Applied sciences

International Journal of Electronics and Telecommunications

Content

International Journal of Electronics and Telecommunications | 2023 | vol. 69 | No 3

Download PDF Download RIS Download Bibtex

Abstract

This study proposes the LoRa-Based Mesh Sensor Network without relying on LoRaWAN connection sending the communication data in the form of Star-to-Star, it can be sends the data in the form of peer-to-peer without the gateway. In the case that a longer distance is needed, the system is connected by a means of multi-hop presenting the hardware and software model through the use of low voltage power. Then, the testing is done using point to point and the received signal is measured by a gauge and compared with the model in accordance with the theoretical principle.
Go to article

Authors and Affiliations

Jarun Khonrang
1
Mingkwan Somphruek
1
Pairoj Duangnakhorn
1
Atikhom Siri
1
Kamol Boonlom
2

  1. Chiang Rai Rajabhat University, Thailand
  2. University of Leeds, United of Kingdom
Download PDF Download RIS Download Bibtex

Abstract

Analog-to-Digital Converters (ADCs) are devices that transform analog signals into digital signals and are used in various applications such as audio recording, data acquisition, and measurement systems [1]. Prior to the development of actual chip, there is a need for prototyping, testing and verifying the performance of ADCs in different scenarios. Analog macros cannot be tested on an FPGA. In order to ensure the macros function properly, the emulation of the ADC is done first. This is a digital module and can be designed in System Verilog. This paper demonstrates the design of the module on FPGA for Analog to Digital Converter (ADC) emulation. The emulation is done specific to the ADC macro which has programmable resolutions of 12/10/8/6 bit.
Go to article

Authors and Affiliations

Huma Tabassum
1
Krishna Prathik BV
1
Sujatha S Hiremath
1

  1. RV College of Engineering, India
Download PDF Download RIS Download Bibtex

Abstract

A quasi-Yagi microstrip patch antenna with four directors and truncated ground plane has been designed and fabricated to have an ultra-wide bandwidth, high gain, low return loss and better directivity with center frequency at 3.40 GHz. After optimization, the proposed antenna yields an ultra-wide bandwidth of 1.20 GHz with lower and upper cutoff frequencies at 3.12 GHz and 4.32 GHz, respectively. High gain of 5.25 dB, return loss of -28 dB and directivity of 6.28 dB are obtained at resonance frequency of 3.40 GHz. The measured results of fabricated antenna have shown excellent agreement with the simulation results providing bandwidth of 1.34 GHz with lower and upper cutoff frequencies at 3.04 GHz and 4.38 GHz, respectively. The antenna gain of 5.33 dB, return loss of -44 dB are obtained at resonance frequency of 3.36 GHz. The dimension of the antenna is only of 65 mm x 45 mm ensuring compact in size.
Go to article

Authors and Affiliations

Hasanur Rahman Chowdhury
1 2
Sakhawat Hussain
1

  1. Department of Electrical and Electronic Engineering, University of Dhaka, Dhaka-1000, Bangladesh
  2. Department of Electrical & Computer Engineering, Michigan State University, East Lansing, Michigan, USA
Download PDF Download RIS Download Bibtex

Abstract

This paper demonstrates a low-profile, wide-band, two-element, frequency-reconfigurable MIMO antenna that is suitable for diverse wireless applications of 4G and 5G such as WLAN/Bluetooth (2.4–2.5 GHz), WLAN (2.4–2.484 GHz, 5.15– 5.35 GHz, and 5.725–5.825 GHz), WiMAX (3.3–3.69 GHz and 5.25–5.85 GHz), Sub6GHz band proposed for 5G (3.4–3.6 GHz, 3.6-3.8GHz and 4.4–4.99 GHz), INSAT and satellite X-band(6 to 9.6 GHz). Proposed MIMO favour effortless switching between multiple bands ranging from 2.2 to 9.4 GHz without causing any interference. Both antenna elements in a MIMO array are made up of a single module comprised of a slot-loaded patch and a defective structured ground. Two PIN diodes are placed in the preset position of the ground defect to achieve frequencyreconfigurable qualities. The suggested MIMO antenna has a size of 62 ×25 ×1.5 mm3. Previous reconfigurable MIMO designs improved isolation using a meander line resonator, faulty ground structures, or self-isolation approaches. To attain the isolation requirements of modern devices, stub approach is introduced in proposed design. Without use of stub, simulated isolation is 15dB. The addition of a stub improved isolation even more. At six resonances, measured isolation is greater than 18 dB, the computed correlation coefficient is below 0.0065, and diversity gain is over 9.8 dB.
Go to article

