indigo carmine, Journal of Catalysis, 201, pp. 46-59. DOI:10.1006/jcat.2001.3232.
  36. Wang, J.; Lu, L. & Feng, F. (2017). Improving the Indigo Carmine Decolorization Ability of a Bacillus amyloliquefaciens Laccase by Site-Directed Mutagenesis, Catalysts, 7, 275. DOI:10.3390/catal7090275.
  37. Zdarta, J., Meyer, A.S., Jesionowski, T. & Pinelo, M. (2018). Developments in support materials for immobilization of oxidoreductases: A comprehensive review, Advances in Colloid and Interface Science, 258, pp.1-20. DOI:10.1016/j.cis.2018.07.004.
  38. Zein, R., Hevira, L., Zilfa, Rahmayeni, Fauzia, S. & Ighalo J.O. (2022). The Improvement of Indigo Carmine Dye Adsorption by Terminalia catappa Shell Modified with Broiler Egg White, Biomass Conversion and Biorefinery, 13, pp. 13795-13812. DOI:10.1007/s13399-021-02290-3.
  39. Zhou, W., Zhang, W. & Cai, Y. (2021). Laccase immobilization for water purification: A comprehensive review, Chemical Engineering Journal, 403, 126272. DOI:10.1016/j.cej.2020.126272.
Go to article

Authors and Affiliations

Małgorzata Białowąs
1
ORCID: ORCID
Beata Kończak
1
Stanisław Chałupnik
1
Joanna Kalka
2
Magdalena Cempa
1
ORCID: ORCID

  1. Central Mining Institute – National Research Institute, Katowice, Poland
  2. Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering,The Silesian University of Technology, Poland

Authors and Affiliations

Tomasz Janik
1
Wojciech Czuba
2

  1. Institute of Geophysics, Polish Avcademy of Sciences
  2. Institute of Geophysics, Polish Academy of Sciences
Download PDF Download RIS Download Bibtex

Abstract

Significant increasing trends in the air temperature were found both in the surface station of Svalbard Lufthavn and in the low-tropospheric temperature field over the Atlantic Arctic. The variability in temperature, as well as the multiannual trend, is at least three times bigger in the winter months than in summer. An attempt was made to explain the high day-to-day variability in the winter air temperature by the daily variability in the regional pressure field and circulation conditions. Six regional-scale circulation patterns were found by applying the principal component analysis to the mean daily sea level pressure (SLP) reanalysis data and their impact on the low-tropospheric air temperature variability was determined. A bipolar pattern, with a positive center over Greenland and a negative center over the White Sea, dominates in the region and strongly influences the air temperature field at 850 hPa geopotential height (correlation coefficients up to –0.65). The second pattern that impacts the temperature field in the Atlantic Arctic is the one with a center of action over Svalbard (mostly a low-pressure center in winter), strongly influencing the air temperature over the Barents Sea. The remaining circulation types, explaining only 5–8% of the total variance of the SLP field each, do not modify significantly the air temperature at 850 hPa geopotential level over the Atlantic Arctic, and none of the circulation types seems to influence the multiannual temperature trends.
Go to article

Authors and Affiliations

Ewa Bednorz
1
ORCID: ORCID
Arkadiusz M. Tomczyk
1
ORCID: ORCID
Bartosz Czernecki
1
ORCID: ORCID
Miłosz Piękny
1

  1. Department of Meteorology and Climatology, Institute of Physical Geography and Environmental Planning, Adam Mickiewicz University, B. Krygowskiego 10, 61–680 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

