Applied sciences

Metrology and Measurement Systems

Content

Metrology and Measurement Systems | 2022 | vol. 29 | No 3

Download PDF Download RIS Download Bibtex

Abstract

This article presents selected physical diagnostic methods used in otorhinolaryngology and results of their application. In addition to the applications of methods using the capabilities of selective sensors, selected methods of hybrid diagnostics were also presented – for assessment of parameters of respiratory processes, with polysomnography as an example of using both typical diagnostic methods dedicated to otolaryngology, as well as standard EEG and ECG methods. It has been shown that in some special cases of respiratory disorders, measurements of the air flow in the respiratory tract can be supplemented with pressure measurements in selected positions within the airways. The presented optical methods and diagnostic systems are very often used in the diagnosis of diseases not specific for otolaryngology occurring in the area of the head and neck. The presented material is the second part of the study discussing both standard and widely used diagnostic methods. All presented methods are dedicated to otolaryngology. This text is a continuation of the material published in No 4 of 2021 [1].
Go to article

Authors and Affiliations

Andrzej Zając
1
Andrzej Kukwa
2
Robert Barańska
3
Szymon Nitkiewicz
4 5
Edyta Zomkowska
6 7
Adam Rybak
8

  1. Military University of Technology, Warsaw, Institute of Optoelectronics, Kaliskiego St., 2, 00-908, Warsaw, Poland
  2. University of Warmia and Mazury, Olsztyn, Department and Clinic of Otorhinolaryngology, Head and Neck Diseases, Collegium Medicum, Warszawska St. 30, 10-082 Olsztyn, Poland
  3. AGH University of Science and Technology in Kraków, Department of Mechanics and Vibroacoustics, Mickiewicza St. 30, 30-059 Kraków, Poland
  4. University of Warmia and Mazury in Olsztyn, Department of Mechatronics, Faculty of Technical Science, Oczapowskiego St. 2, Olsztyn, Poland
  5. University of Warmia and Mazury in Olsztyn, Department of Neurosurgery, School of Medicine, Oczapowskiego St. 2, Olsztyn, Poland
  6. Clinic of Otorhinolaryngology, Head and Neck Surgery, University Hospital in Olsztyn, Warszawska St. 30, 10-082 Olsztyn, Poland
  7. University of Warmia and Mazury in Olsztyn, Department and Clinic of Otorhinolaryngology, Head and Neck Diseases, Collegium Medicum, Warszawska St. 30, 10-082 Olsztyn, Poland
  8. LABSOFT Sp. z o.o., Puławska St. 469, 02-844 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

International standards from IEC and IEEE regulate power grid parameters such as theRMSvalue, frequency, harmonic and interharmonic distortion, unbalance or the presence of transients, that are important to assure the quality of distributed power. Standard IEC 61000-4-30 suggests the zero crossing algorithm for the measurement of the power grid frequency, but also states that different algorithms can be used. This paper proposes a new algorithm, the Fractional Interpolated Discrete Fourier Transform, FracIpDFT, to estimate the power grid frequency, suitable for implementation in resource limited embedded measurement systems. It is based on the non-integer Goertzel algorithm followed by interpolation at non-integer multiples of the DFT frequency resolution. The proposed algorithm is validated and its performance compared with other algorithms through numerical simulations. Implementation details of the FracIpDFT in an ARM Cortex M4 processor are presented along with frequency measurement results performed with the proposed algorithm in the developed system.
Go to article

Authors and Affiliations

Nuno M. Rodrigues
1
Fernando M. Janeiro
2
Pedro M. Ramos
1

  1. Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
  2. Instituto de Telecomunicações, Universidade de Évora, 7000-671 Évora, Portugal
Download PDF Download RIS Download Bibtex

Abstract

The manufacturing and characterization of polymer nanocomposites is an active research trend nowadays. Nonetheless, statistical studies of polymer nanocomposites are not an easy task since they require several factors to consider, such as: large amount of samples manufactured from a standardized procedure and specialized equipment to address characterization tests in a repeatable fashion. In this manuscript, the experimental characterization of sensitivity, hysteresis error and drift error was carried out at multiple input voltages (����) for the following commercial brands of FSRs ( force sensing resistors): Interlink FSR402 and Peratech SP200-10 sensors. The quotient between the mean and the standard deviation was used to determine dispersion in the aforementioned metrics. It was found that a low mean value in an error metric is typically accompanied by a comparatively larger dispersion, and similarly, a large mean value for a given metric resulted in lower dispersion; this observation was held for both sensor brands under the entire range of input voltages. In regard to sensitivity, both sensors showed similar dispersion in sensitivity for the whole range of input voltages. Sensors’ characterization was carried out in a tailored test bench capable of handling up to 16 sensors simultaneously; this let us speed up the characterization process.
Go to article

