Details

Title

Industrial Recycling of Scrap Copper Cables and Wires: Combining Cold and Hot Treatments for Maximum Recovery and Minimal Emissions

Journal title

Archives of Foundry Engineering

Yearbook

2024

Volume

vol. 24

Issue

No 4

Authors

Affiliation

Choukri, O. : Department of Mechanical Engineering, Mohammadia School of Engineers, Morocco ; Mohsine, E. : Department of Mechanical Engineering, Mohammadia School of Engineers, Morocco ; Taibi, S. : Department of Mechanical Engineering, Mohammadia School of Engineers, Morocco

Keywords

Copper recycling ; Greased cables ; Cold treatment ; Pyrolysis process ; Upcast process

Divisions of PAS

Nauki Techniczne

Coverage

153-162

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

  1. Kumar, H., Kumagai, S., Saito, Y. & Toshiaki Yoshioka, T. (2024). Latest trends and challenges in PVC and copper recovery technologies for End-of-Life thin cables. Waste Management. 174, 400-410. https://doi.org/10.1016/j.wasman.2023.12.012.
  2. Japan SDGs Action Forum. (2022). Summary Report. Retrieved March 25, 2023, from https://sdgs.un.org/sites/default/ files/2022-07/Event%20Report.pdf
  3. Bonnin, M., Azzaro-Pantel, C., Domenech, S. & Villeneuve, J. (2015). Multicriteria optimization of copper scrap management strategy. Resources, Conservation and Recycling. 99, 48-62. http://dx.doi.org/10.1016/j.resconrec.2015.03.013.
  4. Wędrychowicz, M., Kurowiak, J., Skrzekut, T. & Noga, P. (2023). Recycling of electrical cables-current challenges and future prospects. Materials. 16, 6632, 1-20. https://doi.org/10.3390/ma16206632.
  5. Huang, C.Q. (2012). The development: problems and the new trend of copper conductor processing in China cable industry. Electric Wire & Cable. 5, 142-146.
  6. Piyush, K., Gautam, A., Dayal, H., Bora, A., Patro, C., Sahoo, T. (2015). Selection criteria for usage of aluminum wires in automobile wiring harness. In: 2015 IEEE International Transportation Electrification Conference (ITEC), 14-17 June 2015 (pp. 1-5). https://doi.org/10.1109/ITEC-India.2015.7386949.
  7. Trommnau, J., Kühnle, J., Siegert, J., Inderka, R. & Bauernhansl, T.(2019). Overview of the state of the art in the production process of automotive wire harnesses, current research and future trends. Procedia CIRP. 81, 387-392. https://doi.org/10.1016/j.procir.2019.03.067.
  8. Arslan, F., Celik, C. & Arslan, C. (2019). Recycling of waste electrical cables. Material Science & Engineering International Journal. 3(4), 107-111. DOI:10.15406/mseij.2019.03.00099.
  9. Liquan L, Gongqi Liu, Dean Pan, & Wei Wang, (2015). Overview of the recycling technology for copper-containing cables. Resources, Conservation & Recycling. 126, 132-140. DOI:1016/j.resconrec.2017.07.024.
  10. Elshkaki A., Graedel T.E., Ciacci L. & Reck B.K. (2016). Copper demand, supply, and associated energy use to 2050. Global Environmental Change. 39, 305-315. https://doi.org/10.1016/j.gloenvcha.2016.06.006.
  11. Conesa , Silvia J.A., Egea, S., Moltó, J., Ortuño, & Font, R. (2013). Decomposition of two types of electric wires considering the effect of the metal in the production of pollutants. Chemosphere. 91(2), 118-123. https://doi.org/10.1016/j.chemosphere.2012.11.014.
  12. Suresh, S.S., Mohanty, S. & Nayak, S.K. (2017). Composition analysis and characterization of waste polyvinyl chloride (PVC) recovered from data cables. Waste Management. 60, 100-111. DOI:10.1016/j.wasman.2016.08.033.
  13. Hagstrom, Hampton, R.N., Helmesjo, B. & Hjertberg, T. (2006). Disposal of cables at the "end of life"; some of the environmental considerations. Feature article. 22(2), 21-30. DOI: 10.1109/MEI.2006.1618999.
  14. Zabłocka-Malicka, M., Rutkowski, P. & Szczepaniak, W. (2015). Recovery of copper from PVC multiwire cable waste by steam gasification. Waste Management. 46, 488-496. https://doi.org/10.1016/j.wasman.2015.1008.1001.
  15. Buekens, A. & Kefa Cen, K. (2011). Waste incineration, PVC, and dioxins. The 6th International Conference on Combustion, Incineration/Pyrolysis and Emission Control (6th i-CIPEC). Journal of Material Cycles and Waste Management. 13, 190-197. DOI 10.1007/s10163-011-0018-9.