Although Svalbard archipelago is considered as a natural laboratory for the environmental studies in the High Arctic, the knowledge on the transport and diversity of bioaerosols (aeroplankton) in the atmosphere is poorly recognized. To improve our knowledge about the aeroplankton over the Svalbard, we conducted a short-term study in the central part of the archipelago with a special focus on two important, but understudied in this region, airborne components: pollen grains and invertebrates. Aerobiological traps, three impact-type samplers and 12 pitfall-type water traps, were operated for a week of July 2022 at three sites located near Longyearbyen, the largest settlement of Svalbard. These sites, that is, Platåfjellet, Longyearbreen Glacier, and glacier valley, varied in the local sources of biological material and altitude. In total, 11 pollen taxa were isolated from pollen impactors. Most of them (68%) belonged to non-native plants, for example, Alnus sp., Betula sp., Picea abies, or Pinus sylvestris-type pollen. In pitfall-type water traps, we found invertebrates representing Acari (Prostigmata, Endeostigmata and Oribatida), Collembola ( Agrenia bidenticulata), Tardigrada (Eutardigrada) and Rotifera (Bdelloidea). The most taxa-rich site, both for pollen and invertebrates, was Platåfjellet, characterized by open landscape dominated by small cryptogams, mainly lichens and mosses, and sparse patches of vascular plants. Even though our sampling was short-term, we found diverse taxa belonged to native and alien species, indicating that both local and long-range transport shape aeroplankton composition and seeding of Arctic habitats. Long-term aerobiological monitoring in diverse ecosystems of Svalbard is needed to understand spatio-temporal influence of aeroplankton on ecosystems.
Go to article

Authors and Affiliations

Łukasz Grewling
1
ORCID: ORCID
Ronald Laniecki
1
Mikołaj Jastrzębski
1
Julia Borkowska
1
Zofia Marek
1
Katarzyna Kondrat
1
Zofia Nowak
1
Michał Zacharyasiewicz
1
Marcelina Małecka
1
Barbara Valle
2 3
ORCID: ORCID
Beata Messyasz
1
ORCID: ORCID
Krzysztof Zawierucha
1
ORCID: ORCID

  1. Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
  2. Department of Life Sciences, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy
  3. NBFC, National Biodiversity Future Center, Palermo, Italy
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the potential of combining satellite radar data and neural networks for quasi-automatic detection of glacier grounding lines. The conducted research covered five years and was carried out in the area of the Amery Ice Shelf. It has a very complex shoreline, so its grounding-line location is uncertain. Thus, it has always been the subject of much research. The main objective of our work was to find out if Synthetic Aperture Radar data combined with a deep learning implementation would enable rapid detection of ice shelf grounding lines over large areas. For this purpose, 290 radar images from the Sentinel-1 satellite covering 46 000 km2 were used. Processed by the Differential Interferometry of Synthetic Aperture Radar four-pass method, the images formed a time-consistent series between 2017 and 2021. As a result of performed calculations, a total length of 1280 km of grounding line was determined. They were validated by comparing with other independent data sources based on manual measurements. It has been demonstrated that the combination of satellite radar data and automated data processing allows for obtaining high-precision results continuously in a very short time. Such an approach allows monitoring of grounding line position in the long term with intervals of less than one week. It enables analysis of the dynamics changes with unprecedented frequency and the identification of patterns.
Go to article

Authors and Affiliations

Michał Tympalski
1
ORCID: ORCID
Marek Sompolski
1
ORCID: ORCID
Anna Kopeć
1
ORCID: ORCID
Wojciech Milczarek
1
ORCID: ORCID

  1. Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology, Na Grobli 15, 50-421 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

Proteases play a key role in cell defense mechanisms to cold-induced oxidative stress. Data on the relationship between cold stress, growth phase, and temperature preferences of the fungal strains isolated from different habitats are very scarce. Here, we report changes in the intra- and extracellular protease activity of three fungal Penicillium strains (two Antarctic and one temperate) under transient temperature downshift during exponential- and stationary growth phases. The results indicated enhanced enzyme levels in both growth phases depending on the degree of stress and strain thermal class. In order to explain the obtained data, we compared them with our previous results on the protein carbonyl content, accumulation of oxidative-stress biomarkers, and antioxidant enzyme defense in the same three fungal strains. The cell response was affected by the temperature preference of the strain, but not by the climatic distance between the locations of isolation.
Go to article