Authors and Affiliations

Shivleela Mudda
1
Gayathri K M
1
Mallikarjun M
2

  1. Dayananda Sagar University, Bangalore, India
  2. Sreenidhi Institute of Science and Technology, Hyderabad (Telangana), India
Download PDF Download RIS Download Bibtex

Abstract

The SIW antenna suffers from the narrow bandwidth for a single cavity and single resonant. Defected ground structure (DGS) with a dual cavity was the solution to solve narrow bandwidth by resulting in hybrid resonance. The hybrid resonance with 14.83% impedance bandwidth is proposed in this antenna design. The first resonance resulted from the combination of the TE101 modes from inner and outer HMSIW cavities while the second resonance resulted from the combination of the strong TE101 and the weak TE102 mode from the inner HMSIW cavity and the addition of the weak TE101 from the outer HMSIW cavity. The measurement antenna design has a broadband antenna with a 14.31% (5.71 – 6.59 GHz) impedance bandwidth by using substrate Rogers RO 5880.
Go to article

Authors and Affiliations

Dian Widi Astuti
1
Rivayanto
1
Muslim
1
Imelda Simanjuntak
1
Teguh Firmansyah
2
Dwi Astuti Cahyasiwi
3
Yus Natali
4

  1. Department of Electrical Engineering, Universitas Mercu Buana, Jakarta, Indonesia
  2. Department of Electrical Engineering, Universitas Sultan Ageng Tirtayasa, Serang, Indonesia
  3. Department of Electrical Engineering, Universitas Muhammadiyah Prof. Dr. HAMKA, Jakarta, Indonesia
  4. Telecommunication Program, Universitas Telkom, Jakarta, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

We designed, fabricated, and evaluated a monopole water antenna (WA) filled with pure water. A 2.4 GHz patch antenna (PA) was used for measurement comparison, and the current density distribution and 3D field strength radiation distribution and reflection coefficient of the PA had a fundamental mode and a higher-order mode at 3.5 GHz, whose polarization was 90 degrees different. The 2.4 GHz monopole WA could receive only the fundamental mode of the PA. The 3.5 GHz WA could receive the higher-order mode of the PA by rotating the WA by 90 degrees. The transmission coefficient of the 2.4 GHz WA decreased with the square of the spacing, similar to the spatial propagation characteristics of electromagnetic waves. Almost the same results could be expected if planar or three-dimensional antennas were used instead of monopole electrodes.
Go to article

Authors and Affiliations

Koyu Chinen
1
Ichiko Kinjo
2

  1. GLEX, Yokohama, Japan
  2. Information and Communication System Engineering, Dept., National Institute of Technology, Okinawa College, Nago, Japan
Download PDF Download RIS Download Bibtex

Abstract

The following paper presents the players profiling methodology applied to the turn-based computer game in the audience-driven system. The general scope are mobile games where the players compete against each other and are able to tackle challenges presented by the game engine. As the aim of the game producer is to make the gameplay as attractive as possible, the players should be paired in a way that makes their duel the most exciting. This requires the proper player profiling based on their previous games. The paper presents the general structure of the system, the method for extracting information about each duel and storing them in the data vector form and the method for classifying different players through the clustering or predefined category assignment. The obtained results show the applied method is suitable for the simulated data of the gameplay model and clustering of players may be used to effectively group them and pair for the duels.
Go to article

Authors and Affiliations

Piotr Bilski
1
ORCID: ORCID
Izabella Antoniuk
2
ORCID: ORCID
Rafał Łabędzki
3

  1. Warsaw University of Technology, Poland
  2. Warsaw University of Life Sciences, Poland
  3. SGH Warsaw School of Economics, Poland
Download PDF Download RIS Download Bibtex

Abstract

This work suggests a brand-new 1*4 two-dimensional demultiplexer design based on multicore photonic crystal fiber. Numerical models show that the optical signals can be separated in a photonic crystal fiber construction using optical signals with wavelengths of 0.85, 1.1, 1.19, and 1.35 μm injected on the center core and separated into four cores. The innovative design switches different air-hole positions using pure silica layers throughout the length of the fiber to regulate the direction of light transmission between layers.
Wavelength demultiplexers are essential parts of optical systemic communications. They serve as a data distributor and can use a single input to produce multiple outputs. The background material is frequently natural silica, and air holes can be found anywhere throughout the length of the fiber as the low-index components.
The simulation results showed that after a 6 mm light propagation, the four-channel demux can start to demultiplex.
Go to article