  16. Faragó, ,Špirová, V., Blažeková , P.,Lalinská-Voleková, B., Macek, J.,Jurkovič, L.Vítková, M. & Hiller, E. (2023). Environmental and health impacts assessment of long-term naturally-weathered municipal solid waste incineration ashes deposited in soil—old burden in Bratislava city, Slovakia. Heliyon. 9(3), e13605, 1-18. https://doi.org/10.1016/j.heliyon.2023.e13605.
  17. Youcai, Z. (2017) . Pollution control and resource recovery:municipal solid wastes incineration. Oxford, UK: Butterworth-Heinemann. https://doi.org/10.1016/C2016-0-02152-6.
  18. Sobotova, L., Badida, M., Dzuro, T. (2019). Analysis of selected technologies of cable Recycling. In 2019 International Council on Technologies of Environmental Protection (ICTEP), 23-25 October 2019 (pp. 234-239). Starý Smokovec, Slovakia. DOI:10.1109/ICTEP48662. 2019.8968967.
  19. Sanritsu Machine Industry Co., Ltd. (2023). Waste Wire & Cable Recycling Machines. Retrieved August 20, 2024, from https://www.sanritsu-machine.com/en/catalog/index.php.
  20. Yang, L. , Zhen, L., Guilan, T., Ying, L. (2011). Recycling electrically conductive metal and insulating material from cable waste by ultrasonic. In Third International Conference on Measuring Technology and Mechatronics Automation ( 973-976). DOI:10.1109/ICMTMA.2011.525.
  21. Sheih, S.W, Tsai, M.S. (2000). Hot water separation process for copper and insulating material recovery from electric cable waste. Waste Management & Research. 18(5), 478-484. DOI:1034/j.1399-3070.2000.00150.x.
  22. Ho-Seok Jeon, Chul-Hyun Park, Bong-Gyoo Cho & Jai-Koo Park, (2009). Separation of PVC and rubber from covering plastics in communication cable scrap by tribo-charging. Separation Science and Technology. 44(1), 190-202. DOI:10.1080/01614940802286040.
  23. Park, C.H., Subasinghe, N. & Jeon, H.S. (2015). Separation of covering plastics from particulate copper in cable wastes by induction electrostatic. Separation Science and Technology. 56(7), 1140-1143. DOI:2320/matertrans.M2015138.
  24. de Araújo, M. C. P. B., Chaves, A. P., Espinosa, D. C. R., & Tenório, J. A. S. (2008). Electronic scraps-recovering of valuable materials from parallel wire cables . Waste Management. 28(11), 2177-2182. https://doi.org/10.1016/j.wasman.2007.09.019.
  25. Feng, Q., Wen, S., Deng, J. & Zhao, W. (2017). Combined DFT and XPS investigation of Enhanced adsorption of sulfide species onto cerussite by surface modification with chloride. Applied Surface Science. 425, 8-15. https://doi.org/10.1016/j.apsusc.2017.07.017.
  26. Anastassakis, G.N., Bevilacqua, P. & De Lorenzi, L. (2015). Recovery of residual copper from low- content tailings derived from waste electrical cable treatment . International Journal of Mineral Processing. 143, 105-111. https://doi.org/10.1016/j.minpro.2015.09.011.
  27. Lambert, F, Gaydardzhiev, S. Léonard, G., Lewis, G., Bareel, P-F., David & Bastin, D. (2015). Copper leaching from waste electric cables bybiohydrometallurgy . Minerals Engineering. 76, 38-46. https://doi.org/10.1016/j.mineng.2014.12.029.
  28. Kameda, T., Fukushima, S., Grause, G. & Yoshioka, T. (2013). Metal recovery from wire scrap via a chloride volatilization process: poly(vinyl chloride) derived chlorine as volatilization agent. Thermochimica Acta. 562, 65-69. https://doi.org/10.1016/j.tca.2013.03.012.
  29. Hense, P., Reh, K., Franke, M. & Hornung, A. (2015). Pyrolysis of waste electrical and electronic equipment (weee) for recovering metals and energy: previous achievements and current approaches. Environmental Engineering and Management Journal. 14(7), 1637-1647. DOI:30638/eemj.2015.175.
  30. Chaala, A., Darmstadt, H. & Roy, C. (1997). Vacuum pyrolysis of electric cable wastes. Journal of Analytical and Applied Pyrolysis. 39(1), 79-96. https://doi.org/10.1016/S0165-2370(96)00964-3.