Authors and Affiliations

Jeny Miteva-Staleva
1
ORCID: ORCID
Ekaterina Krumova
1
ORCID: ORCID
Boryana Spasova
1
ORCID: ORCID
Maria Angelova
1
ORCID: ORCID

  1. Department of Mycology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Academician G. Bonchev str. 26, 1113 Sofia, Bulgaria
Download PDF Download RIS Download Bibtex

Abstract

Heat transfer and aerodynamic drag of novel small-sized heat sinks with lamellar fins, designed for electronic cooling, were experimentally investigated under conditions of forced convection in the range of Reynolds numbers 1 250–10 500. It was found that a gradual reduction in the fin spacing from 6 mm to 3 mm with a 29° angle of taper between the outermost fins leads to an increase in the heat transfer intensity by 15–32% with a significant increase in aerodynamic drag compared to the surface with a constant fin spacing of 6 mm. Incomplete cross-section cutting of fins at the relative depth of 0.6 in addition to the gradual reduction in the fin spacing provides aerodynamic drag decrease by 5–20% and increase of heat transfer intensity by 18–20% in comparison with the similar heat sink without fins cutting. Proposed novel designs of heat sinks enabled us to decrease by 7°С–16°С the maximum overheating of the heat sink's base in the flow speed range from 2.5 m/s to 7.5 m/s at constant heat load. To ensure a constant value of maximum overheating of the heat sink base the inlet flow velocity for the surface with constant fin spacing should be 1.6–2 times higher than that for the heat sink with 29° taper angle between outermost fins and partially fins cutting. In this case, the aerodynamic drag for the latter will be higher only by 1.6–2.7 times, which is quite acceptable.
Go to article

Authors and Affiliations

Aleksandr Terekh
1
Aleksandr Rudenko
1
Yevhenii Alekseik
1

  1. National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Educational and Scientific Institute of Atomic and Thermal Energy, 37, Beresteisky Av., Kyiv, 03056, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

This work examines biochar from carbonization of grape waste, and oat and buckwheat husks at 450ºC. The main aspects of the work concern the analysis of the fixed carbon and ash content in accordance with the European Standard. Obtained results showed that biochar from oat and buckwheat husk can be used for barbeque charcoal and barbeque charcoal bri-quettes production, whereas biochar derived from grape waste can be used for the charcoal briquettes production. Thermo-gravimetric analysis showed that biochar from grape stalk is characterized by the highest ignition and burnout performance, but in relation to the remaining samples, combustion process occurs in a narrow range of time and temperature. Obtained results showed that biochar from oat and buckwheat husks has properties, as well as combustion stability and reactivity, similar to commercial charcoal.
Go to article

Authors and Affiliations

Jacek Kluska
1
Jakub Ramotowski
2

  1. Insittute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  2. Gdańsk University of Technology, Faculty of Civil and Environmental Engineering and EkoTech Center, Narutowicza 11/12, 80-233 Gdańsk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The objective of the present work is to examine the characteristics of unsteady incompressible magnetohydrodynamic fluid flow around a permeable rotating vertical cone. The effects of thermal radiation, viscous dissipation, and the Soret and Dufour effects are investigated in the analysis of heat and mass transfer. The viscosity of the fluid is considered inversely proportional to the temperature, and the thermal conductivity of the fluid is considered directly proportional to the temper-ature. The governing equations are converted into ordinary differential equations using suitable similarity transformations, which are then solved numerically using bvp4c from MATLAB. Results obtained in this study are in excellent correlation with previously conducted studies. The results demonstrate that the Dufour and Soret effects subsequently reduce the heat transit rate (by –3.3%) and mass transit rate (by –1.2%) of the system. It is also detected that fluids with higher viscosity tend to increase tangential skin friction (+8.9%) and azimuthal skin friction (+8.3%). The heat transit rate of the system is found to be more efficient for fluids with higher viscosity and lower thermal conductivity and Eckert numbers. Further-more, the thickness of the momentum, thermal, and concentration boundary layers significantly reduces while the heat and mass transit rates (+17.8% and +18.3%, respectively) of the system become more efficient for greater values of the un-steadiness parameter.
Go to article