Authors and Affiliations

Assia Ahlem Harrat
1
Mohammed Debbal
1
Mohammed Chamse Eddine Ouadah
2

  1. Department of Electronics and Telecommunications, Faculty of Science and Technology, University of Belhadj Bouchaib, Algeria
  2. Department of Telecommunications, Faculty of Electrical and Computer Engineering, University of Mouloud Mammeri, Algeria
Download PDF Download RIS Download Bibtex

Abstract

A methodology for development for distributed computer network (DCN) information security system (IS) for an informatization object (OBI) was proposed. It was proposed to use mathematical modeling at the first stage of the methodology. In particular, a mathematical model was presented based on the use of the apparatus of probability theory to calculate the vulnerability coefficient. This coefficient allows one to assess the level of information security of the OBI network. Criteria for assessing the acceptable and critical level of risks for information security were proposed as well. At the second stage of the methodology development of the IS DCN system, methods of simulation and virtualization of the components of the IS DCN were used. In the course of experimental studies, a model of a protected DCN has been built. In the experimental model, network devices and DCN IS components were emulated on virtual machines (VMs). The DCN resources were reproduced using the Proxmox VE virtualization system. IPS Suricata was deployed on RCS hosts running PVE. Splunk was used as SIEM. It has been shown that the proposed methodology for the formation of the IS system for DCN and the model of the vulnerability coefficient makes it possible to obtain a quantitative assessment of the levels of vulnerability of DCN OBI.
Go to article

Authors and Affiliations

Valerii Lakhno
1
Zhuldyz Alimseitova
2
Yerbolat Kalaman
2
Olena Kryvoruchko
3
Alona Desiatko
3
Serhii Kaminskyi
3

  1. National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
  2. Satbayev University, Almaty, Kazakhtan
  3. Kyiv National University of Trade and Economics, Kyiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Phishing has been one of the most successful attacks in recent years. Criminals are motivated by increasing financial gain and constantly improving their email phishing methods. A key goal, therefore, is to develop effective detection methods to cope with huge volumes of email data. In this paper, a solution using BLSTM neural network and FastText word embeddings has been proposed. The solution uses preprocessing techniques like stop-word removal, tokenization, and padding. Two datasets were used in three experiments: balanced and imbalanced, whereas in the imbalanced dataset, the effect of maximum token size was investigated. Evaluation of the model indicated the best metrics: 99.12% accuracy, 98.43% precision, 99.49% recall, and 98.96% f1-score on the imbalanced dataset. It was compared to an existing solution that uses the DL model and word embeddings. Finally, the model and solution architecture were implemented as a browser plug-in.
Go to article

Authors and Affiliations

Rafał Wolert
1
Mariusz Rawski
1

  1. Institute of Telecommunications, Faculty of Electronics and Information Technology, Warsaw University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Growing popularity of distributed generation is drawing special attention to communication technologies in smart power grids. This paper provides a detailed overview of the communication protocols utilized in the modern distributed grid laboratory. It describes both wired and wireless technologies used in Smart Grid and presents the remote operation of switching the subsystem from grid mode to island mode operating under nominal conditions. It shows the duration of power outages during a transfer to island mode with diesel generator running on idle - which simulates planned islanding and diesel generator stationary, which simulates unplanned islanding. Latency between registration of disturbance and executing control command is measured. The results obtained are compared with current legislation. The consequences to the power system that are possible in both scenarios are highlighted. Obtained results and description of the communication technologies can be useful for the design of distributed power grids, island-mode power grids, and Smart Grids, as well as for further research in the area of using combustion fuel generators as a primary power supply in the microgrid.
Go to article