Authors and Affiliations

Carlos Andrés Palacio Gómez
1
Leonel Paredes-Madrid
2
Andrés Orlando Garzon
2

  1. GIFAM Group, Universidad Antonio Nariño, Cra 7 No. 21-84, 150001 Tunja, Boyacá, Colombia
  2. Universidad Católica de Colombia, Faculty of Engineering, Carrera 13 # 47-30, Bogota, Colombia
Download PDF Download RIS Download Bibtex

Abstract

Current vision-based roughness measurement methods are classified into two main types: index design and deep learning. Among them, the computation procedure for constructing a roughness correlation index based on image data is relatively difficult, and the imaging environment criteria are stringent and not universally applicable. The roughness measurement method based on deep learning takes a long time to train the model, which is not conducive to achieving rapid online roughness measurement. To tackle with the problems mentioned above, a visual measurement method for surface roughness of milling workpieces based on broad learning system was proposed in this paper. The process began by capturing photos of the milling workpiece using a CCD camera in a normal lighting setting. Then, the train set was augmented with additional data to lower the quantity of data required by the model. Finally, the broad learning system was utilized to achieve the classification prediction of roughness. The experimental results showed that the roughness measurement method in this paper not only had a training speed incomparable to deep learning models, but also could automatically extract features and exhibited high recognition accuracy.
Go to article

Authors and Affiliations

Runji Fang
1
Huaian Yi
1
Shuai Wang
1
ORCID: ORCID
Yilun Niu
1

  1. School of Mechanical and Control Engineering, Guilin University of Technology, Guilin, 541006, People’s Republic of China
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes data-based fault detection methods for an electromechanical actuator (EMA) with a brushed DC motor. The jam and winding short faults are considered in the study as the most prominent EMA faults. The fault detection is based on evaluating the properties of the motor current, considering the basic electromechanical parameters of EMAs. The main advantages are a non-intrusive approach utilising a commonly accessible motor current measurement, simple configurability, and the ability to detect faults under varying operation modes of EMA, including changes of speed, load, or movement profiles. The proposed methods have been evaluated with a custom testing system, and the results have proven the performance of the proposed approach to detect faults under varying operating conditions in industrial applications.
Go to article

Authors and Affiliations

Ondřej Hanuš
1
Radislav Smid
1

  1. Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Measurement, Technicka 2,166 27 Prague, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

Ultrasonic Non-Destructive Testing (NDT) is a powerful tool used for testing, verification, and inspection of material, especially for quality control and assurance. The key applications are the identification of flaws, cracks, irregularities, defects, and estimation of material thickness. The standard documents available for ultrasonic NDT are used as a guideline for the specifications and certification of the calibration reference standard block (RSB). The method for metrological characterization of the testing blocks is not specifically addressed in standard documents and is left to the wisdom of metrologists working in the ultrasonic calibration laboratories to adopt the suitable one. The ultrasonic flaw detector (UFD) is used most widely in ultrasonic NDT. The International Institute of Welding (IIW) V1 RSB standard is used as a reference to ascertain the functionalities of UFDs. In this article, we have proposed a new methodology for calibration of RSB and evaluation of associated measurement uncertainty along with influencing parameters. The proposed method conforms to the international standard ISO 2400:2012 and Indian standard IS 4904:2006 for validation purposes. According to these standards, the clauses for RSB e.g., dimension and quality of material have been examined. The expanded measurement uncertainty in thickness, ultrasonic longitudinal velocity, ultrasonic attenuation, parallelism and perpendicularity is ±0.068 mm, ±6.70 m/s, ±0.22 dB, and ±0.066 mm, respectively. The measurement uncertainty of these parameters is well within as per clauses stipulated in the standard documents except the ultrasonic longitudinal velocity for the IS standards.
Go to article

Authors and Affiliations

Kalpana Yadav
1 2
Sanjay Yadav
1 2
P.K. Dubey
1 2

  1. Pressure, Vacuum and Ultrasonic Metrology, Division of Physico-Mechanical Metrology, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
  2. Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
Download PDF Download RIS Download Bibtex