Authors and Affiliations

Temjennaro Jamira
1
Hemanta Konwara
1

  1. Kohima Science College, Jotsoma, Kohima 797001, India
Download PDF Download RIS Download Bibtex

Abstract

This paper presents numerical results for flow behavior between a cold inner cylinder and a hot outer cylinder. Both cyl-inders are placed horizontally. The space separating the two compartments is completely filled with a fluid of a complex rheological nature. In addition, the outer container is subjected to a constant and uniform rotational speed. The results of this work were obtained after solving the differential equations for momentum and energy. The parameters studied in this research are: the intensity of thermal buoyancy, the speed of rotation of the outer container and the rheological nature of the fluid. These elements are expressed mathematically by the following values: Richardson number (Ri = 0 and 1), Reyn-olds number (Re = 1 to 40), power-law number (n = 0.8, 1 and 1.4) and Prandtl number (Pr = 50). The results showed that the speed of rotation of the cylinder and the rheological nature of the fluids have an effective role in the process of heat transfer. For example, increasing the rotational speed of the enclosure and/or changing the nature of fluid from shear-thickening into shear-thinning fluid improves the thermal transfer rate.
Go to article

Authors and Affiliations

Abdeljalil Benmansoura
1
Houssem Laidoudia
1

  1. Laboratory of Sciences and Marine Engineering, Faculty of Mechanical Engineering, USTO-MB, BP 1505, El-Menaouer, Oran, 31000, Algeria
Download PDF Download RIS Download Bibtex

Abstract

Based on the finite element simulation software ANSYS Workbench, this study reports the thermal characteristics of a high-speed motorized spindle. The temperature field distribution and axial thermal deformation of the motorized spindle are then detected on an experimental platform. A comparison between the experimental and simulation results revealed the temperature rise of the motorized spindle during the working process. Under steady-state conditions of the working mo-torized spindle, the temperatures of the front bearing, rear bearing and stator were determined as 20°C, approximately 30°C and 25°C, respectively. The axial thermal elongation of the motorized spindle is approximately 10 μm.
Go to article

Authors and Affiliations

Wei Zhang
1
ORCID: ORCID
Huaqiao Jiang
2

  1. China Light Industry Plastic Mold Engineering Technology Research Center, Ningbo Polytechnic, Ningbo 315800, China; Ningbo Shuaitelong Group Co., Ltd, Ningbo 315000, China
  2. Ningbo Shuaitelong Group Co., Ltd, Ningbo 315000, China
Download PDF Download RIS Download Bibtex

Abstract

Carbon capture and sequestration from a stationary source comprises four distinct engineering processes: separation of CO2 from the other flue gases, compression, transportation, and injection into the chosen storage site. An analysis of the thermodynamic and transport properties of CO2 shows that dissolving this gas in seawater at depths more than 600 m is, most likely, an optimal long-term storage method; and that for transportation, the CO2 must be in the denser supercritical state at pressures higher than 7.377 MPa. The separation, compression, transportation, and injection processes require significant energy expenditures, which are determined in this paper using realistic equipment efficiencies, for the cases of two currently in operation coal power plants in Texas. The computations show that the total energy requirements for carbon removal and sequestration are substantial, close to one-third of the energy currently generated by the two power plants. The cost analysis shows that two parameters – the unit cost of the pipeline and the discount factor of the corporation – have a very significant effect on the annualized cost of the CCS process. Doubling the unit cost of the pipeline increases the total annualized cost of the entire CCS project by 36% and increasing the discount rate from 5% to 15% increases this annualized cost by 32%.
Go to article