Authors and Affiliations

Kamil Prokop
1
Andrzej Bień
1
Szymon Barczentewicz
1

  1. AGH University of Science and Technology, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

With rapid population increases, people are facing the challenge to maintain healthy conditions. One of the challenges is air pollution. Due to industrial development and vehicle usage air pollution is becoming a high threat to human life. This air pollution forms through various toxic contaminants. This toxic contamination levels increase and cause severe damage to the living things in the environment. To identify the toxic level present in the polluted air various methods were proposed by the authors, But failed to detect the tolerance level of toxic gases. This article discusses the methods to detect toxic gasses and classify the tolerance level of gasses present in polluted air. Various sensors and different algorithms are used for classifying the tolerance level. For this purpose “Artificial Sensing Methodology” (ASM), commonly known as e-nose, is a technique for detecting harmful gases. SO2-D4, NO2-D4, MQ-135, MQ136, MQ-7, and other sensors are used in artificial sensing methods (e-nose). “Carbon monoxide, Sulfur dioxide, nitrogen dioxide, and carbon dioxide” are all detected by these sensors. The data collected by sensors is sent to the data register from there it is sent to the Machine learning Training module (ML) and the comparison is done with real-time data and trained data. If the values increase beyond the tolerance level the system will give the alarm and release the oxygen.
Go to article

Authors and Affiliations

S. Deepan
1
M. Saravanan
1

  1. Department of Networking and Communications College of Engineering and Technology SRM Institute of Science and Technology, Kattankulathur, India
Download PDF Download RIS Download Bibtex

Abstract

A wireless sensor system is an essential aspect in many fields. It consists of a great deal of sensor nodes. These sensor networks carry out a number of tasks, including interaction, distribution, recognition, and power supply. Data is transmitted from source to destination and plays an important role. Congestion may occur during data transmission from one node to another and also at cluster head locations. Congestion will arise as a result of either traffic division or resource allocation. Energy will be wasted due to traffic division congestion, which causes packet loss and retransmission of removed packets. As a result, it must be simplified; hence there are a few Wireless sensor networks with various protocols that will handle Congestion Control. The Deterministic Energy Efficient Clustering (DEC) protocol, which is fully based on residual energy and the token bucket method, is being investigated as a way to increase the energy efficiency. In the event of congestion, our proposal provides a way to cope with it and solves it using this method to improve lifespan of the sensor networks. Experiments in simulation show that the proposed strategy can significantly enhance lifetime, energy, throughput, and packet loss.
Go to article

Authors and Affiliations

Habibulla Mohammad
1
K. Phani Rama Krishna
1
Ch Gangadhar
1
Riazuddin Mohammed
2

  1. PVP Siddhartha Institute of Technology, India
  2. University of Alberta, Edmonton, AB, Canada
Download PDF Download RIS Download Bibtex

Abstract

The Elastic Optical Networks (EON) provide a solution to the massive demand for connections and extremely high data traffic with the Routing Modulation and Spectrum Assignment (RMSA) as a challenge. In previous RMSA research, there was a high blocking probability because the route to be passed by the K-SP method with a deep neural network approach used the First Fit policy, and the modulation problem was solved with Modulation Format Identification (MFI) or BPSK using Deep Reinforcement Learning. The issue might be apparent in spectrum assignment because of the influence of Advanced Reservation (AR) and Resource Periodic Arrangement (RPA), which is a decision block on a connection request path with both idle and active data traffic. The study’s limitation begins with determining the modulation of m = 1 and m = 4, followed by the placement of frequencies, namely 13 with a combination of standard block frequencies 41224–24412, so that the simulation results are less than 0.0199, due to the combination of block frequency slices with spectrum allocation rule techniques.
Go to article

Authors and Affiliations

R.J. Silaban
1
M. Alaydrus
1
U. Umaisaroh
1

  1. Department of Electrical Engineering, Universitas Mercu Buana, Jakarta, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

This article discusses whether iPerf can be used as an effective tool for wired and wireless LAN throughput estimation. The potential advantages of using iPerf in comparison to FTP are discussed. Finally, the article presents the throughput measurement results obtained with FTP, iPerf2 and iPerf3 in a simple experimental network.
Go to article

Authors and Affiliations

Bartłomiej Zieliński
1

  1. Silesian University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Since the digitalization of terrestrial television, many countries have discontinued television broadcasting in the UHF band. The freed-up frequencies are now available as digital dividends for mobile and fixed wireless access communication networks (MFCN), particularly for 4G/5G and public safety services in broadband called BBPPDR. Since cable TV still uses the UHF band, leakage from cable TV networks is the most common cause of interference in MFCN networks. Insufficient containment of the radio frequency signals transmitted through a cable system results in cable signal leakage. This article investigates the significance of controlling electromagnetic signal leaks from cable TV networks and how they impact authorized and standardized MFCN networks in the digital dividend bands. The periodic drivetest approach to detect and measure electromagnetic leakage from a cable TV system in the 700 MHz band at a site is detailed. The causes of the detected leaks and offered the appropriate procedure to repair them are also discussed. Additionally, the current measures taken in Hungary to address cable television signal leakage in the digital dividend bands are also discussed and alternative strategies for the adopted test drive approach are proposed.
Go to article