Abstract

The current research work presents an investigation into use of the fitting coefficients resulting from the cubic curve fitting of the torque transducer calibration results in one direction to calculate the actual torque in the other torque direction with two methods: one is direct substitution with the nominal torque which gives a propagated linear relative interpolation error and the other is changing the sign of the second coefficient in the cubic function when using in the other torque direction. This proposed modification improves the absolute relative interpolation error by 5 to 16 times in the clockwise and counterclockwise directions based on the torque transducer’s classification.
Go to article

Authors and Affiliations

K.M. Khaled
1
Seif M. Osman
1

  1. National Institute of Standards (NIS), Force and Material Metrology Department, Tersa st., 11221 Giza, Egypt
Download PDF Download RIS Download Bibtex

Abstract

In order to guarantee the accuracy of turntable angle measurement, a real-time compensation method for turntable positioning precision based on harmonic analysis is proposed in this paper. Firstly, the principle and feasibility of the real-time compensation method are analysed, and a detailed description of harmonic compensation is provided herein. Secondly, we analyse the relationships between the surface number of the polygon with the compensation order of the harmonic function and its corresponding compensation accuracy. The effects of the iterations number and the data width on calculation accuracy in the coordinate rotation digital computer (CORDIC) algorithm are analysed and the quantization models of the approximation error and rounding error of the CORDIC algorithm are established. Then, the calculation of the harmonic error function and real-time compensation processes are implemented on a field programmable gate array (FPGA) chip. The resource occupation and time delay of the phase angle calculation and the harmonic component calculation are discussed separately. Finally, the validity of the harmonic compensation method is proven through comparing the compensation effect with that of linear interpolation and the polynomial compensation method. The influences of the compensation order, the iterations number and the data width on the compensation results are demonstrated by simulation. A test platform with a laboratory-made FPGA circuit is built to evaluate the effect of real-time compensation with the harmonic function and the positioning error compensation can be performed within 760 ns. The results confirmed the effectiveness of the harmonic compensation method, revealing an improvement of the positioning precision from 54.21″ to 1.63″, equivalent to 96.99% reduction in positioning error.
Go to article

Authors and Affiliations

Yi Zhou
1
Weibin Zhu
1
Yi Shu
1
Yao Huang
2 3
ORCID: ORCID
Wei Zou
3
Zi Xue
3

  1. China Jiliang University, School of Measurement and Testing Engineering, Hangzhou, 310018, China
  2. Zhejiang University, College of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, Hangzhou 310027, China
  3. National Institute of Metrology, Beijing, 100029, China
Download PDF Download RIS Download Bibtex

Abstract

The article presents an analysis of the impact of bending optical fibers with tilted Bragg gratings on their spectral parameters. This article proves that it is possible to a choose TFBG cladding mode and the optical spectrum range related to it that allows the best metrological properties to be obtained when measuring bend. The results contained in the paper explain why the minima in the spectral characteristics, corresponding only to some cladding modes, change their shape during TFBG bending, which is important for application of Bragg gratings as bending sensors. It has been presented that in the case of TFBG we are able to aggregate the knowledge obtained during experiment to the form of a physical model of the fiber bending sensor.
Go to article

Authors and Affiliations

Piotr Kisała
1

  1. Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

In modern clinical practice in various areas of dentistry, there is a need to virtualize and determine the diagnostic parameters of the stomatognathic system (SS). The aim of this article is to provide an evaluation of correct SS structures based on a comparison of mappings in pantomography, lateral cephalometry, and volumetric tomography using bone and tooth anthropometric points. The digital measurements performed determine the applicability of the analyzed imaging techniques for clinical diagnostics by indicating discrepancies and errors in the evaluation of geometric parameters. They should verify the location of characteristic points, lines, angles, and planes in relation to spatial objects mapped on the 1:1 scale. The analyses performed confirm the appearance of bone and dental structure asymmetry in healthy patients.
Go to article

Authors and Affiliations

Wojciech Ryniewicz
1
Łukasz Bojko
2
Anna M. Ryniewicz
2

  1. Jagiellonian University Medical College, Faculty of Medicine, Dental Institute, Department of Dental Prosthodontics and Orthodontics, 4 Montelupich Street, 31-155 Krakow, Poland
  2. AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, 30 Mickiewicza Ave., 30-059 Krakow

Instructions for authors



Sample article with Author guidelines



Author guidelines



Types of contributions

Metrology and Measurement Systems welcomes submissions of the following article types:

• invited special issue or review papers presenting the current stage of the knowledge within scope of the journal (about 20 edited pages, approximately 3000 characters each),
• research papers reporting high-quality original scientific or technological advancements (max. 12 pages),
• papers based on extended and updated contributions presented at scientific conferences (max. 12 pages),
• short notes, i.e. book reviews, conference reports, short news (max. 2 pages).