Authors and Affiliations

Efstathios E. Michaelidesa
1

  1. Department of Engineering, Texas Christian University, Fort Worth, TX, 76129, USA
Download PDF Download RIS Download Bibtex

Abstract

This study aims to investigate and compare the thermal performance of a solar air heater using a passive technique to enhance heat transfer between the absorber plate and the flowing fluid. The technique involves generating turbulence near the heat transferring surface through the use of artificial rib roughness. The study focuses on two different novel roughness geome-tries: full symmetrical arc rib roughness and half symmetrical arc rib roughness. By introducing additional gaps and varying the number of gaps in the roughness geometries, the study examines their effects on the solar air heaters thermal performance. The artificially roughened surface creates different turbulent zones, which are essential to the development of different types of turbulence in the vicinity of the heat transferring surface. The study finds that an optimal escalation in Nusselt number and friction factor by 2.36 and 3.45 times, respectively, occurs at certain gap numbers as 6 and ng as 5 for full symmetrical arc rib roughness. The maximum thermal-hydraulic performance parameter of 1.66 is attained at a Reynolds number of 6 000. The study also conducts correlation, mathematical modeling, and performance prediction under different operating circumstances.
Go to article

Authors and Affiliations

Jitendra Singha
1
Atul Lanjewara
1

  1. MANIT, Bhopal 462033, India
Download PDF Download RIS Download Bibtex

Abstract

This research article aims to provide a detailed numerical study of the multifaceted impact of S-shaped and broken arc roughness on solar air heaters. Therefore, a strong comparison was made between the modified heaters and smooth heaters for Reynolds numbers ranging from 2 00022 000. Also, the impact of two parameters, i.e. pitch and gap was analyzed to optimize the performance of the heater. The gap varies from 0.3 mm to 0.9 mm in both types of ribs with a step size of 0.2 mm. Afterwards, the pitch distance between both types of roughness was varied from 15 mm to 25 mm in the step size of 5 mm. Notably, it has been observed that among all the considered configurations, the gap length of 0.9 mm and pitch length of 25 mm have shown significant improvements in heat transfer characteristics. The specific combination of the gap of 0.9 mm and pitch of 25 mm has demonstrated better heat transfer capabilities at the expense of an increased friction factor. Lastly, the thermal performance factor of the systems was analyzed and reported. It was reported that the pitch length of 25 mm and gap length of 0.9 mm have shown a maximum thermal performance factor value from 2.9 to 3.3, while the pitch length of 25 mm and gap length of 0.3 mm have depicted the lowest thermal performance factor value. In terms of the overall performance, i.e. the thermal performance factor, the combination with a gap of 0.9 mm and pitch of 25 mm has shown the best performance, while a gap of 0.3 mm and pitch of 25 mm has yielded the worst performance.
Go to article

Authors and Affiliations

Shivam Haldiaa
1
Vijay Singh Bishta
1
Prabhakar Bhandarib
2
Lalit Ranakotic
3
Akashdeep Negic
3

  1. Department of Thermal Engineering, Faculty of Technology, Veer Madho Singh Bhandari Uttarakhand Technical University, Dehradun, Uttarakhand-248007, India
  2. Department of Mechanical Engineering, School of Engineering and Technology, K. R. Mangalam University, Gurgaon, Haryana-122103, India
  3. Department of Mechanical Engineering, Graphic Era Deemed to University, Clement Town, Dehradun, Uttarakhand-248002, India
Download PDF Download RIS Download Bibtex