Authors and Affiliations

Hussein Taha
1
Péter Vári
2

  1. Doctoral School of Multidisciplinary Engineering Sciences, Széchenyi István University, Győr, Hungary
  2. Department of Telecommunications, Széchenyi István University, Győr, Hungary
Download PDF Download RIS Download Bibtex

Abstract

With improved technological successions, wireless communication applications have been incessantly evolving. Owing to the challenges posed by the multipath wireless channel, radio design prototypes have become elemental in all wireless systems before deployment. Further, different signal processing requirements of the applications, demand a highly versatile and reconfigurable radio such as Software Defined Radio (SDR) as a crucial device in the design phase. In this paper, two such SDR modules are used to develop an Orthogonal Frequency Division Multiplexing (OFDM) wireless link, the technology triumphant ever since 4G. In particular, a non-coherent end-to-end OFDM wireless link is developed in the Ultra High Frequency (UHF) band at a carrier frequency of 470 MHz. The transmitter includes Barker sequences as frame headers and pilot symbols for channel estimation. At the receiver, pulse alignment using Max energy method, frame synchronization using sliding correlator approach and carrier offset correction using Moose algorithm are incorporated. In addition, wireless channel is estimated using Least Square (LS) based pilot aided channel estimation approach with denoising threshold and link performance is analyzed using average Bit Error Rate (BER), in different pilot symbol scenarios. In a typical laboratory environment, the results of BER versus receiver gain show that with 4 pilot symbols out of 128 carriers, at a gain of 20 dB, BER is 0.160922, which is reduced to 0.136884 with 16 pilot symbols. The developed link helps OFDM researchers to mitigate different challenges posed by the wireless environment and thereby strengthen OFDM technology.
Go to article

Authors and Affiliations

Nandana Narayana
1
Pallaviram Sure
1

  1. Department of Electronics and Communication Engineering, MS Ramaiah University of Applied Sciences, Bangalore, India
Download PDF Download RIS Download Bibtex

Abstract

Fifth generation (5G) applications like Internet of Things (IoT), Enhanced Mobile Broadband (eMBB), Cognitive Radios (CR), Vehicle to Vehicle (V2V) and Machine to Machine (M2M) communication put new demands on the network in terms of low latency, ultra-reliable communication and efficiency when transmitting very small bursts. One new contender that makes its appearance recently is the Universal Filtered Multi- Carrier (UFMC). UFMC is a potential candidate to meet the requirements of 5G upcoming applications. This related waveform encounters the peak-to-average power ratio (PAPR) issue arising from the usage of multi-carrier transmission. In this investigation, two PAPR reduction techniques, called Per Subband Tone Reservation (PSTR) scheme to alleviate PAPR in UFMC systems are suggested. The first one is a pre-filtering PSTR scheme that uses the least squares approximation (LSA) algorithm to calculate the optimization factor(μ) and the second one is a post-filtering method. The concept of this proposal lies on the use of peaks reductions Tone to carry the correctional signal that reduces the high peaks of each sub-band individually. To shed light on UFMC as a potential waveform for 5G upcoming application, a comparison with OFDM modulation is done.
Go to article

Authors and Affiliations

Laabidi Mounira
1
Bouallegue Ridha
1

  1. Sup’Com, University of Carthage, Tunisia
Download PDF Download RIS Download Bibtex

Abstract

Nowadays, the advancement and increased use of fifth-generation (5G) and sixth-generation (6G) systems have created a demand for more efficient and rapid transmission of information over wireless communication media. However, developing wireless communication systems that can meet these modern-day criteria for fast, reliable, and secure information exchange is a challenging task. To address this issue, this paper proposes a novel model for enhancing the 5G system. The proposed model utilizes polar code with rate matching and constitutional interleaving over the Suzuki fading channel. The combination of polar codes with rate matching and interleaving enables the communication system to achieve a lower error rate and better reliability over a Suzuki fading channel. Specifically, the polar code can correct a larger number of errors, while rate matching and interleaving can mitigate the effects of channel variations and reduce the probability of error bursts. These enhancements can lead to more robust and reliable communication in wireless networks.
Go to article

