Details

Title

The Comparison of Chosen - Bonded with the Use of Classical and Dedicated for 3D Printing Furfuryl Binder - Molding Sands’ Properties as a Basis for Development a New Inorganic System

Journal title

Archives of Foundry Engineering

Yearbook

2024

Volume

vol. 24

Issue

No 4

Authors

Affiliation

Halejcio, D.M. : AGH University of Krakow, Faculty of Foundry Engineering, Department of Moulding Materials, Mould Technology and Non-ferrous Metals, al. A. Mickiewicza 30, 30-059 Krakow, Poland ; Major-Gabryś, K.A. : AGH University of Krakow, Faculty of Foundry Engineering, Department of Moulding Materials, Mould Technology and Non-ferrous Metals, al. A. Mickiewicza 30, 30-059 Krakow, Poland

Keywords

Molding sands ; Furfuryl resin for 3D printing ; Viscosity ; Binder jetting ; Sand grains

Divisions of PAS

Nauki Techniczne

Coverage

49-55

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

  • Jandyal, A., Chaturvedi, I., Wazir, I., Raina, A. & Ul Haq, M.I. (2022). 3D printing – A review of processes, materials and applications in industry 4.0. Sustainable Operations and Computers. 3, 33-42. DOI: 0.1016/j.susoc.2021.09.004.
  • Upadyay, M., Sivarupan, T. & El Monsori, M. (2017). 3D printing for rapid sand casting – A review Journal of Manufacturing Processes. 29, 211-220. https://doi.org/10.1016/j.jmapro.2017.07.017.
  • Boborwski, A. Kaczmarska, K., Drożyński, D., Woźniak, F., Dereń, M., Grabowska, B., Żymankowska-Kumon, S. & Szucki, M. (2023). 3D printed (binderj jetting) furan molding and core sands – Thermal deformation, mechanical and technological properties. 16(9), 3339, 1-17. https://doi.org/10.3390/ma16093339.
  • Hawaldar, N. & Zhang, J. (2018). A comparative study of fabrication of sand casting mold using additive manufacturing and conventional process. International Journal of Advanced Manufacturing Technology. 97(1-4), 1037-1045. DOI: 10.1007/s00170-018-2020-z.
  • Zhang, Z., Wang, L., Zhang, L., Ma, P., Lu, B. & Du, C. (2021). Binder jetting 3D printing process optimization for rapid casting of green parts with high tensile strength. China Foundry. 18(4), 335-343. DOI: 10.1007/s41230-021-1057-z.
  • Gawronová, M., Lichý, P., Kroupová, I., Obzina, T., Beňo, Nguyenová, I., Merta, V., Jezierski, J. & Radkovský, F. (2022). Evaluation of additive manufacturing of sand cores in terms of the resulting surface roughness. Heliyon. 8(10), e10751, 1-10. DOI: 10.1016/j.heliyon.2022.e10751.
  • Shangguan, H., Kang, J., Deng, C., Hu, Y. & Huang, T. (2017). 3D-printed shell-truss sand mold for aluminium casting. Journal of Materials Processing Technology. 250, 247-253. DOI: 10.1016/j.jmatprotec.2017.05.010.
  • Thiel, J., Ravi, S. & Bryant, N. (2016). Advancements in materials for three-dimensional printing of mold and cores. International Journal of Metalcasting. 11(1), 3-13. DOI: 10.1007/s40962-016-0082-y.
  • Snelling, D., Blount, H., Forman, C., Ramsburg, K., Wentzel, A., Williams, C., Druschitz, A. (2013). 3D printed molds and their effect on metal casting. In International Solid Freeform Fabrication Symposium, 12-14 August 2013 (pp. 827). University of Texas at Austin.
  • Sama, S.R., Monogharam, G. & Badano, T. (2019). Case studies on integrating 3D sand-printing technology into the production portfolio of a sand-casting foundry. International Journal of Metalcasting. 14(1), 12-24. DOI: /10.1007/s40962-019-00340-1.
  • Snelling, D., Williams, C. & Drushitz, A. (2019). Mechanical and material properties of casting produced via 3D printed molds. Additive Manufacturing. 27, 199-207. DOI: 10.1016/j.addma.2019.03.004.
  • Almaghariz, E., Conner, P., Lenner, L., Gullapalli, R., Monogharan, G., Lamoncha, B. & Fang, M. (2016). Quantifying the role of part design complexity in using 3D sand printing for molds and cores. International Journal of Metalcasting. 10(3) 240-252. DOI: 10.1007/s40962-016-0027-5.
  • Li, Y., Cheng, Y. & Tang, K. (2023). Recycled sand for sustainable 3D-printed sand mold processes. International Journal of Advanced Manufacturing Technology. 128, 4049-4060. DOI: 10.1007/s00170-023-12214-2.
  • Halejcio, D. & Major–Gabryś, K. (2024). The use of 3D printing sand molds and cores in the casting production. Archives of Foundry Engineering. 24(1), 32-39. DOI: 10.24425/afe.2024.149249.
  • Jakubski, J. (2006). Tendency of selected moulding sands to deform at high temperature. Kraków: AGH University of Krakow. (in Polish).
  • Matonis, N. & Zych, J. (2023). Kinetics of binding process of furan moulding sands, under conditions of forced air flow, monitored by the ultrasonic technique. Archives of Foundry Engineering. 23(4), 93-98. DOI: 10.24425/afe.2023.146683.
  • Dziubański, M., Kiljański, T., Sęk, J. (2014). Theoretical foundations and measurement methods of rheology. Łódź: Monografie Politechniki Łódzkiej. (in Polish).
  • Anwar, N., Major–Gabryś, K., Jalava, K. & Orkas, J. (2024). Effect of additives on heat hardened inorganic foundry binder. International Journal of Metalcasting. 1-16. DOI: 10.1007/s40962-024-01277-w.
  • Hutera, B. (2003). The effect of temperature on the viscosity of the selected foundry binder. Archives of Foundry. 3(9), 203-208. (in Polish).
  • Halejcio, D., Major-Gabryś, K. (2024). Selection of hardening parameters of inorganic binders intended for 3D printing of molding sands. In 51st Szkoła Inżynierii Materiałowej,
    8 – 9 May 2024, (pp. 20). Kraków (in Polish)

Date

23.12.2024

Type

Article

Identifier

DOI: 10.24425/afe.2024.151309
×