Manuscript preparation

General The text of a manuscript should be written in clear and concise English. The camera-ready format – with attached separate files containing illustrations, tables and photographs – is required. A cover letter with clear explanation of scientific novelty of the paper is strongly recommended. Papers based on extended and updated contributions presented at scientific conferences, or strongly related to previous authors’ works, must be accompanied with a cover letter file, which should explain in details changes made in the manuscript in comparison with the original conference paper and highlight the novelty in reference to other authors’ works.
The main text of a manuscript should be printed on an A4 page (with margins of 2.5 cm) using Times New Roman style with a font size of 12 pt; the paragraphs should start with the indentation of 5 mm, and titles should be written in bold. That text can be divided into sections (numbered 1, 2, …), first-order subsections (numbered 1.1., 1.2., …, written in italics), and – if needed – second-order subsections (numbered 1.1.1., 1.1.2., …, written same as first-order subsections). The only acceptable manuscript formats are in Microsoft Word (.doc, .docx).

The Editor encourages the Authors of submitted papers who are not English native speakers, to use a language service checking the language correctness not only with respect to grammar, but also in the way of presentation of research results accepted by renowned publishers, e.g. presented on the website of the European Association of Science Editors. The Editor encourages the Authors of submitted papers who are not English native speakers, to use a language service checking the language correctness not only with respect to grammar, but also in the way of presentation of research results accepted by renowned publishers, e.g. presented on the website of the European Association of Science Editors.


Figures
Figures (illustrations, photographs) and tables, provided in the camera-ready form suitable for reproduction (which may include reduction), should be additionally submitted (one per page), larger than the final size. While preparing figures we encourage to start with defining expected size and minimum font size that fit to all graphics in the manuscript – using the same style in all of your graphics visually improves the article. Final figure formats must be in one of the following: (vectors) .eps, .pdf, .ai or .cdr, and (bitmaps) .bmp, .gif, .tif or .jpg.
As far as plots, block diagrams, schematics etc. are concerned, we suggest to use one of vector formats to improve quality and scalability. Figures in vector formats must be saved using RGB colours and with fully white background (0% K). Hidden layers are unacceptable. Minimum line thickness printed in a single colour is 0.25 pt (0.09 mm), and 1 pt (0.36 mm) when using more colours. Typically we suggest 0.2-0.5 mm but in particular cases the range 0.1–1.0 mm will be accepted. Lines in plots should be distinguished not only by using different colours but also using different line types and markers, if needed.


Equation
All equations must be numbered consecutively throughout the text. Each equation should be preceded and followed by a 6-point spacing. Punctuate equations when they are part of a sentence. Equation numbers should be enclosed in parentheses. Equations should be prepared with the use of MathType or Microsoft Equation editors. The type size in the equation is the same as for the text. To make your equations more compact, you may use the appropriate mathematical symbols or expressions. The symbols used in an equation have to be defined before that equation or immediately after it. Use italics for variables (e.g. i, x, n), physical quantity symbol (e.g. voltage U, temperature T), letter pointers and general function symbols. Do not use italics for constants, indexes, minimum, maximum and trigonometric functions, mathematical operators, differentials, etc. To refer to the equation use “(1)”, not “Eq. (1)” or “equation (1)”, except at the beginning of a sentence where “Equation (1)” should be used. We recommend to use International System of Units SI i.e. metre-kilogram-second system of units. As a decimal separator dot should be used in the entire manuscript (text, figures, tables).


References
The paper has to be clearly positioned in the context of relevant literature in the field of measurements and instrumentation. Note that lack of references from the main field of Metrology and Measurement Systems interest may suggest that the content of manuscript does not exactly correspond to the scope of metrological journals. It may reduce possibility that a proposed paper will be read by audience society. In such a case our Editorial Board may suggest to send the manuscript to a more appropriate journal. Also note that the use of possibly up-to-date references may indicate importance of your work. Table below gives examples of some relevant and renewable journals related to widely understood metrology.