Authors and Affiliations

Muntadher Suhail Abed
1

  1. Ministry of Education - General Directorate of Education of Karbala, Karbala- Iraq
Download PDF Download RIS Download Bibtex

Abstract

Non-orthogonal multiple access (NOMA) has received tremendous attention for the development of 5G and beyond wireless networks. Power-domain NOMA works on the concept of assigning varying power levels to users within the same frequency and time block. In this paper we propose a novel power allocation approach that uses the Zipf distribution law that satisfies the basic condition of a NOMA system. The Zipf PA is characterized by the simplicity and ease of implementation that allows to extend the capacity of the system to support a large number of users. The numerical results show that the system achieves high throughput and energy efficiency without any parameter optimization constraints as well as improved capacity by increasing the number of users compared to the NOMA system with existing power allocation techniques.
Go to article

Authors and Affiliations

Hanane Himeur
1
Sidi Mohammed Meriah
1
Fouad Derraz
1

  1. Faculty of Technology, University of Abou Bekr Belkaid, Tlemcen, Algeria
Download PDF Download RIS Download Bibtex

Abstract

In the field of medicine there is a need for the automatic detection of retinal disorders. Blindness in older persons is primarily caused by Central Retinal Vein Occlusion (CRVO). It results in rapid, irreversible eyesight loss, therefore, it is essential to identify and address CRVO as soon as feasible. Hemorrhages, which can differ in size, pigment, and shape from dot-shaped to flame hemorrhages, are one of the earliest symptoms of CRVO. The early signs of CRVO are, hemorrhages, however, so mild that ophthalmologists must dynamically observe such indicators in the retina image known as the fundus image, which is a challenging and time-consuming task. It is also difficult to segment hemorrhages since the blood vessels and hemorrhages (HE) have the same color properties also there is no particular shape for hemorrhages and it scatters all over the fundus image. A challenging study is needed to extract the characteristics of vein deformability and dilatation. Furthermore, the quality of the captured image affects the efficacy of feature Identification analysis. In this paper, a deep learning approach for CRVO extraction is proposed.
Go to article

Authors and Affiliations

Jayanthi Rajee Bala
1
Mohamed Mansoor Roomi Sindha
1
Jency Sahayam
1
Praveena Govindharaj
1
Karthika Priya Rakesh
1

  1. Thiagarajar College of Engineering, Madurai, India
Download PDF Download RIS Download Bibtex

Abstract

This study proposes a method that combines Histogram of Oriented Gradients (HOG) feature extraction and Extreme Gradient Boosting (XGBoost) classification to resolve the challenges of concrete crack monitoring. The purpose of the study is to address the common issue of overfitting in machine learning models. The research uses a dataset of 40,000 images of concrete cracks and HOG feature extraction to identify relevant patterns. Classification is performed using the ensemble method XGBoost, with a focus on optimizing its hyperparameters. This study evaluates the efficacy of XGBoost in comparison to other ensemble methods, such as Random Forest and AdaBoost. XGBoost outperforms the other algorithms in terms of accuracy, precision, recall, and F1-score, as demonstrated by the results. The proposed method obtains an accuracy of 96.95% with optimized hyperparameters, a recall of 96.10%, a precision of 97.90%, and an F1-score of 97%. By optimizing the number of trees hyperparameter, 1200 trees yield the greatest performance. The results demonstrate the efficacy of HOG-based feature extraction and XGBoost for accurate and dependable classification of concrete fractures, overcoming the overfitting issues that are typically encountered in such tasks.
Go to article

Authors and Affiliations

Ida Barkiah
1
Yuslena Sari
2

  1. Department of Civil Engineering, Universitas Lambung, Mangkurat, Indonesia
  2. Department of Information Technology, Universitas Lambung Mangkurat, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

We present the met determinate hodological features and new subsystem for receiving, digitizing and processing signals at the intermediate frequency of the incoherent scatter (IS) radar. The implemented method, subsystem and flexible software made it possible to avoid the influence of a number of instrumental factors on the accuracy of determining the quadrature components of the IS signal correlation function used to determine the ionospheric parameters, to adapt the digital filtering parameters, the value of the correlation delay step and the number of ordinates of the measured correlation function to IS signals from different altitudes and under different space weather conditions, to effectively test radar systems for the subsequent taking into account hardware factors and, thus, to improve the accuracy of the measured ionospheric parameters. The experimental results are presented.
Go to article

