Details
Title
Study on Ladle Baking Process with Oxygen-fuel CombustionJournal title
Archives of Foundry EngineeringYearbook
2025Volume
Accepted articlesAuthors
Affiliation
Wang, Xiaoyao : Liaoning University of Science and Technology, China ; Liu, Guangqiang : Liaoning University of Science and Technology, China ; Liu, Yuanxin : Liaoning University of Science and Technology, China ; Wang, Jian : Technology Research Center of Bengang, ChinaKeywords
Ladle baking ; Oxy fuel ; Gas diameter ; Nozzle spacingDivisions of PAS
Nauki TechnicznePublisher
The Katowice Branch of the Polish Academy of SciencesBibliography
- Li, G., Liu, J., Jiang, G. & Liu, H. (2015). Numerical simulation of temperature field and thermal stress field in the new type of ladle with the nanometer adiabatic material. Advances in Mechanical Engineering. 7(4), 1-13. https://doi.org/10.1177/1687814015575988.
- Peng, L., Yu, J., Zhao, H., Zhang, H. & Ziheng, S. (2023). Preliminary Investigation on the application of a semi-lightweight mullite spherical solid waste material in ladle permanent layer. Transactions of the Indian Ceramic Society. 82(4), 287-294. https://doi.org/10.1080/0371750x.2023.2260848.
- Yuan, F., He, D., Feng, K., Zhang, M. & Wang, H. (2018). Optimal design and experimental study of ejector for ladle baking. Steel Research International. 89(12), 1800051. https://doi.org/10.1002/srin.201800051.
- Deng, S., Xu, A., Yang, G. & Wang, H. (2018). Analyses and calculation of steel scrap melting in a multifunctional hot metal ladle. Steel Research International. 90(3), 18000435. https://doi.org/10.1002/srin.201800435.
- Bělohradský, P., Skryja, P. & Hudák, I. (2014). Experimental study on the influence of oxygen content in the combustion air on the combustion characteristics. Energy. 75, 116-126. https://doi.org/10.1016/j.energy.2014.04.026.
- Nemitallah, M.A., Habib, M.A., Badr, H.M., Said, S.A., Jamal, A., Ben-Mansour, R., Mokheimer, E.M.A. & Mezghani, K. (2017). Oxy-fuel combustion technology: current status, applications, and trends. International Journal of Energy Research. 41(12), 1670-1708. https://doi.org/10.1002/er.3722.
- Liu, W., Zuo, H., Wang, J., Xue, Q., Ren, B. & Yang, F. (2021). The production and application of hydrogen in steel industry. International Journal of Hydrogen Energy. 46(17), 10548-10569. https://doi.org/10.1016/j.ijhydene.2020.12.123.
- Xie, W., Ma, J., Wang, D., Liu, Z. & Yang, A. (2024). Research on the carbon reduction technology path of the iron and steel industry based on a multi-objective genetic algorithm. Sustainability. 16(7), 2966, 1-30. https://doi.org/10.3390/su16072966.
- Löschau, M. (2018). Effects of combustion temperature on air emissions and support fuel consumption in full scale fluidized bed sludge incineration: with particular focus on nitrogen oxides and total organic carbon. Waste Management & Research: The Journal for a Sustainable Circular Economy. 36(4), 342-350. https://doi.org/10.1177/0734242x18755895.
- Tian, Y., Yang, S., Le, J., Zhong, F. & Tian, X. (2017). Investigation of combustion process of a kerosene fueled combustor with air throttling. Combustion and Flame. 179, 74-85. https://doi.org/10.1016/j.combustflame.2017.01.021.
- Yuan, F., Wang, H.-B., Zhou, P.-L. & Xu, A.-J. (2018). Combustion performance of nozzles with multiple gas orifices in large ladles for temperature uniformity. Journal of Iron and Steel Research International. 25(4), 387-397. https://doi.org/10.1007/s42243-018-0048-9.
- Moradi, J., Gharehghani, A. & Mirsalim, M. (2020). Numerical investigation on the effect of oxygen in combustion characteristics and to extend low load operating range of a natural-gas HCCI engine. Applied Energy. 276, 115516. https://doi.org/10.1016/j.apenergy.2020.115516.
- Shan, S., Chen, B., Zhou, Z. & Zhang, Y. (2022). A review on fundmental research of oxy-coal combustion technology. Thermal Science. 26(2C), 1945-1958. https://doi.org/10.2298/tsci210329238s.
- Shi, B., Hu, J. & Ishizuka, S. (2015). Carbon dioxide diluted methane/oxygen combustion in a rapidly mixed tubular flame burner. Combustion and Flame. 162(2), 420-430. https://doi.org/10.1016/j.combustflame.2014.07.022.
- Wang, H., Lei, Q., Li, P., Liu, C., Xue, Y., Zhang, X., Li, C. & Yang, Z. (2021). Key CO2 capture technology of pure oxygen exhaust gas combustion for syngas-fueled high-temperature fuel cells. International Journal of Coal Science & Technology. 8(3), 383-393. https://doi.org/10.1007/s40789-021-00445-1.
- Toftegaard, M.B., Brix, J., Jensen, P.A. Glarborg, P. & Jensen, A.D. (2010). Oxy-fuel combustion of solid fuels. Progress in Energy and Combustion Science. 36(5), 581-625. https://doi.org/10.1016/j.pecs.2010.02.001.
- Jovanovic, R., Swiatkowski, B., Kakietek, S., Škobalj, P., Lazović, I. & Cvetinovic, D. (2019). Mathematical modelling of swirl oxy-fule burner flame characteristics. Energy Conversion and Management. 191, 193-207. https://doi.org/10.1016/j.enconman.2019.04.027.
- Gao, K., Ke, X., Du, B., Wang, Z., Jin, Y., Huang, Z., Li, Y. & Liu, X. (2024). Simulation of gas–solid flow characteristics of the circulating fluidized bed boiler under pure-oxygen combustion conditions. Chinese Journal of Chemical Engineering. 70, 9-19. https://doi.org/10.1016/j.cjche.2024.02.008.
- Shi, B., Shimokuri, D. & Ishizuka, S. (2014). Reexamination on methane/oxygen combustion in a rapidly mixed type tubular flame burner. Combustion and Flame. 161(5), 1310-1325. https://doi.org/10.1016/j.combustflame.2013.11.001.
- Zhuang, S., Zhan, D., Wang, T., Li, P. & Yang, Y. (2023). Influence of oxy-fuel lance parameters on the scrap pre-heating temperature in the hot metal ladle. Metals. 13(5), 1-19. https://doi.org/10.3390/met13050847.
- Zhang, H., Zhou, P. & Yuan, F. (2021). Effects of ladle lid or online preheating on heat preservation of ladle linings and temperature drop of molten steel. Energy. 214, 118896. https://doi.org/10.1016/j.energy.2020.118896.