Journal

Publisher

ISSN

Metrologia

IOP Publishing

0026-1394

IEEE Transactions on Instrumentation and Measurement

IEEE

0018-9456

Measurement

Elsevier

0263-2241

Measurement Science and Technology

IOP Publishing

0957-0233

Metrology and Measurement Systems

PAS

0860-8229

Review of Scientific Instruments

IOP Publishing

0034-6748

IEEE Transactions on Industrial Electronics

IEEE

1557-9948

IET Science, Measurement & Technology

IET

1751-8822

Journal of Instrumentation

SISSA, IOP Publishing

1748-0221

Measurement Science Review

Walter de Gruyter

1335-8871

IEEE Instrumentation and Measurement Magazine

IEEE

1094-6969

Bulletin of the Polish Academy of Sciences: Technical Sciences

PAS

2300-1917

Opto-Electronics Review

PAS

1896-3757

IEEE Sensors Journal

IEEE

1558-1748

Sensors

MDPI

1424-8220




References should be inserted in the text in square brackets, i.e. [1]; their list, numbered in citation order, should appear at the end of the manuscript. The format of the references should follow the APA 7th edition formatting style, i.e.: for an journal paper – surname(s) and initial(s) of author(s), year in brackets, title of the paper, full journal name, volume, issue (in brackets) and page numbers. Put all author names unless there are more than 20. Otherwise, after the first 19 authors’ names, use an ellipsis in place of the remaining author names. Then, end with the final author’s name (do not place an ampersand before it).


Submission process
Manuscript should be submitted via the Internet Editorial System (IES) – an online submission and peer review system. In order to submit the manuscript via the IES, the authors (first-time users) must create an author account to obtain a user ID and password required to enter the system. The submission of the manuscript in a single file, i.e. “Article File” containing the complete manuscript (with all figures of high quality and tables embedded in the text), is preferred. All figures have to be uploaded in separate files. The generated PDF file has to be approved. The PDF file has lower quality of the embedded figures to limit its size only.
The submission of a manuscript means that its content has not been published previously, it is not under consideration for publication elsewhere, and that – if accepted – it will not be published elsewhere. The Author hereby grants the Polish Academy of Sciences (the Journal Owner) the license for commercial use of the article according to the Open Access License ( CC BY-NC-ND 4.0), which has to be signed before publication. The copyright form is available in the IES.
The Authors are urged to suggest 4 to 5 reviewers in their application (with names, affiliations and addresses) with whom the Editorial Board could co-operate while processing the paper. Proposed reviewers should be experts deeply involved in issues related to the subject matter of the paper and they are intended to come from different universities or research centres.
Each submitted manuscript is subject to a single-blind peer-review procedure, and the publication decision is based on the reviewers’ comments. If necessary, the authors may be invited to revise their manuscripts. On acceptance, manuscripts are subject to editorial amendment to exactly fit the journal style.
An essential criterion for the evaluation of submitted manuscripts is their potential impact on the research field, measured by the number of repeated quotations. Such papers are preferred at the evaluation and publication stages.
Proofs will be sent to the corresponding author by e-mail and should be returned within 48 hours from receipt. The publication in the journal is free of charge. A sample copy of the journal will be sent to the corresponding author free of charge. For colour pages the authors will be charged at the rate of 160 PLN or 80 EUR per page. The payment to the bank account of the main distributor (given in “Subscription Information”) must be completed before the date indicated by the Editorial Office.


Other information
It is possible to include supplementary files related to the article content, such as e.g. developed databases. These files can be then used by other researchers to compare their algorithms using the same input data. For more details about supplementary files please contact the Editorial Board: metrology@wat.edu.pl. The biographical statements, at the very end of the article, are not obligatory, however, they are kindly recommended. Each statement should include the author’s full name and brief personal history focused on areas of research and scientific achievements. The biographical statement may not exceed 100 words and should be written using Times New Roman style with a font size of 8 pt.
The publication of your article is a great achievement but then it needs to be further promoted to make it more visible to the research community. Responsibility for this task lies with the Authors and our Editorial Board. We guarantee free access to the article in the Journals PAN of the Polish Academy of Science, including articles in Early Access form (published just after acceptance decision), indexing in popular and renewable databases (e.g. Thomson Scientific Master Journal List, Elsevier’s Scopus, Google Scholar). Furthermore, selected articles are highlighted on the journal website and are reprinted for promotion at conferences and other events. The Authors can share the final form of the article on various social networks and research-sharing platforms, such as Twitter, Facebook, Linkedin, ResearchGate, Academia.edu, SciProfiles. They are also encouraged to update personal and institutional webpages by adding the title and a link of the article. Feel free also to share your work with your colleagues using any other methods that do not conflict with the CC BY-NC-ND 4.0 license.
For more detailed description about how to write a paper for the Metrology and Measurement Systems journal please look at the Author guidelines for manuscript preparation. We strongly recommend using this file as a template for manuscript preparation.


This page uses 'cookies'. Learn more