Authors and Affiliations

Leonid Emelyanov
1
Artem Miroshnikov
1

  1. Institute of Ionosphere of NAS and MES of Ukraine
Download PDF Download RIS Download Bibtex

Abstract

This paper discusses a mem-capacitor circuit which is based on two MO-OTA along with a multiplier and 4 passive elements. This circuit is a charge-controlled memcapacitor emulator which is independent of any memristor also it consists the feature of electronic tunability. Additionally, this circuit is simpler and uses less hardware because it lacks a mutator and uses fewer active-passive components. The circuit behaviour is justified through various simulations in cadence Orcad tool with 180nm CMOS TSMC parameters. Additionally, conclusions from simulations and theory are validated experimentally through commercially available IC.
Go to article

Authors and Affiliations

Chandra Shankar
1
Anuj Nagar
1
Ashutosh Singh
1
Ankleshwar Kumar
1

  1. Department of Electronics & Communication Engineering, JSS Academy of Technical Education, NOIDA, Uttar Pradesh, India
Download PDF Download RIS Download Bibtex

Abstract

The contribution main from this research is modularity and better processing time in detecting community by using K-1 coloring. Testing performed on transaction datasets remittance on P2P platforms where the Louvain Coloring algorithm is better in comparison to Louvain Algorithm Data used is data transfer transactions made by customers on the P2P Online platform. The data is the User data that has information transfer transactions, Card data that has information card, IP data that has IP information, and Device data that has information device. Every user owns unique 128-bit identification, and other nodes representing card, device, and IP are assigned a random UUID. The Device node has the guide, and device properties. IP nodes only have property guide and node User has property fraud Money Transfer, guide, money Transfer Error Cancel Amount, first Charge back Date. Each node has a unique 128-bit guide, with the amount whole of as many as 789,856 nodes. Application technique K-1 staining on Louvain algorithm shows enhancement value modularity and better processing time for detecting community on the network large scale. Through a series of exercises and tests carried out in various scenarios, it shows that the experiments carried out in this paper, namely the Louvain Coloring algorithm, are more effective and efficient than the Louvain algorithm in scenario 1,3, and 5 meanwhile For Scenarios 2 and 4 Louvain Algorithm is better.
Go to article

Authors and Affiliations

Heru Mardiansyah
1
Saib Suwilo
2
Erna Budiarti Nababan
3
Syahril Efendi
1

  1. Department Computer Science, Faculty of Computer Science and Information Technology, Universitas Sumatera Utara, Medan, Indonesia
  2. Department Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
  3. Department Data Science and Artificial Intelligence, Faculty of Computer Science and Information Technology, Universitas Sumatera Utara, Medan, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The field programmable gate array (FPGA) is used to build an artificial neural network in hardware. Architecture for a digital system is devised to execute a feed-forward multilayer neural network. ANN and CNN are very commonly used architectures. Verilog is utilized to describe the designed architecture. For the computation of certain tasks, a neural network’s distributed architecture structure makes it potentially efficient. The same features make neural nets suitable for application in VLSI technology. For the hardware of a neural network, a single neuron must be effectively implemented (NN). Reprogrammable computer systems based on FPGAs are useful for hardware implementations of neural networks.
Go to article

Authors and Affiliations

B A Sujatha Kumari
1
Sudarshan Patil Kulkarni
1
C G Sinchana
1

  1. Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysore, India
Download PDF Download RIS Download Bibtex

Abstract

A Novel Intelligent control of a Unified Power Quality Conditioner (UPQC) coupled with Photovoltaic (PV) system is proposed in this work. The utilization of a Re-lift Luo converter in conjunction with a Cascaded Artificial Neural Network (ANN) Maximum Power Point Tracking (MPPT) method facilitates the optimization of power extraction from PV sources. UPQC is made up of a series and shunt Active Power Filter (APF), where the former compensates source side voltage quality issues and the latter compensates the load side current quality issues. The PV along with a series and shunt APFs of the UPQC are linked to a common dc-bus and for regulating a dc-bus voltage a fuzzy tuned Adaptive PI controller is employed. Moreover, a harmonics free reference current is generated with the aid of CNN assisted dq theory in case of the shunt APF. The results obtained from MATLAB simulation.
Go to article