  31. Rong-Hua Ma, Yi-Chang Lin, & Chun-Pao Kuo,(2006). The study of thermal pyrolysis mechanisms for chloro organic compounds in electric cable and medical wastes. Journal of Analytical and Applied Pyrolysis. 75(2), 245-251. https://doi.org/10.1016/j.jaap.2005.06.010.
  32. Kundariya, N., Mohanty, S.S., Varjani, S., Ngo, H.H., Wong, J.W.C., Taherzadeh, M., Chang, J.-S., Ng, H.Y., Kim, S.-H. & Bui, X.-T. (2021). A review on integrated approaches for municipal solid waste for environmental and economical relevance: Monitoring tools, technologies, and strategic innovations. Bioresource Technology. 342(4), 125982, 1-11. https://doi.org/10.1016/j.biortech.2021.125982.
  33. Mersiowsky, I.(2002). Long-term fate of PVC products and their additives in landfills. Progress in Polymer Science. 27(10), 2227-2277. https://doi.org/10.1016/S0079-6700(02)00037-0.
  34. Rambabu, U., Balaram, V., Ratheesh, R., Chatterjee, S., Babu, M.K. & Munirathnam, N. (2018). Assessment of hazardous substances in electrical cables: Implementation of RoHS regulations in India. Journal of Testing and Evaluation. 33(3), 1930-1941. DOI:10.1520/JTE20160645.
  35. Aupetit, A. (2021). Overview of the global cable industry–markets and materials. the global cable industry. The Global Cable Industry: Materials, Markets, Products. 1-20. DOI:1002/9783527822263.ch1.
  36. Ma, S., Xing, P., Li, H., Wang, C., Hou, X., Cun, Z., Liu, M. & Yan, R. (2023). Recovery of high-grade copper from waste polyester imide enameled wires by pyrolysis and ultrasonic treatment. Resources, Conservation & Recycling. 196, 107034, 1-9. DOI:1016/j.resconrec.2023.107034.
  37. Wajima, T. (2022). Pyrolysis behavior of polyvinyl chloride with sodium hydroxide and application to copper recovery from multiwire tinned copper cables. International Journal of the Society of Materials Engineering for Resources. 25(1), 70-77. DOI:5188/ijsmer.25.70.
  38. Xu, J., Kumagai, S., Kameda, T., Saito,Y., Takahashi, K., Hayashi, H. & Yoshioka, T. (2019) . Separation of copper and polyvinyl chloride from thin waste electric cables: A combined PVC-swelling and centrifugal approach. Waste Management. 89, 27-36. DOI:1016/j.wasman.2019.03.049.
  39. Southard, M. Z., & Ahmed, S. (2019). Perry's Chemical Engineers' Handbook. Mcgraw-Hill Education.
  40. Papanikolaou,G. Jiayang Wu, J., Huber, G.W. & Mavrikakis, M. (2023). Mechanistic insights into the pyrolysis of poly (vinyl chloride). Journal of Polymer Research. 30(2), 83, 1-16. DOI:10.1007/s10965-023-03439-6.
  41. Huggett, C., Levin, B.C. (1987). Toxicity of the Pyrolysis and Combustion Products of Poly (Vinyl Chlorides): A Literature Assessment. Fire and materials. 11, 131-142. https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=106993.
  42. Horikoshi, S., Hachisuga, N. & Serpone, N. (2024). Recycling of e-waste power cables using microwave-induced pyrolysis – process characteristics and facile recovery of copper metal. RSC Advances. 14(41), 29955-29964. DOI:10.1039/d4ra05602g.
  43. Cuevas, A.B., Leiva-Candia, D.E. & Dorado, M.P. (2024). An overview of pyrolysis as waste treatment to produce eco-energy. Energies. 17(12), 2852, 1-32. DOI: 3390/en17122852.
  44. Pelzer, Q. (2020).Étude du vieillissement des isolants synthétiques des câble moyenne tension ”HTA”. Université Grenoble Alpes. France. Retrieved August 15, 2024, from https://theses.hal.science/tel 02628506v1/file/PELZER_2019_archivage.pdf.
  45. Shihab, N.R., Enab, T.A., Galal, A. & Ghattas, M.S.(2016). Effect of grain size on orange peel in oxygen free copper wire produced by upcast. International Journal of Scientific and Engineering Research. 7(9), 1271-127. https://www.researchgate.net/publication/310844142.
  46. Mao, Q., Zhang, Y., Guo, Y. & Zhao, Y. (2021). Enhanced electrical conductivity and mechanical properties in thermally stable fine-grained copper wire. Communications materials. 2(1), 1-9. https://doi.org/10.1038/s43246-021-00150-1.
  47. PX Preciment SA. (2024). Retrieved August 20, 2024, from https://pxgroup.com/sites/default/files/Cu-ETP.pdf.

Date

30.12.2024

Type

Article

Identifier

DOI: 10.24425/afe.2024.151323
×