Abstract

Building heating is an indispensable part of people's winter life in cold regions, but energy conservation and emission reduction should also be taken into account during the heating process. This paper provides a concise overview of the heating system based on air-source heat pump radiant floor and its control strategy. It also optimizes a control system based on thermal comfort and energy efficiency ratio, and analyzes a room in Xining City, Qinghai Province, to test the heating system performance under two control strategies. The final results show that under the traditional control strategy, the cumulative working time of the heating system within a day was 15 hours, the average indoor temperature was 17.36℃, the temperature standard deviation was 2.08℃, and the average power consumption was 189.6 kWh. Under the improved control strategy, the cumulative working time of the heating system within a day was reduced to 10 hours, the average indoor temperature was 18.56℃, the temperature standard deviation was 0.92℃, and the average power consumption was 132.5 kWh.
Go to article

Authors and Affiliations

Wanting Hea
1
Hai Huang
2

  1. Chongqing Industry Polytechnic College, Yubei, Chongqing 401120, China
  2. Chongqing Vocational Institute of Engineering JiangJin Chongqing 402260, China
Download PDF Download RIS Download Bibtex

Abstract

The objective of this work is to propose a thermal model for predicting the average air temperature inside the passenger cabin of a small-sized car that uses an HVAC system. The adopted model is a lumped parameter model that accounts for nine heat sources acting on the cabin. Additionally, the model presents a methodology for calculating the temperature at the evaporator outlet considering a linear temperature drop between its inlet and outlet as a function of sensitive heat, latent heat, evaporator input temperature, absolute humidity, enthalpy and specific heat. Sixteen experimental tests were con-ducted on a commercial vehicle under various operating conditions to validate the presented model. The maximum average relative deviation between the experimental and theoretical results was 17.73%.
Go to article

Authors and Affiliations

Ramon de Paoli Mendesa
1
Juan José Garcia Pabonb
2
Willian Moreira Duartea
1
Luiz Machadoa
1

  1. Federal University of Minas Gerais, Av. Pres. Antônio Carlos, Belo Horizonte/MG 31270-901, Brazil
  2. Federal University of Itajubá, Av.. BPS, Itajubá/MG 37500 903, Brazil
Download PDF Download RIS Download Bibtex

Abstract

This article discusses selected aspects of modelling blood flow in the arteries. The method of reproducing the variable-in-time geometry of coronary arteries is given based on a sequence of medical images of different resolutions. Within the defined shapes of the arteries, a technique of generation of numerical meshes of the same topology is described. The boundary conditions and non-Newtonian rheological models used in blood flow are discussed, as well as the description of blood as a multiphase medium. The work also includes a discussion of tests on the phantom of the carotid artery for the accuracy of measurements made using ultrasonography.
Go to article

Authors and Affiliations

Ryszard Białecki
1
Wojciech Adamczyk
1
Ziemowit Ostrowski
1

  1. Silesian University of Technology, Department of Thermal Technology, Faculty of Energy and Environmental Engineering, Konarskiego 22, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Pressure retarded osmosis is a process that enables useful work generation from the salinity difference of solutions. The literature most often considers using pressure retarded osmosis with natural sodium chloride (NaCl) solutions, such as seawater, dedicated for open systems. To explore the full potential of this process, however, optimized, highly concentrated solutions of various compounds can be used. The presented research is focused on evaluating the impact of increasing draw solution temperature and concentration on the permeate flow in the osmotic process. The permeate flow is directly related to achievable work in this process, therefore, it is important to find feed and draw solution parameters that maximize it. An experimental setup developed in this study provides full control over the process parameters. Furthermore, the performance characteristics of the membrane over process time were investigated, as it became evident during preliminary experiments that the membrane impact is significant. The studies were conducted without back-pressure, in a configuration typical of the forward osmosis process, with solution circulation on both sides of the membrane. The obtained results show a clear positive impact of both the temperature and concentration increase on the potential output of a pressure retarded osmosis system. The membrane behaviour study allowed for correct interpretation of the results, by establishing the dynamics of the membrane degradation process.
Go to article