Authors and Affiliations

Ramesh Rudraram
1
Sasi Chinnathambi
1
Manikandan Mani
2

  1. Electrical Engineering Department, Annamalai University, Annamalainagar, India
  2. Electrical and Electronics Engineering Department, Jyothishmathi Institute of Technology and Science, Karimnagr, Telangana, India
Download PDF Download RIS Download Bibtex

Abstract

The operating modes of the automatic control system for electromechanical converters for synchronization of rotor speeds have been developed and investigated. The proposed automatic speed control system allows adjusting the slave engine to the master one in a wide range from 0 to 6000 rpm. To improve the synchronization accuracy an adaptive algorithm is proposed that allows to increase the synchronization accuracy by 3-4 times. The proposed model of an adaptive automatic control system with an observing identification tool makes it possible to minimize the error in the asynchrony of the rotation of the rotors of two electromechanical converters.
Go to article

Authors and Affiliations

Aidana Kalabayeva
1 2
Waldemar Wójcik
3
Gulzhan Kashaganova
4
Kulzhan Togzhanova
5
Zhaksygul Sarybayeva
1

  1. Academy of Logistics and Transport, Almaty, Kazakhstan
  2. Almaty University of Power Engineering and Telecommunications Almaty, Kazakhstan
  3. Lublin University of Technology, Lublin, Poland
  4. Turan University, Almaty, Kazakhstan
  5. Almaty Technological University, Almaty, Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a model to generate a 3D model of a room, where room mapping is very necessary to find out the existing real conditions, where this modeling will be applied to the rescue robot. To solve this problem, researchers made a breakthrough by creating a 3D room mapping system. The mapping system and 3D model making carried out in this study are to utilize the camera Kinect and Rviz on the ROS. The camera takes a picture of the area around it, the imagery results are processed in the ROS system, the processing carried out includes several nodes and topics in the ROS which later the signal results are sent and displayed on the Rviz ROS. From the results of the tests that have been carried out, the designed system can create a 3D model from the Kinect camera capture by utilizing the Rviz function on the ROS. From this model later every corner of the room can be mapped and modeled in 3D.
Go to article

Authors and Affiliations

Syahri Muharom
1
Riza Agung Firmansyah
1
Yuliyanto Agung Prabowo
1

  1. Institut Teknologi Adhi Tama Surabaya, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The article is a sort of advanced publication workshop prepared by a group of M.Sc. students in ICT participating in the course on QIT. The idea behind the publishing exercise is to try to link, if possible, individual own work just under realization for the thesis with new unique possibilities offered by the QIT. Each chapter is written by a single author defining concisely her/his research interest in the classical ICT field and trying to find possible correlations with respective abruptly developing branches of the QIT. The chapter texts are somehow moderated by the tutor but are exclusively authored by young researchers. The aim was to present their views on the possible development directions of particular subfields of QIT, if not fully mature, but still based on their own ideas, research and dreams.
Go to article

Authors and Affiliations

Dagmara A. Drecka
1
Marek T. Lipiński
1
Adrian Z. Sarwiński
1
Arkadiusz Sowa
1
Jakub K. Turliński
1
Ryszard S. Romaniuk
1

  1. Warsaw University of Technology, Poland

Instructions for authors

Author Guidelines

We recommend the use of LaTeX2e for the preparation of your camera-ready manuscript, together with the corresponding class file.

We do not encourage the use of Microsoft Word, particularly as the layout of the pages (the position of figures and paragraphs or fonts) can change between printouts. If you would like to prepare your manuscript using MS Word please contact Editorial Office.

Please carefully read the information below, and download the relevant files.

To do so, please download JETInfo.pdf

Microsoft Windows or Macintosh LaTeX2e style file:

      Please download IEEEtran.zip

Publication requirement is to prepare no less than 6 pages including references using provided LaTeX2e style. All papers that do not meet this requirement will be rejected before review stage.

 

 

Please submit the following:

  •     All source LaTeX files.
  •     Final PDF file (for reference).
  •     PS/EPS or TIFF files for all figures.
  •     Complete contact information for all authors.
  •     Mailing address, a VAT/CIF/NIF/NIP number (depending on the country) of affiliated company the invoice should be sent.

 

IMORTANT! Before staring submission please prepare a contact information for all co-authors (full names, e-mails and affiliations). A contact information for all authors should be provided during submission process in "Step 2. Entering the Submission's Metadata". Papers submitted without contact information for all co-

This page uses 'cookies'. Learn more