Authors and Affiliations

Fabian Dietrich
1
Łukasz Cieślikiewicz
1
Piotr Furmański
1
Piotr Łapka
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, 21/25 Nowowiejska St., 00-665 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Most countries in the world are facing two major challenges, one is the increase in the demand for energy consumption difficult to fulfill because of limited fossil fuel, and the second is the emission norms specified by many countries. Various methods are adopted to reduce emissions from engines but that leads to sacrificing the performance of CI engines. To eradicate this problem in the present study, the nanoparticles like (TiO2) are used with different particle sizes 10–30 nm, 30–50 nm and 50–70 nm induced in B20 (20% biodiesel and 80% diesel) with the constant volume fraction of 100 ppm, and utilized in the diesel engine without any modifications. The results showed that the incorporation of TiO2 nanoparticles improves the combustion of hydrocarbons and reduces the emissions of CO, unburned hydrocarbon concentration, NOx and soot. Moreover, among three sizes of the nanoparticles, those with size 30–50 nm showed interesting results with the reduction in brake-specific energy consumption, NOx, smoke and HC by 2.9%, 16.2%, 35% and 10%, respectively, com-pared to other blends used in the study, and hence the blend with the nanoparticle of size 30–50 nm is expected to be a more promising fuel for commercial application in CI engines.
Go to article

Authors and Affiliations

Mohd Mujtaba Ahmeda
1
Harveer Singh Palia
1
Mohammad Mohsin Khana
1

  1. Department of Mechanical Engineering, National Institute of Technology Srinagar, J&K 190006 India
Download PDF Download RIS Download Bibtex

Abstract

Today, with the high population density of the world, the energy demand is increasing continuously. Global dependency on fossil fuels is very strong and there is a compelling need to reduce our energy consumption in order to offset greenhouse gas emissions. Due to regularly increasing prices of fossil fuels alternative fuels are needed to fulfill the requirements of developing countries like India. Plastics in today's world have become crucial. They are excessively used in industry, as well as in households and other fields due to their lightweight, durability, and design flexibility. Plastic demand is growing day by day, which now poses a huge environmental threat. The current study summarizes the use of WPO (waste plastic oil) in the diesel engine and also concludes the combustion, performance, and emission parameters. After an exhaustive literature search, some interesting results have been found. The study reveals that when using WPO as an alternative source in a diesel engine, the combustion, performance, and emissions are similar to those using conventional diesel fuel. An enhanced BTE (brake thermal efficiency) and reduced emissions of unburned hydrocarbons (UBHC) and carbon monoxide (CO) are reported.
Go to article

Authors and Affiliations

Amardeep
1
Rakesh Kumarb
2
Naveen Kumarc
3

  1. Indian Institute of Technology (ISM), Dhanbad, 826004, India; G L Bajaj Institute of Technology and Management, Greater Noida,201306, India
  2. G L Bajaj Institute of Technology and Management, Greater Noida,201306, India
  3. Delhi Technological University, Delhi, 110042, India
Download PDF Download RIS Download Bibtex

Abstract

This study explored the ternary blends of biodiesel-diesel-n-butanol and biodiesel-diesel-n-octanol on common rail direct injec-tion (CRDI) diesel engines. The compositions of fuels, which varied from 0% to 100%, were altered by up to 5%. On the basis of their properties, these blends were chosen, with various concentrations of alcohol at 5% and 10%, 5% diesel, and the remainder being biodiesel. Two ternary fuel blends of waste cooking oil biodiesel (90–85%), diesel (5%), and butanol (5–10%), namely BD90D5B5 and BD85D5B10, and subsequently, another two ternary similar blends of waste cooking oil biodiesel (90–85%), diesel (5%), and octanol (5–10%), namely BD90D5O5 and BD85D5O10, were used to conduct the experiments. The experiments were done with varying injection pressure from 17° to 29° crank angle (CA) before top dead centre (bTDC). The optimum con-dition for the blends is achieved at 26°CA bTDC for 80% loading. So, the engine trials were conducted on 26°CA bTDC to attain the results. The BD90D5O10 blend achieved the lowest brake specific fuel consumption (BSFC) reading of 0.308 kg/kWh while operating at full load. The maximum brake thermal efficiency (BTE) was 31.46% for BD90D5B5. The maximum heat release rate (HRR) achieved with BD85D5O5 fuel blend was 58.54 J/°CA. The quantity of carbon monoxide that BD85D5B10 created was the lowest (25.86 g/kWh). BD85D5B10 had a minimal unburned hydrocarbon emission of 0.157 g/kWh while operating at full load. Oxides of nitrogen (NOx) were emitted in the maximum quantity by BD85D5O10, which was equal to 6.01 g/kWh. This study establishes the viability of blends of biodiesel and alcohol as an alternative for petro-diesel in the future to meet the growing global energy demand.
Go to article

Authors and Affiliations

Ashish Kumar Singha
1
Harveer Singh Palia
1
Mohammad Mohsin Khana
1

  1. Mechanical Engineering Department, National Institute of Technology Srinagar, J&K 190006, India
Download PDF Download RIS Download Bibtex

Abstract

This article investigates the impact of time-dependent magnetohydrodynamics free convection flow of a nanofluid over a non-linear stretching sheet immersed in a porous medium. The combination of water as a base fluid and two different types of nanoparticles, namely aluminum oxide (Al2O3) and copper (Cu) is taken into account. The impacts of thermal radiation, viscous dissipation and heat source/sink are examined. The governing coupled non-linear partial differential equations are reduced to ordinary differential equations using suitable similarity transformations. The solutions of the prin-cipal equations are computed in closed form by applying the MATLAB bvp4c method. The velocity and temperature pro-files, as well as the skin friction coefficient and Nusselt number, are discussed through graphs and tables for various flow parameters. The current simulations are suitable for the thermal flow processing of magnetic nanomaterials in the chemical engineering and metallurgy industries. From the results, it is noticed that the results of copper nanofluid have a better impact than those of aluminium nanofluid.
Go to article

Authors and Affiliations

Joel Mathews
1
Hymavathi Tallab
2

  1. Dept. of Mathematics, Krishna University, Machilipatnam, 521 004, A.P, India
  2. Dept. of Mathematics, University College of Science and Technology, Adikavi Nannaya University, Rajamahendravaram, 533 296, A.P, India
Download PDF Download RIS Download Bibtex

Abstract

The two-stage ejector mixing-diffuser section in this study was computed using the Redlich-Kwong equation of state. The ejector was designed based on the constant rate of kinetic energy change (CRKEC) approach. The water vapor mixing diffuser profile and flow properties were calculated using a one-dimensional gas dynamic model. For the numerical investigation, the estimated geometrical profile based on the input design and operating conditions was utilized. ANSYS-Fluent 14.0 was em-ployed for the numerical study. The analysis was conducted under both on-design and off-design scenarios using the standard k-ε turbulence model. The impact of operating factors on flow behavior and entrainment ratios was investigated at off-design conditions. The findings demonstrated that the operational total pressures of the primary, secondary, and exit flows are a function of the two-stage ejector (TSE) entrainment ratio. With a higher exit pressure and more secondary/entrained flows, the entrain-ment ratio increases. However, altering the primary flow pressure in ways other than for the design conditions reduces the entrainment ratio.
Go to article

Authors and Affiliations

Virendra Kumar
1
ORCID: ORCID
Surendra Kumar Yadavb
Anil Kumar
2
ORCID: ORCID
Nishant Kumar Singha
Lalta Prasad
3

  1. Department of Mechanical Engineering. Harcourt Butler technical University, Kanpur 208002, India
  2. Department of Mechanical Engineeringg. KNIT, Sultanpur 228118, India
  3. Department of Mechanical Engg. NIT, Uttrakhand 246174, India

This page uses 'cookies'. Learn more